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Program of the 28th Korea Conference on Software Engineering (KCSE 2026) 

초대의 글 

 

소프트웨어공학 학술대회(KCSE 2026) 참가자 여러분을 환영합니다. 

KCSE (Korea Conference on Software Engineering)는 기업, 연구소 및 학계에서 활동하고 계신 

소프트웨어공학 분야 전문가들의 모임으로, 한국정보과학회 소프트웨어공학 소사이어티와 

한국정보처리학회 소프트웨어공학 연구회가 소프트웨어공학 기술의 발전 및 적용 확산을 위하여 

1999 년부터 매년 개최하는 학술대회입니다. 

이번 제 28 회 학술대회는 “소프트웨어공학 가치의 확산: DevSecOps, MLSecOps, 그리고 그 

너머”를 주제로, 기조 연설, 튜토리얼, 신진 연구자 발표, 우수논문 발표 등의 초청 세션과 

소프트웨어공학 분야 각계에서 제출한 47 편의 엄선된 논문으로 구성되었습니다. 이번 KCSE 

2026 학술대회가 소프트웨어공학을 연구하고, 적용하는 모든 연구자 그리고 전문가 여러분께 

즐겁고 활기찬 학술 교류 및 기술 협력의 장이 될 수 있도록 여러분들의 많은 관심과 참여를 

부탁드립니다. 

제 28 회 KCSE 학술행사를 위해 수고해 주신 조직위원회와 학술위원회 위원들, 후원 기관 관계자 

여러분, 그리고 기조 연설을 포함한 학술대회 모든 발표자분들께 깊이 감사드리며 건승을 

기원합니다. 

 

 

한국정보과학회 소프트웨어공학 소사이어티 회장 이정원 

한국정보처리학회 소프트웨어공학연구회 운영위원장 유준범
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학술대회 준비 위원회 

 

공동대회장: 이정원 교수(아주대), 유준범 교수(건국대) 

 

조직위원장: 이주용 교수(UNIST) 

조직위원: 이정원 교수(아주대), 유준범 교수(건국대), 홍 신 교수(충북대),  

남재창 교수(한동대), 김영재 박사과정(UNIST), 배경민 교수(POSTECH),  

강종구 교수(성신여대) 

학술위원장: 김미정 교수(UNIST) 

학술위원: 강종구 교수(성신여대), 고인영 교수(KAIST), 김기섭 교수(DGIST) 

김동선 교수(고려대), 김문주 교수(KAIST), 김윤호 교수(한양대), 

김정아 교수(가톨릭관동대), 김진대 교수(서울과학기술대), 

김진현 교수(경상대), 김태호 박사(IITP), 김택수 박사(삼성전자), 

김형석 교수(충남대), 남재창 교수(한동대), 류덕산 교수(전북대), 

마유승 박사(ETRI), 박수진 교수(서강대), 박지훈 교수(충남대), 

배경민 교수(POSTECH), 백종문 교수(KAIST), 서영석 교수(영남대), 

손정주 교수(경북대), 송지영 교수(한남대), 안가빈 교수(고려대), 

안성수 교수(경상대), 양근석 교수(한경대), 유명성 교수(서울시립대),  

유 신 교수(KAIST), 유준범 교수(건국대), 윤회진 교수(협성대),  

이선아 교수(경상대), 이우석 교수(한양대), 이은서 교수(국립경국대),  

이은주 교수(경북대), 이재권 교수(강원대), 이정원 교수(아주대),  

이지현 교수(전북대), 이찬근 교수(중앙대), 이희진 교수(동양미래대),  

정우성 교수(서울교대), 정필수 교수(경상대), 지은경 교수(KAIST),  

차상길 교수(KAIST), 차수영 교수(성균관대) 채흥석 교수(부산대),  

최윤자 교수(경북대), 허기홍 교수(KAIST), 홍 신 교수(충북대), 

홍장의 교수(충북대) 

 

 

문의사항 연락처 

학술대회 홈페이지: https://kcse.sigsoft.or.kr/2026/   

조 직: 이주용 교수 (E-mail: jooyong@unist.ac.kr) 

학 술: 김미정 교수 (E-mail: mijungk@unist.ac.kr) 
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KCSE 2026 프로그램 개요 
 

2 월 4 일 (수) 
12:00- 
13:00 

KCSE 2026 등록 

13:00- 
15:30 

튜토리얼 T1. 박상돈 교수 
102 호 (좌장: 배경민 교수) 

튜토리얼 T2. 지은경 교수 
111 호 (좌장: 류덕산 교수) 

튜토리얼 T3. 김진현 교수 
112 호 (좌장: 백종문 교수) 

15:30- 
15:45 

휴식 

15:45- 
16:00 

개회식 
112 호 

16:00- 
17:00 

기조강연 1. 박인욱 상무(LG 전자) 
112 호 

17:00- 
17:15 

휴식 

17:15- 
20:00 

석식 및 태화강 국가 정원 은하수길 산책 
 

2 월 5 일 (목) 

09:00- 
09:50 

신진연구자 세미나 N1.  
안가빈 교수 

102 호 (좌장: 김윤호 교수) 

신진연구자 세미나 N2. 
유명성 교수 

111 호 (좌장: 손정주 교수) 

신진연구자 세미나 N3.  
신용준 박사 

112 호 (좌장: 지은경 교수) 
09:50- 
10:00 

휴식 

10:00- 
11:30 

A1. SW 테스팅 I 
102 호 (좌장: 안가빈 교수) 

A2. 퍼징 및 기호실행 
111 호 (좌장: 김미정 교수) 

A3. SW 결함 I 
112 호 (좌장: 백종문 교수) 

A4. SE 를 위한 AI I 
106 호 (좌장: 유명성 교수) 

11:30- 
13:00 

중식 

13:00- 
13:50 

B1. SW 안전 
102 호 (좌장: 유명성 교수) 

B2. SW 보안 I 
111 호 (좌장: 차상길 교수) 

B3. SW 결함 II 
112 호 (좌장: 남재창 교수) 

B4. 응용 SW 
106 호 (좌장: 김기섭 교수) 

13:50- 
14:00 

휴식 

14:00- 
15:00 

C1. 프로그램 수정 
102 호 (좌장: 김윤호 교수) 

C2. SW 보안 II 
111 호 (좌장: 차상길 교수) 

C3. SE 를 위한 AI II 
112 호 (좌장: 남재창 교수) 

C4. 제조 AI 를 위한 SE 
106 호 (좌장: 김기섭 교수) 

15:00- 
15:15 

휴식 

15:15- 
16:15 

IITP 공청회: AI-native SW 산업 혁신 기술 개발 사업 
112 호 

16:15-
16:30 

휴식 

16:30-
17:30 

기조강연 2. 이희조 교수(고려대학교) 
112 호 

17:30-
18:00 

휴식 

18:00-
20:00 

석식 및 시상식(Banquet) 
102 동 대학본부 4 층 경동홀 

 

 

2 월 6 일 (금) 

09:00- 
10:00 

기조강연 3. 최재식 교수(KAIST) 
112 호 

10:00- 
10:15 

휴식 

10:15- 
11:45 

D1. SW 테스팅 II 
102 호 (좌장: 손정주 교수) 

D2. SW 디버깅 
111 호 (좌장: 지은경 교수) 

D3. 프로그램 분석 및 모델링 
112 호 (좌장: 배경민 교수) 

11:45- 
11:50 

휴식 

11:50- 
12:00 

폐회식  
112 호 
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KCSE 2026 프로그램 
 

 
o 2026년 2월 5일 (목) 오전 10:00-11:30 / 102호 

o 좌장: 안가빈 교수(고려대) 
 

 

[초청발표] An Empirical Study of Web Flaky Tests: Understanding and Unveiling DOM Event Interaction 

Challenges, Yu Pei(University of Luxembourg), 손정주(경북대), Mike Papadakis(Unibersity of Luxembourg), 

The 18th IEEE International Conference on Software Testing, Verification and Validation (ICST 2025) 

국제학술대회 발표 논문 

발표자: 손정주(경북대) 
 

기기의 건전성 테스트를 위한 누적손실기반 평가 메트릭 설계 및 검증 

최민서, 김진세, 이정원(아주대) 
 

[초청발표] Automated code-based test case reuse for software product line testing,  

정필수, 이선아, 이의천(경상국립대), ICST 2024 Journal First 
발표자: 정필수(경상국립대) 
 

MCP 기반 멀티 에이전트 클라우드 DevSecOps 보안·규제·비용 통합 대응 워크플로 (학부생논문) 

김수민, 김영서, 심희윤, 장예린(이화여대) 
 

바이트코드 기반 Bugram 기법의 성능 평가 (단편논문) 

추새벽(실버든든), 남재창(한동대) 

 

 
o 2026년 2월 5일 (목) 오전 10:00-11:30 / 111호 

o 좌장: 김미정 교수(UNIST) 
 

톰슨 샘플링 기반 지향성 협력 퍼저 (일반논문) 

모현민, 김윤호(한양대) 
 

ExplosionGuard: 예산 제약 심볼릭 실행을 위한 정책 합성 및 가드레일 시스템 (단편논문) 

이재영(선린인터넷고등학교), 이건우(충주고등학교) 
 

[초청발표] Lightweight Concolic Testing via Path-Condition Synthesis for Deep Learning Libraries, 

김세훈, 김용현, 박다현, 전유석, 이주용, 김미정(UNIST), IEEE/ACM 47th International Conference on Software 

Engineering (ICSE 2025) 국제학술대회 발표 논문 

발표자: 김세훈(UNIST) 
 

딥러닝 라이브러리 계산 오류 탐지의 정확도 개선을 위한 차등 테스팅 파이프라인 (단편논문) 

Usmonali Pakhlavonov, 김세훈(UNIST) 
 

[초청발표] Fork State-Aware Differential Fuzzing for Blockchain Consensus Implementations, 

김원회, 남호철(KAIST), Muoi Tran(ETH Zurich), Amin Jalilov(KAIST), Zhenkai Liang(National University of 

Singapore), 차상길(KAIST), 강민석(National University of Singapore), IEEE/ACM 47th International Conference 

on Software Engineering (ICSE 2025) 국제학술대회 발표 논문 

발표자: 김원회(KAIST) 
 

 

세션 A1. SW 테스팅 
 

 

세션 A2. 퍼징 및 기호실행 
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o 2026년 2월 5일 (목) 오전 10:00-11:30 / 112호 

o 좌장: 백종문 교수(KAIST) 

 
앙상블 머신러닝과 대형 언어 모델의 선택적 통합을 통한 비용 효율적인 Just-In-Time 결함 예측 (일반논문) 

Dimitri Romain Bekale Be Ndong, 류덕산, Faisal Mohammad, Junaid Khan Kakar (전북대) 
 

[초청발표] Can We Trust the Actionable Guidance from Explainable AI Techniques in Defect Prediction?, 

이기찬, 주한세, Scott Uk-Jin Lee(한양대), The 32nd IEEE International Conference on Software Analysis, 

Evolution and Reengineering (SANER 2025) 국제학술대회 발표 논문 

발표자: 이기찬(한양대) 
 

Tabpfn 기반의 소프트웨어 결함 예측 (단편논문) 

임창우, 류덕산(전북대) 
 

TabulaRNN 기반의 소프트웨어 결함 예측 (단편논문) 

신중현, 류덕산(전북대) 
 

KAN-BE: 파라미터 효율적 앙상블을 활용한 소프트웨어 결함 예측 (일반논문) 

최윤서, 류덕산(전북대), 백종문(KAIST) 

 

 
o 2026년 2월 5일 (목) 오전 10:00-11:30 / 106호 

o 좌장: 유명성 교수(서울시립대) 

 
단일 LLM 기반 테스트 Assertion 생성의 품질 강화: 변이 점수 피드백과 뮤턴트-가드 손실 결합 (일반논문) 

김윤기, 양근석(한경국립대) 
 

커버리지 피드백을 활용하는 LLM 기반 단위 테스트 자동 생성 기법 (학부생논문) 

류병우(UNIST) 
 

대규모 언어 모델을 활용한 단위 테스트의 적합성 자동 식별 (단편논문) 

김대원, 이영규, 유준범(건국대) 
 

진화하는 AI 에이전트를 위한 적응형 런타임 테스팅의 필요성 (단편논문) 

Zhaoyan Wang, 안현준, 고인영(KAIST) 
 

Ko-LLM 의 디버깅 성능 및 답변 품질 비교 분석 (학부생논문) 

정수정, 정호연, 박효근, 김진대(서울과학기술대) 

 

 

 
 

 

세션 A3. SW 결함 I 
 

 

세션 A4. SE 를 위한 AI I 
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o 2026년 2월 5일 (목) 오후 1:00-1:50 / 102호 

o 좌장: 유명성 교수(서울시립대) 
 

스마트팩토리 예지보전을 위한 모니터링 소프트웨어 설계 (학부생논문) 

황세현, 김진세, 최민서, 이정원(아주대) 
 

충돌 위험 인식을 위한 Grad-CAM 과 LLM 결합 설명 시스템 (학부생논문) 

신지아, 이선아(경상국립대) 
 

오픈소스 LLM 신뢰성 평가 프레임워크 설계 및 실험 : 신뢰성 5 대 품질 특성 중심 프롬프트 기반 Judge 

LLM 평가 방법 (단편논문) 

김영찬, 김순태(전북대) 
 

 

 
o 2026년 2월 5일 (목) 오후 1:00-1:50 / 111호 

o 좌장: 차상길 교수(KAIST) 
 

 

[초청발표] LOSVER: Line-Level Modifiability Signal-Guided Vulnerability Detection and Classification, 

남도하, 백종문(KAIST), The 40th IEEE/ACM International Conference on Automated Software Engineering 

(ASE 2025) 국제학술대회 발표 논문 

발표자: 남도하(KAIST) 
 

AutoFiC: 취약점 탐지부터 PR 생성까지 자동화된 보안 패치 파이프라인 (학부생논문) 

장인영(덕성여대), 오정민(가천대), 김민채(국민대), 김은솔(명지대) 
 

바이너리 코드 (역)어셈블러 자동 생성 방법에 대한 탐구 (단편논문) 

김지훈, 정승일, 김준태, 차상길(KAIST) 
 

 

 
o 2026년 2월 5일 (목) 오후 1:00-1:50 / 112호 

o 좌장: 남재창 교수(한동대) 
 
 

검색 전략이 LLM 기반 버그 리포트 자동 생성 성능에 미치는 영향 분석 (일반논문) 

최서진, 양근석(한경국립대) 
 

Code LLaMA 를 활용한 자연어 프롬프트 기반의 소프트웨어 결함 예측 (단편논문) 

김민재, 류덕산(전북대) 
 

In-Context Learning 기반 표형 Foundation Model(TabICL)을 활용한 소프트웨어 결함 예측 (단편논문)  

심은진, 류덕산(전북대) 
 

세션 B1. SW 안전  
 

 

세션 B2. SW 보안 I  
 

 

세션 B3. SW 결함 II 
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o 2026년 2월 5일 (목) 오후 1:00-1:50 / 106호 

o 좌장: 김기섭 교수(DGIST) 
 
 

생성형 AI 문서 검토에서 출처 라벨이 사용자 판단과 오류 탐지 수행에 미치는 영향 (일반논문) 

민소원(KAIST) 
 

EDGE 컴퓨팅 기기에서의 소형 객체 탐지를 위한 선택적 혼합 정밀도 기반 양자화 모델 성능 개선 연구 

(단편논문) 

임다희, 박지훈(충남대) 
 

도메인 특화 임베딩 학습을 활용한 한국어 법률 질의응답 RAG 시스템 최적화 연구 (산업체논문)  

배소연(딥모달), 장진우, 이주형(미디어젠), 박진경(공정거래위원회) 

 
 

 
o 2026년 2월 5일 (목) 오후 2:00-3:00 / 102호 

o 좌장: 김윤호 교수(한양대) 
 

증거 생성과 구조적 제약을 결합한 자동 프로그램 정정 기법 (일반논문) 

이현수, 양근석(한경국립대) 
 

LLM 기반 프로그램 자동 수정을 위한 코드 그래프 활용 방식 비교 (일반논문) 

강신엽, 이지광, 권혁민, 남재창(한동대) 
 

프로그램 실행 중 발생한 버그의 실시간 자동 수정 (일반논문) 

노준영, 김영재(UNIST) 
 

 
o 2026년 2월 5일 (목) 오후 2:00-3:00 / 111호 

o 좌장: 차상길 교수(KAIST) 
 

[초청논문] Automated Attack Synthesis for Constant Product Market Makers, 

한수진, 김진서, 이성주, 윤인수(KAIST), The 34th ACM SIGSOFT International Symposium on Software Testing 

and Analysis (ISSTA 2025) 국제학술대회 발표 논문 

발표자: 한수진(KAIST) 
 

LLM 질의를 통한 정적 오염분석 허위경보 제거 (일반논문) 

주강대, 조한결, 이우석(한양대) 
 

BERT 기반 웹쉘 탐지 모델 성능 평가 (단편논문) 

백하현, 정승욱, 남재창(한동대) 

 
 

세션 B4. 응용 SW 
 

 

세션 C1. 프로그램 수정  
 

 

세션 C2. SW 보안 II 
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o 2026년 2월 5일 (목) 오후 2:00-3:00 / 112호 

o 좌장: 남재창 교수(한동대) 
 

EnvAgent: AI/ML 프로젝트의 Conda 환경 자동 구축 시스템 (단편논문) 

권혁민, 이지광, 강신엽, 정용빈, 남재창(한동대) 
 

[초청발표] Beyond pip install: Evaluating LLM agents for the automated installation of Python projects, 

Louis Milliken, 강성민, 유신(KAIST), The 32nd IEEE International Conference on Software Analysis, Evolution 

and Reengineering (SANER 2025) 국제학술대회 발표 논문 

발표자: 유신(KAIST) 
 

프로젝트 구조 요약을 통한 대규모 언어 모델의 구조적 한계 보완 가능성에 대한 실험적 연구 (학부생논문) 

이석인, 이선아(경상대) 

 

 
o 2026년 2월 5일 (목) 오후 2:00-3:00 / 106호 

o 좌장: 김기섭 교수(DGIST) 

 

치공구 설계를 위한 RAG-MCP 기반 멀티 에이전트 FreeCAD 오토코딩 시스템 (산업체논문) 

이의천, 고성진, 이선아(경상국립대), 이석원((주)씨엘디) 
 

대규모 언어 모델 기반 무인공장 작업 정책 자동 생성 (일반논문) 

주은정, 이정화(미라클에이지아이), 류덕산(전북대), 백종문(KAIST) 
 

X-RAD Engineering Recipe: 하이브리드 그래프와 2단계 책임 분리를 통한 설명가능한 이상 탐지 

(일반논문) 

김민지, 허대영(국민대) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

세션 C3. SE 를 위한 AI II 
 

 

세션 C4. 제조 AI 를 위한 SE 
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o 2026년 02월 06일 (금) 오전 10:15-11:45 / 102호 

o 좌장: 손정주 교수(경북대) 
 

[초청발표] How Effective are Large Language Models in Generating Software Specifications?, 

류병우, 김미정(UNIST), Danning Xie, Nan Jiang, Lin Tan, Xiangyu Zhang(Purdue University), The 32nd IEEE 

International Conference on Software Analysis, Evolution and Reengineering (SANER 2025) 국제학술대회 

발표 논문 

발표자: 류병우(UNIST) 
 

질의-응답 프롬프트 기반 실용적인 테스트 오라클 생성 (일반논문) 

정지나, 김윤호(한양대) 
 

상태 공간 모델 기반 오프라인 강화학습의 강건성 테스팅 (단편논문) 

한태현, 김장환, 김영철(홍익대) 
 

모델체킹을 위한 강화학습 기반 휴리스틱 학습 (단편논문) 

강혜윤, 손병호, 배경민(POSTECH) 
 

[초청발표] TopSeed: Learning Seed Selection Strategies for Symbolic Execution from Scratch, 

이재혁, 차수영(성균관대), IEEE/ACM 47th International Conference on Software Engineering (ICSE 2025) 

국제학술대회 발표 논문 

발표자: 이재혁(성균관대) 

 

 
o 2026년 02월 06일 (금) 오전 10:15-11:45 / 111호 

o 좌장: 지은경 교수(KAIST) 
 

[초청발표] Collaboration failure analysis in cyber-physical system-of-systems using context fuzzy 

clustering, 현상원(University of Adelaide), 지은경, 배두환(KAIST), Empirical Software Engineering(EMSE 2025) 

국제저널 발표 논문 

발표자: 현상원 (University of Adelaide)  
 

딥러닝 기반 국방 SW 결함위치추정을 위한 변이 기반 데이터셋 구축의 체계적 연구 (단편논문) 

양희찬, 이아청(KAIST), 조규태(LIGNex1), 김문주(KAIST/브이플러스랩) 
 

이슈 설명과 심볼 수준의 목표를 활용한 분류 기반 결함 위치 식별 (단편논문) 

Aslan Safarovich Abdinabiev, 홍수지, 이병정(서울시립대) 
 

실행 컨텍스트 정합성에 기반한 LLM 결함 위치 추정 결과의 안정화 기법 (일반논문) 

남규민, 최서진, 양근석(한경국립대) 
 

Diff-only 환경에서 단일 에이전트와 다중 에이전트 기반 커밋 메시지 생성의 비교 분석 (일반논문) 

안도경, 양근석(한경국립대) 
 

세션 D1. SW 테스팅 II 
 

 

세션 D2. SW 디버깅 
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o 2026년 02월 06일 (금) 오전 10:15-11:45 / 112호 

o 좌장: 배경민 교수(POSTECH) 
 

 

바이트코드 의미 보존을 위한 그래프 생성 기법 (단편논문) 

권민하, 정용빈, 정승욱, 정다훈, 남재창(한동대) 
 

[초청발표] Forcrat: Automatic I/O API Translation from C to Rust via Origin and Capability Analysis, 

홍재민, 류석영(KAIST), The 40th IEEE/ACM International Conference on Automated Software Engineering 

(ASE 2025) 국제학술대회 발표 논문 

발표자: 홍재민(KAIST) 
 

컨트롤러 소프트웨어의 속성 검사를 위한 상태 기반 테스트 생성 기법의 평가 (일반논문) 

Za Vinh Le(경북대), 홍신(충북대), 최윤자(경북대) 
 

반응형 시스템을 위한 LLM 기반 상태머신 생성 기법 및 성능평가 (단편논문) 

최승빈(소프트웨어재난연구센터), 김요엘, 최윤자(경북대) 
 

통합 그래프 신경망을 통한 계층적 멀티모달 코드 표현 학습 (일반논문) 

Junaid Khan Kakar, Faisal Mohammad, 류덕산(전북대) 
 

 

  

세션 D3. 프로그램 분석 및 모델링 

1.  
 

 



 

 

 

xi 

Program of the 28th Korea Conference on Software Engineering (KCSE 2026) 

KCSE 2025 튜토리얼 

 

 
 

u 일시: 2026년 2월 04일(수) 오후 1:00-3:30 

u 장소: 102호 / 좌장: 배경민 교수(POSTECH) 

 

u 제목: AI Red Teaming Toward AI Alignment 

u 연사: 박상돈 교수(POSTECH) 

u 요약 

우리는 생성형 AI 가 선보이는 놀라움 속에 살고 있습니다. 성능이 뛰어난 생성형 AI 는 지식 

베이스, 웹 검색, 개인화된 에이전트, 예술, 코딩, 컴퓨터 보안 등 다양한 분야에서 그 

가능성을 대중에게 선보이고 있습니다. 그러나 빛이 밝을수록 그림자는 더욱 짙어집니다. 

생성형 AI 는 환각 현상, 편향된 생성, 개인정보 침해 우려, 유해한 콘텐츠 생성 등의 문제로 

비판을 받아왔습니다. 이렇게 신뢰할 수 없고 인간의 가치에 정렬되지 않은 생성형 AI 에게 

우리의 일상을 공유하는 것을 재고할 필요가 있습니다. 본 튜토리얼에서는 이런 생성형 AI 의 

문제를 적극적이고 능동적으로 평가하는 AI Red Teaming 기법의 역사 및 현재 트렌드를 

공유하고자 합니다. 

u 약력 

박상돈 박사는 POSTECH GSAI/CSE 의 조교수입니다. 그의 연구 관심사는 이론부터 구현까지 

아우르는 접근을 통해 인간의 가치에 정렬된 신뢰할 수 있는 AI 시스템을 설계하고, 이를 

컴퓨터 보안 및 로보틱스 등 다양한 실제 응용 분야에 적용하는 데 있습니다. 그는 탑티어 

머신러닝 국제학회인 NeurIPS, ICLR, ICML에서 Area Chair로 활동하고 있습니다. POSTECH 에 

합류하기 전에는 조지아 공과대학교(Georgia Institute of Technology)에서 박사후연구원으로 

근무하였고, 2021년 펜실베이니아 대학교(University of Pennsylvania)에서 Computer & 

Information Science 박사 학위를 취득하였습니다. 

  

튜토리얼 T1.   
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u 일시: 2026년 2월 04일(수) 오후 1:00-3:30 

u 장소: 111호 / 좌장: 류덕산 교수(전북대) 
 

u 제목: 원자력 분야 소프트웨어 안전성 확인 및 검증: 기준, 절차, 방법, 사례 및 현안 

u 연사: 지은경 교수(KAIST) 

u 요약 

원자력 분야에서 발전소 계측제어 시스템 등 안전 기능 수행에 직접적으로 관여하거나 

안전성에 영향을 미칠 수 있는 소프트웨어에 대해서는 규제 기관이 제시하는 다양한 국내외 

기준과 표준을 충족해야 하며, 개발 전 생명주기에 걸쳐 체계적인 검증 절차와 객관적인 

증거 확보가 필수적이다. 본 튜토리얼은 엄격한 안전성 확인 및 검증(Verification and 

Validation, V&V)이 요구되는 소프트웨어의 경우, 어떤 기준에 따라 어떤 활동들이 요구되는지, 

절차나 방법은 어떠한지, 어떤 현안들이 있는지를 구체적 사례와 함께 다룬다. 본 튜토리얼은 

원자력 분야 소프트웨어 안전성 확인 및 검증에 대한 입문 수준의 체계적인 이해를 제공하는 

것을 목표로 한다. 원자력 시스템에서 소프트웨어가 수행하는 역할과 안전성 개념을 

소개하고, IAEA, IEC, IEEE 등 국제 기준과 국내 규제 체계를 중심으로 원자력 소프트웨어에 

적용되는 주요 기준과 요구사항을 설명한다. 이어서 V-모델 기반 개발 생명주기에서의 검증 

절차, 독립적 확인 및 검증(IV&V)의 개념, 그리고 대표적 소프트웨어 안전성 확인, 검증 

방법들을 소개한다. 실제 적용 사례를 중심으로, 연구·산업 현장의 경험을 바탕으로 실무적인 

관점을 공유하고, FPGA, AI 기반 소프트웨어 등 신기술 도입에 따른 규제적 현안과 연구 

주제들도 함께 논의한다. 본 튜토리얼은 소프트웨어 안전성 확보가 중요한 분야에서 실무가 

어떻게 이루어지는지 관심 있는 학부생, 대학원생, 그리고 관련 연구를 시작하려는 

연구자들에게 유용한 기초 지식과 연구 방향성을 제공할 것이다. 

u 약력 

지은경 교수는 KAIST 전산학부 연구부교수로 재직 중입니다. 안전 중요 소프트웨어, 

소프트웨어 테스팅, 정형 검증, 안전성 분석, 소프트웨어 신뢰성, AI 시스템 안전성 등의 

주제들에 대해 연구 중입니다. 

 

  

튜토리얼 T2.   
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u 일시: 2026년 2월 04일(수) 오후 1:00-3:30 

u 장소: 112호 / 좌장: 백종문 교수(KAIST) 

 

u 제목: RoboRacer AI 경주 로봇 개발의 SW공학적 접근 

u 연사: 김진현 교수(경상대) 

u 요약 

본 튜토리얼은 RoboRacer 기반의 AI 경주 로봇(소형 자율주행 레이싱 플랫폼)을 대상으로, 

자율주행 시스템을 “구현 가능한 제품 수준”으로 끌어올리기 위한 소프트웨어공학적 

개발·검증·테스트 접근을 소개합니다. RoboRacer 는 교육과 연구를 동시에 겨냥한 경주형 자율주행 

프로그램으로, 제한된 센서·연산 자원과 높은 동역학적 요구 조건 하에서 인지–계획–제어 

파이프라인을 안정적으로 통합해야 합니다. 이러한 특성 때문에, 단순히 알고리즘을 “동작”시키는 

것을 넘어, 재현성·안전성·성능(랩타임)·견고성을 함께 만족시키는 체계적 개발 방법론이 

필수적입니다. 먼저, RoboRacer 자율주행 및 경주-교육 프로그램의 목표, 운영 방식, 플랫폼 

구성(차량, 센서, 컴퓨팅, 시뮬레이터/트랙 환경)과 같은 실무적 맥락을 소개합니다. 이어서 

자율주행의 핵심 파이프라인을 구성하는 대표 알고리즘들을 레이싱 환경에 적합한 관점에서 

정리합니다. 구체적으로, LiDAR 기반 인지 및 로컬라이제이션, 주행 가능 영역/장애물 

표현(코스트맵·거리장 등), 경로 생성 및 속도 프로파일링, 그리고 추종 제어(Pure 

Pursuit/MPC/MPPI 등)를 하나의 시스템으로 결합하는 과정에서 발생하는 설계 이슈를 다룹니다. 

그 다음, 본 튜토리얼의 중심으로서 RoboRacer 자율주행을 SW 공학적으로 설계·검증·테스트하는 

방법을 제시합니다. 여기에는 (1) 모듈 경계와 인터페이스를 명확히 하는 아키텍처 설계, (2) 

시뮬레이션 기반 회귀 테스트와 로그 기반 디버깅, (3) 안전 요구사항과 성능 지표를 동시에 

다루는 평가 메트릭 설계, (4) 형식기법 및 V&V(Verification & Validation)를 활용한 신뢰성 강화 

전략이 포함됩니다. 또한 최근 각광받는 에이전트형 자동화(예: 테스트 생성–실행–분석–수정 

루프)가 로봇 레이싱 시스템 개발에서 어떤 장점과 한계를 갖는지도 함께 논합니다. 마지막으로 

실제 RoboRacer 자율주행의 통합 시연을 통해, 동일한 기능을 구현하더라도 테스트 

가능성(testability), 관측 가능성(observability), 실패 분석 가능성을 어떻게 설계로부터 

확보하는지가 성능과 안정성을 좌우함을 보여줍니다. 본 튜토리얼은 로봇/자율주행 알고리즘에 

익숙하지만, 제품 수준의 SW 공학적 개발·검증 체계는 이제 확립하고자 하는 참가자들을 주요 

대상으로 합니다. 

u 약력 

김진현 교수는 경상국립대학교 AI 정보공학과 부교수로 재직 중입니다. 정형기법(Formal Methods), AI 

Safety, Medical LLM, Robot Racing을 중심으로, CPS(사이버물리시스템)의 검증·검증가능 설계 및 

의료/자율주행 분야의 신뢰 가능한 AI 개발에 관심을 두고 있습니다. 최근에는 도메인 특화 의료 

언어모델 Ophtimus(안과 특화 SLM/LLM) 개발을 포함하여, 안전하고 신뢰 가능한 의사결정 지원을 

위한 방법론을 연구하고 있습니다. 또한 UPenn PRECISE Lab, KAIST, Aalborg University, INRIA/IRISA 

등과 협력해 왔으며, Kim G. Larsen, Axel Legay, Sungwon Kang 교수 등과의 연구 협업 경험이 있습니다. 

튜토리얼 T3.  
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KCSE 2025 기조강연 

 
 

u 일시: 2026년 2월 04일(수) 오후 4:00-5:00 

u 장소: 112호 / 좌장: 김미정 교수(UNIST) 

 

u 제목: AI-Native DevOps: What Should We Do — Accelerating Software Engineering with Shift-

Left, CI/CD, and IDP 

u 연사: 박인욱 상무(LG전자) 

 

u 요약 

AI-Native DevOps 의 핵심은 “새로운 도구 나열”이 아니라 기존 SW 공학의 가속과 표준화다. 

SW 개발의 핵심인 Shift-Left 와 CI/CD 전략을 개발자 역량의 연장선으로 보고, 이를 포함한 

SDLC 를 IDP(Internal Developer Platform) 위에서 AI 지원을 통해 일관된 가드레일과 골든 

패스로 제공하는 방향을 제시한다. 결과적으로, 사람의 역량 × IDP × AI 의 증폭으로 속도와 

신뢰를 동시에 끌어올리는 실행 프레임을 제시한다. 
u 약력 

박인욱 상무는 현재 LG 전자 webOS SW 개발그룹 DevOps 개발실장으로, 제조사에 

DevOps 를 도입하여 정착·고도화하고, webOS Re:New 업그레이드 프로그램과 

DevSecOps·플랫폼 엔지니어링·AI 기반 생산성 혁신을 이끌고 있다. 

 

 

  

기조강연 I 
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u 일시: 2026년 2월 05일(목) 오후 4:30-5:30 

u 장소: 112호 / 좌장: 이정원 교수(아주대) 

 

u 제목: 재사용을 위한 소프트웨어 산출물 모델링 

u 연사: 이희조 교수(고려대) 

 

u 요약 

소프트웨어 공급망 공격이 증가하면서, 소프트웨어는 더 이상 “잘 동작하는가”만으로 

평가되기 어려워졌다. 최근 미국과 유럽을 중심으로 강화되고 있는 제품 보안 및 공급망 

보안 규제는, 소프트웨어가 "무엇으로 구성되어 있는지(SBOM)"와 발견된 취약점이 실제로 

어떤 영향을 미치는지를 설명할 것을 요구하고 있다. 

u 약력 

이희조 교수는 고려대학교 정보대학 컴퓨터학과 교수이자 소프트웨어보안연구소(CSSA) 

연구소장으로, 지난 20여 년간 국가·산업·학계를 아우르며 공급망 보안과 취약점 분석 기술 

연구, 보안 인재 양성에 힘써왔다. 안랩 CTO 를 역임했으며, 현재는 고려대학교 기술지주 

자회사 ㈜래브라도랩스 공동대표로서 SBOM 및 오픈소스 보안 솔루션의 확산을 추진하고 

있다. 

  

기조강연 II 
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u 일시: 2026년 2월 06일(목) 오전 9:00-10:00 

u 장소: 112호 / 좌장: 이주용 교수(UNIST) 

 

u 제목: 재사용을 위한 소프트웨어 산출물 모델링 

u 연사: 최재식 교수(KAIST) 

 

u 요약 

대형인공지능모델(혹은 대형언어모델, LLMs: Large Language Models)이 많은 응용 분야에 

활용되고 있다. 이런 LLM 의 장점과 함께 거짓답변(hallucination)과 같은 문제는 근본적인 

원인 뿐만 아니라 해결이 어려운 면이 있다. 최근 설명가능 인공지능의 발전은 이런 LLM 

내부를 확인하고 그 의사 결정을 명확히 하는데 기여하고 있다. 이 강의에서는 이런 설명성 

기술이 LLM에 적용되는 최근 기술과 연구 동향을 소개한다. 

u 약력 

최재식 교수는 KAIST 김재철 AI 대학원 석좌교수(㈜인이지 대표이사)이자 설명가능 

인공지능(XAI) 연구자로, 한국공학한림원 회원으로 활동하며 산업부 제조 AI 전환(M.AX) 

얼라이언스 총괄위원으로서 국가 AI 정책 수립과 제조업 AI 전환에 기여하고 있다. 

 

  

기조강연 III  
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KCSE 2025 신진 연구자 초청 발표 

 

 
 

u 일시: 2026년 2월 05일(목) 오후 9:00-9:50 

u 장소: 102호 / 좌장: 김윤호 교수(한양대) 

 

u 제목: 대규모 소프트웨어에서 바늘을 찾다: LLM 기반 결함 위치 식별의 산업 적용 

u 연사: 안가빈 교수(고려대) 

 

u 요약 

대규모 소프트웨어에서 결함 위치를 찾는 일은 여전히 큰 도전 과제이다. 본 강연에서는 LLM 

에이전트를 활용한 AutoFL 시리즈를 통해, 설명 가능한 결함 위치 식별 연구가 어떻게 산업 

규모 소프트웨어의 크래시 분석으로 확장될 수 있는지를 소개한다. 이를 통해 LLM 기반 자동 

디버깅 기법의 가능성과 한계를 함께 논의한다 
u 약력 

안가빈 교수는 고려대학교 정보대학 컴퓨터학과 조교수로, AI 기반 소프트웨어 공학 연구를 

주로 수행하고 있다. 주요 연구 분야는 대형 언어 모델을 활용한 자동 디버깅, 결함 위치 

식별, 그리고 소프트웨어 테스트 및 유지보수 자동화이다. 산업 규모의 실제 소프트웨어 

시스템을 대상으로 신뢰 가능한 자동 분석 기법을 개발하는 데 주력하고 있다. 

  

신진 연구자 초청 발표 N1 
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u 일시: 2026년 2월 05일(목) 오후 9:00-9:50 

u 장소: 111호 / 좌장: 손정주 교수(경북대) 

 

u 제목: 컨테이너 기반 클라우드 환경을 위한 RDMA-aware CNI 

u 연사: 유명성 교수(서울시립대) 

 

u 요약 

분산 마이크로서비스 및 AI 워크로드를 위한 RDMA 채택이 늘고 있으나, 커널 바이패스 

특성으로 인한 가시성 부재와 기존 TCP/IP 애플리케이션과의 호환성 문제가 존재한다. 본 

강연에서는 유저 공간 eBPF 런타임을 활용해 컨테이너 단위의 RDMA 활동을 정밀 

모니터링하고, eBPF 기반 트래픽 처리를 통해 코드 수정 없이도 기존 컨테이너의 통신 

성능을 크게 향상시키는 RDMA-aware CNI 기술을 소개한다. 

 

u 약력 

유명성 교수는 서울시립대학교 전자전기컴퓨터공학부 조교수로, 차세대 네트워크 및 시스템 

연구실(TNS Lab)을 운영하고 있다. 주요 연구 분야는 고성능 네트워킹(RDMA), 클라우드 

시스템 보안, 그리고 AI 기반 소프트웨어 공학이다. 최근에는 LLM 을 활용한 네트워크 

프로그램의 자동 생성 및 AI 모델의 보안 취약점(Jailbreaking) 분석 연구를 수행하며, 시스템 

네트워킹 기술과 소프트웨어 자동화 및 보안 기술을 융합한 신뢰 가능한 컴퓨팅 인프라 

구축에 주력하고 있다. 

 

  

신진 연구자 초청 발표 N2 



 

 

 

xix 

Program of the 28th Korea Conference on Software Engineering (KCSE 2026) 

 
 

u 일시: 2026년 2월 05일(목) 오후 9:00-9:50 

u 장소: 112호 / 좌장: 지은경 교수(KAIST) 

 

u 제목: 로보틱스 소프트웨어의 원인-결과 체인 지연시간 검증 

u 연사: 신용준 박사(ETRI) 

 

u 요약 

로보틱스 소프트웨어의 원인-결과 체인 지연시간 검증은 시스템의 반응성 및 안전성 보장을 

위해 필수적이나, 체인 구성 요소의 실행 비결정성과 소스코드 비가시성은 신뢰 가능한 

검증을 어렵게 만든다. 본 강연에서는 이러한 어려움을 고려한 (1) 원인-결과 체인 지연시간 

검증을 위한 모델 기반 접근, (2) 블랙박스 원인-결과 체인의 런타임 지연시간 검증 알고리즘, 

(3) ROS 2 소프트웨어를 대상으로 한 런타임 검증 도구를 소개한다. 

 

u 약력 

신용준 박사는 한국과학기술원(KAIST)에서 공학박사 학위를 취득하고, 현재 

한국전자통신연구원(ETRI)에 선임연구원이자 AI 전문교수로 재직 중이며 로보틱스 및 

모빌리티 소프트웨어의 안전성 검증 기술을 연구하고 있다. 주요 연구 관심 분야는 

자율행동체를 위한 모델 기반 소프트웨어 공학, 런타임 검증 및 안전 제약, 지속적 통합/배포 

등이다. 
 
 
 
 
  

신진 연구자 초청 발표 N3 
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우수 국제학회/학술지 초청 논문발표  
 
u An Empirical Study of Web Flaky Tests: Understanding and Unveiling DOM Event 

Interaction Challenges 
- The 18th IEEE International Conference on Software Testing, Verification and Validation 

(ICST 2025) 
- Yu Pei(University of Luxembourg), 손정주(경북대), Mike Papadakis(Unibersity of 

Luxembourg) 
- Session A1. SW 테스팅 

 
u Automated Attack Synthesis for Constant Product Market Makers 
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요   약 

 스마트팩토리의 핵심 요소인 산업용 기기의 예기치 못한 고장은 막대한 경제적/인적 손실을 초래할 수 

있다. 이를 방지하기 위한 기존의 건전성 테스트 기법은 평가 시점 데이터에만 의존하여 점진적인 저하 

경향성을 반영하지 못하고 데이터 내 단발적인 이상치에 취약하다. 따라서, 본 논문은 산업용 기기의 건

전성 테스트를 위해 누적손실기반 평가 메트릭을 정의하고 그 효과를 검증한다. 제안 메트릭은 과거 평

가 주기의 모든 손실 값을 누적하고 평균화하여 과거의 기기 상태 이력을 반영하고, 단발적 이상치의 영

향을 완화하여 높은 정확도의 건전성 테스트를 가능하게 한다. 유압 설비의 상태 모니터링을 위한 오픈

데이터셋 기반의 검증 결과, 기존 손실 메트릭 대비 최대 79.91%의 향상된 건전성 테스트 정확도를 달

성함으로써 제안 메트릭의 효용성을 입증하였다. 또한, 협동 로봇 기반 사례 연구 결과, 기존 메트릭 대

비 건전성 저하 경향성을 명확하게 식별할 수 있음을 확인함으로써 그 실효성을 검증하였다.

1. 서  론1

협동 로봇, 밀링 머신, 유압 설비와 같은 산업용

기기(Industrial Machinery)는 제조업, 건설업 등의 

다양한 산업 분야에서 공작이나 운반과 같은 특정 

작업을 수행하도록 설계된 기계 또는 장치를 

의미한다[1]. 이는 스마트팩토리의 필수 조건인 

자동화된 공정 환경을 구성하기 위한 핵심 요소로 

여겨지며 다양한 산업 분야에서 불가결한 요소로 

정착되어 왔다[2]. 산업용 기기는 고속 작업 수행이 

가능하고 반복 작업을 자동화할 수 있어 적용 산업의 

생산 효율을 크게 향상시키며 이에 따라 보급에 대한 

수요가 지속적으로 증가하고 있다. 그러나, 산업용 

기기에서 예기치 못한 고장이 발생할 경우 오작동, 전류 

누설과 같은 고장 현상에 의해 협착, 화재 등의 중대 

산업 재해가 발생할 수 있다. 이는 다운타임(Downtime) 

증가에 따른 경제적 손실과 함께 심각한 인명 피해를 

야기한다[3], [4]. 따라서, 이와 같은 경제적/인적 

손실을 사전에 방지하기 위해 산업용 기기의 초기 대비 

건강 상태를 의미하는 건전성의 저하를 평가하고 

추적할 수 있는 방법이 필수적으로 요구된다. 

1 이 논문은 정부(과학기술정보통신부)의 재원으로 

한국연구재단의 지원을 받아 수행된 연구임 

(No. 2023R1A2C1006332). 

산업용 기기 내부에는 고정밀도 작업 수행을 위한 

다양한 센서(예: 전류 센서, 가속도 센서)가 탑재되어 

있으며, 이러한 센서로부터 추출되는 센서 데이터는 

수집 시점에 대한 기기의 상태 정보를 내재한다. 이에 

따라 산업용 기기의 건전성 테스트 연구는 대부분 내부 

센서 데이터를 기반으로 수행되고 있다[5], [6]. 건전성 

테스트를 위한 초기 연구는 주로 정상/저하/고장 상태로 

레이블링된 센서 데이터를 활용하여 상태 분류 기준을 

수립하고 이를 기반으로 건전성을 평가하거나, 

RTF(Run-To-Failure) 데이터를 통해 고장 임계점을 

사전 정의하여 해당 임계점을 기준으로 평가 시점의 

상대적인 건전성 저하 정도를 추적하는 방식으로 

수행되었다[7], [8]. 이와 같은 연구는 사전 정의된 

실제 상태 정보를 기반으로 건전성을 명확히 평가할 수 

있어, 엔진, 베어링 등의 다양한 산업용 기기 및 요소에 

적용되었으며 그 효용성이 검증되었다 [8], [9]. 그러나, 

산업용 기기의 건전성 저하는 단기간에 발생하는 것이 

아닌 점진적으로 장기간에 걸쳐 진행되는 연속적인 

과정이기에 고장 데이터 수집이 어려우며, 기존 방식과 

같이 이산적인 상태 정의만으로는 저하 과정을 

설명하는 데에 한계가 있다. 이에 따라 최근 연구에서는 

정상 상태 데이터와 비교 시점 데이터 간의 패턴 

차이를 정량화하고 이를 건전성 테스트 메트릭으로 
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활용하여 저하를 평가하고 추적하는 방법이 제안되었다 

[10]. [11].  

정상 상태 데이터와 평가 데이터의 패턴 차이를 

정량화하는 통계적인 방법으로는 MSE(Mean Squared 

Error), MAE(Mean Absolute Error)와 같은 손실 함수와 

손실 함수의 기저/확장 형태인 거리 기반의 데이터 

유사도 측정 메트릭(예: Mahalanobis Distance, 

Dynamic Time Warping)이 있다. 또한, 머신러닝/딥러닝 

관점의 방법으로는 정상 데이터로 학습한 재구성 

모델을 통해 입력-복원 데이터간 패턴 차이를 손실 

함수로 수치화하는 방법이 존재한다. 이와 같은 

접근법은 정상 상태 데이터만을 활용하여 저하 

과정에서 나타나는 데이터 패턴의 변화를 효과적으로 

포착할 수 있어 다양한 기기에 적용되어왔으며 그 

실효성이 검증되었다[11], [12].  

그러나, 기존의 손실 활용 방법은 주로 정상 시점과 

평가 시점에 해당하는 데이터만을 활용하여 패턴 

차이를 산출한다. 이에 따라, 그림 1과 같이 저하 

진행과 무관한 통신 오류, 충격 등에 의한 단순 

이상치(Anomaly)가 저하 특징으로 식별되어 잘못된 

건전성 테스트가 수행될 위험이 있다. 또한, 산업용 

기기의 성능 저하는 장기간의 부하 누적에 의해 

점진적으로 발생하므로 과거의 가동 패턴을 고려하지 

않은 단일 시점의 비교 값만으로는 장기적인 저하 

경향성과 단발적인 이상 현상을 구분하기 어렵다. 이 

같은 문제를 완화할 수 있는 특정 구간의 평균 수준 

추정 기법인 이동평균선(Moving Average, MA)과 과거 

관측 값에 지수 가중치를 부여하여 변화 경향을 

평가하는 지수 이동 평균(Exponential Moving Averame, 

EMA) 추세 분석 방법도 존재한다. 그러나, 

이동평균선은 고정된 구간 내의 값만을 통해 관측 시점 

데이터를 평가하여 과거 시점의 정보가 소실되는 

문제가 있다. 또한, 지수 이동 평균은 최근 관측값에 큰 

가중치를 부여하기 때문에 과거의 영향성이 매우 

작아진다. 이같은 점을 고려할 때, 높은 정확도의 

건전성 테스트를 위해서는 점진적인 저하로 인해 

발현되는 데이터 패턴의 차이뿐만 아니라 과거부터 

관측 시점까지의 변화 경향성을 함께 고려할 수 있는 

새로운 건전성 테스트 메트릭이 필요하다.  

따라서, 본 논문은 산업용 기기의 효과적인 건전성 

테스트를 위해 저하에 따른 데이터 패턴의 변화 

경향성을 반영할 수 있는 누적손실기반의 새로운 

건전성 테스트 메트릭을 제안한다. 과거부터 평가 

시점까지의 평가 주기별 손실 값을 누적한 후 

평균화함으로써 시간 흐름에 따른 센서 데이터 패턴의 

변화 추세를 효과적으로 반영할 수 있으며, 단발적인 

이상치의 영향을 완화할 수 있다. 이를 통해 단일 

시점의 손실 값만을 활용하여 평가하는 기존의 건전성 

테스트 방법 대비 높은 정확도의 테스트를 가능하게 

하며, 센서 데이터 수집이 가능한 산업용 기기에 

제약없이 적용 가능하다. 

본 연구의 효용성을 평가하기 위해, 유압 설비의 

요소별 상태 모니터링을 위해 구축된 오픈 데이터셋을 

활용하여 검증을 수행하였다. 건전성 수준별 평가 실험 

결과, 최소 86.22%에서 최대 100%의 높은 평가 

정확도를 보였으며, 기존의 손실기반 평가 방법 대비 

최대 79.91%의 성능 향상을 보임에 따라 건전성 

테스트 메트릭로서의 충분한 효용성을 지님을 

확인하였다. 또한, 실제 산업용 기기를 대상으로 한 

사례 연구 결과, 데이터 내 단발적 이상치의 영향이 

완화되어 손실 값의 변동성이 감소하였으며, 이에 따라 

건전성 저하의 경향성을 보다 명확하게 식별할 수 

있음을 확인함으로써 건전성 테스트 메트릭으로서의 

실효성을 검증하였다. 

 

2. 관련 연구 

2.1 산업용 기기의 건전성 테스트를 위한 HI 구축 

HI(Health Indicator)는 산업용 기기의 건전성을 

평가하기 위한 정량적 메트릭이다. 이에 따라, 

저하/고장에 대한 사전 정보 없이 저하에 의해 

발현되는 센서 데이터 패턴의 변화 양상을 기반으로 

HI를 구축하여 건전성을 테스트하고 고장을 예측하는 

다양한 연구가 수행되었다. 

초기에 제안된 HI는 주로 데이터 내의 통계적 

특성(Peak, Kurtosis 등) 또는 신호 특징(주파수 영역, 

시간-주파수 영역 등)을 분석하는 방식으로 구축되었다. 

관련 연구로 [12]는 베어링의 저하 추적을 위해 

RMS(Root Mean Square) 기반 HI 구축 방법을 

제안하였다. 해당 연구는 진동 신호를 여러 주파수 

대역으로 분해하고 각 대역 신호에 대한 RMS를 

산출하여 단조 증가를 보이는 대역을 기기의 HI로 

활용하였다. 또 다른 연구 [13]은 신호의 주파수 대역 

중 유의미한 대역에 가중치를 부여하고, 이를 반영한 

전체 주파수 대역을 HI로 수립하여 통계적 기준(예: 

정규 분포를 따르는 정상 상태 데이터의 3σ)을 

초과하는 지점을 저하의 시작 지점으로 평가하였다. 이 

외에도 [14], [15], [16]은 데이터 내의 통계적 특성 및 

신호 특징을 기반으로 HI를 구축하고, 이를 통해 

점진적인 건전성 저하를 테스트할 수 있는 방법을 

그림 1. 정상 기준 대비 정상/단순 이상치 데이터의 

패턴 차이 
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제안하였다. 이러한 연구는 통계 메트릭과 신호 특징을 

기반으로 저하 특징 추출이 가능함을 보였으며 실 기기 

기반 검증을 통해 그 효용성을 입증하였다. 그러나, 

사전 정의된 소수의 특징만을 기반으로 저하를 

식별하는 방식은 데이터에 내재된 비선형적 특징을 

충분히 반영하기 어려우며 진동에 의한 노이즈나 

불규칙한 이상치가 혼재될 경우 저하 패턴을 포착하는 

데에 한계가 존재한다. 

이와 같은 한계를 보완하기 위해 데이터의 패턴 또는 

분포 차이 기반의 HI를 구축하여 건전성을 평가하고 

추적하는 연구들이 수행되었다. 해당 연구들은 주로 

데이터의 패턴 차이를 정량화할 수 있는 통계/거리 

기반의 메트릭이나 비지도 학습 모델의 재구성 오차를 

활용하여 HI를 구축하였다. [17]은 진동 데이터를 

22개의 특징(예: 시간, 주파수)으로 변환하고 RMS를 

예측 대상 값으로 설정하여 정상 특징 데이터로 학습된 

회귀 모델의 예측 RMS 값과 실제 RMS 값의 오차로 

건전성을 평가하고 추적하는 방법을 제안하였으며, 

베어링 고장의 조기 진단이 가능함을 확인하여 그 

실효성을 입증하였다. 또 다른 연구로 [18]은 저하 

발생에 따른 진동 신호의 주파수 변화를 식별하기 위해 

Log Envelope spectrum으로 변환된 정상 데이터로 

VAE(Variational AE)를 학습하고, 입력-복원 데이터간 

재구성 오차를 HI로 활용하여 기기의 저하를 

추적하였다. 이와 같은 데이터 패턴 또는 분포차를 

활용한 HI 기반 건전성 테스트 연구들은 복잡한 데이터 

패턴 내에서 저하 특징을 효과적으로 추출함으로써 

높은 정확도의 건전성 저하 추적이 가능함을 보였다. 

그러나, 기존에 제안된 대부분의 HI 구축 방법은 과거의 

가동 데이터 패턴은 고려하지 않고 평가 주기에 

해당하는 데이터만을 활용하여 건전성을 테스트한다. 

이에 따라 충격, 열 잡음 등의 외란으로 인해 가동 중 

예기치 않게 발생하는 단발적인 데이터 이상치나 

진동에도 매우 민감하게 반응하며, 실제 저하 현상이 

아님에도 불구하고 저하 상태로 오판단될 위험이 

존재한다. 

 

2.2 산업용 기기의 센서 데이터 기반 건전성 테스트 

산업용 기기의 건전성 테스트는 기기의 예기치 않은 

고장을 방지하기 위한 핵심 기술이다. 이는 주로 기기의 

내부 센서 데이터를 활용하여 수행되며, 초기에는 

데이터의 통계적 특성 또는 주파수 대역 분석을 통해 

건전성을 평가하고 추적하는 연구가 주를 이루었다. 

관련 연구로 [19]은 진동 데이터에 웨이블릿 

변환(Wavelet Transform)을 적용하여 신호를 분해하고, 

그 에너지 값을 통해 퍼지 논리 기반 신경망을 

학습하여 베어링 마모의 심각도를 분류하는 방법을 

제안하였다. 또 다른 연구로 [20]는 기기의 비가역적 

건전성 저하를 모사하기 위해 이전 시점의 평가 결과를 

참조하여 현재의 건전성을 평가할 수 있는 

SVM(Support Vector Machine)을 설계하였다. 3가지 

상태(정상/저하/고장)로 레이블링된 냉각기 팬의 진동 

데이터를 활용한 검증 실험 결과, 평균 97.39%의 

정확도를 보임으로써 비가역적 특성을 갖는 건전성 

저하를 효과적으로 평가할 수 있음을 확인하였다. 이 

외에도 [21], [22]는 각 상태별 데이터 내에서 통계적 

특성과 주파수 대역을 기반으로 유의미한 저하 특징을 

추출함으로써 높은 정확도의 건전성 테스트가 가능함을 

보였다. 그러나, 해당 연구들은 상태를 분류하는 것에 

그치기 때문에 건전성을 평가할 수는 있으나 

점진적으로 발생하는 기기의 저하 정도를 연속적으로 

추적하는 데에는 한계가 존재하였다. 이와 같은 한계를 

보완하기 위해 고장 임계점을 기준으로 기기의 건전성 

저하를 상대적으로 정량화하고 추적하여 평가하는 

[8]과 같은 연구도 제안되었으나, 고장 데이터에 대한 

의존성으로 인해 고장 데이터 확보가 어려운 실제 

산업환경에서는 여전히 적용에 제약이 존재한다. 

따라서, 본 논문은 기기가 건전하게 동작하는 기준 

상태 데이터와 평가 시점 데이터의 패턴 차이를 손실 

값으로 정량화하고, 과거의 기기 상태 이력을 

반영함으로써 점진적인 건전성 저하를 평가할 수 있는 

새로운 평가 메트릭을 정의한다. 제안 메트릭은 단일 

시점의 데이터 패턴 오차(손실)가 아닌 과거부터 누적된 

손실을 기반으로 산출되어, 실제 건전성 저하로 인한 

점진적 데이터 패턴 변화를 명확하게 식별할 수 있다. 

이를 통해 단발적인 이상치의 영향을 완화하고 보다 

높은 정확도로 건전성 테스트를 가능하게 한다. 

 

3. 문제 정의 

본 장에서는 일반적인 손실의 개념을 정의하고, 이를 

산업용 기기의 건전성 테스트 메트릭으로 활용할 때의 

이론적 의미와 한계를 분석한다. 

 

3.1. 손실 정의 

통계적 관점의 손실은 기준 데이터와 추정 데이터 

간의 차이를 정량화한 값으로 수식 1과 같이 정의되며, 

머신러닝/딥러닝 관점의 손실은 정답과 모델 기반 예측 

값의 차이를 정량화한 값으로 수식 2와 같이 정의된다. 

 

𝑳𝒐𝒔𝒔 = 𝑳(𝒙𝑹𝒆𝒇, 𝒙𝑬𝒔𝒕)         (수식 1) 

 

𝑳𝒐𝒔𝒔 = 𝟏
𝒏

∑ 𝑳(𝒙𝒊
𝑮𝑻, 𝒙𝒊

𝑷𝒓𝒆𝒅)𝒏
𝒊=𝟏       (수식 2) 

 

수식 1의 𝐿은 손실 함수, 𝑥𝑅𝑒𝑓는 기준 데이터 그리고 

𝑥𝐸𝑠𝑡 는 추정 데이터를 의미하며, 수식 2의 𝐿 은 손실 

함수, 𝑥𝐺𝑇 는 정답 데이터 그리고 𝑥𝑃𝑟𝑒𝑑 는 모델 기반 

예측 데이터를 의미한다. 

두 가지 관점에서의 손실은 모두 두 데이터 간의 

패턴 차이를 평가한 값으로 해석할 수 있다는 점에서 
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동일한 의미를 가지며, 손실값 도출을 위해 사용 가능한 

손실 함수로는 MSE, MAE(Mean Absolute Error) 등이 

있다. 이와 같은 손실 함수는 데이터 간의 거리를 

평가하는 함수들과 밀접한 관련이 있다. 예시로, 

유클리드 거리는 MSE와 MAE의 기저 수식이 되며, 

마할라노비스 거리는 MSE를 확장한 형태로 구성된다. 

즉, 데이터간 거리 측정 함수 또한 손실 함수의 근간이 

되거나 확장된 형태로써 그 결과가 두 데이터간 차이를 

의미한다는 점에서 손실과 동일한 해석을 갖는다. 손실 

값 산출을 위해 적용 가능한 손실 함수의 예시는 표 

1과 같다. 

표 1. 손실 함수 예시 

Metric Expression 

MSE 
1
𝑛

∑(𝑥𝑖 − 𝑥𝑖̂)2
𝑛

𝑖=1

 

MAE 
1
𝑛

∑|𝑥𝑖 − 𝑥𝑖̂|
𝑛

𝑖=1

 

Euclidean 
Distance √∑(𝑥𝑖 − 𝑥𝑖̂)2

𝑛

𝑖=1

 

Mahalanobis 
Distance √∑

(𝑥𝑖 − 𝑥𝑖̂)2

𝜎𝑖
2

𝑛

𝑖=1

 

DTW min
𝑃𝑎𝑡ℎ

( √∑(𝑥𝑖 − 𝑥𝑖̂)2

𝑛

𝑖=1

) 

 

3.2. 손실의 활용 및 건전성 메트릭으로서의 한계  

손실은 3.1절에서 정의한 바와 같이 기준 데이터와 

비교 데이터의 차이를 정량화한 값으로, 통계 모델과 

머신러닝/딥러닝 모델 모두에서 데이터간 차이를 

평가하는 메트릭으로 활용된다. 통계적 관점에서는 기준 

데이터의 패턴과 분포를 참조하여 비교 대상 

데이터와의 차이를 손실 값으로 평가한다. 또한, 

머신러닝/딥러닝 관점에서는 학습 방식에 따라 손실 

적용 방법이 상이한데, 지도 학습의 경우 모델의 예측 

레이블과 정답 레이블 간의 차이를 손실로 산출하며, 

비지도 학습의 경우에는 원본(기준) 데이터와 예측(비교) 

데이터의 패턴 차이를 손실로 측정한다.  

이와 같은 특성을 갖는 손실은 산업용 기기의 건전성 

테스트 메트릭으로도 적용되고 있다. 통계적 관점에서는 

정상 구간 데이터의 분포를 기준으로 가동 데이터와의 

차이 또는 거리를 정량화한 손실을 건전성 메트릭으로 

활용한다. 또한, 머신러닝/딥러닝 관점에서는 주로 

비지도 학습 모델의 재구성 오차를 손실로 활용하며, 

정상 데이터로만 학습한 재구성 모델에 가동 데이터를 

입력한 후 입력 데이터와 복원 데이터 간의 재구성 

오차(손실)를 건전성 메트릭으로 활용하여 건전성 

저하를 평가하고 추적한다. 

그러나, 기존의 손실 활용 방식을 건전성 테스트 

메트릭으로 적용하는 데에는 두 가지 문제점이 

존재한다. 기존의 접근법은 기준이 되는 정상 데이터와 

평가 시점에 해당하는 데이터만을 활용하여 건전성을 

평가하므로, 가동중 발생 가능한 단발적 이상치가 저하 

양상으로 평가되어 오진단이 발생할 수 있다. 또한, 

과거의 가동 이력이 반영되지 않기 때문에 장기간에 

걸쳐 발생하는 건전성 저하의 경향성을 표현하는 데에 

어려움이 있다. 예시로 그림 2는 로봇 관절의 핵심 

요소인 하모닉 드라이브의 단일시점 손실기반 건전성 

테스트 결과이다. 가동중 발생한 단발적인 이상치로 

인해 평가 시점의 손실 값이 이후 평가일 대비 매우 큰 

값으로 도출되는 현상이 관찰된다. 이로 인해, 손실 

값의 변동이 과도하게 증가하며, 결과적으로 저하에 

의해 발생하는 데이터 패턴 변화의 경향성을 파악하기 

어려움을 확인할 수 있다. 

 

4. 제안 메트릭 

본 논문에서는 기존에 제안된 손실기반 건전성 

테스트 메트릭의 한계를 보완하기 위해, 산업용 기기의 

고성능 건전성 테스트를 가능하게 하는 누적손실기반 

건전성 테스트 메트릭을 제안한다. 제안 방법은 건전성 

테스트 주기별(예: 일 단위 평가 시 각 날짜) 손실을 

계산하는 손실 계산 단계, 과거의 평가 주기별 손실을 

순차적으로 합산하는 손실 누적 단계, 마지막으로 평가 

주기 수를 기반으로 합산된 손실을 평균화하는 손실 

평균화 단계로 구성된다. 

 

(1) 손실 계산 단계 

첫 번째 단계는 건전성 테스트 주기의 손실을 

계산하는 단계이다. 손실은 기준 패턴과 평가 대상 

데이터 간의 패턴 차이를 정량화 한 값을 의미하며, 

그 방법은 3.1절에서 정의한 수식 1 또는 수식 2와 

같다. 통계적 관점에서는 기준 패턴을 정상 상태의 

산업용 기기에서 수집된 정상 데이터 패턴으로 

그림 2. 단일시점 손실기반 건전성 테스트 결과 
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설정할 수 있으며, 머신러닝/딥러닝 관점에서는 

비지도 학습 모델의 입력 데이터로 설정될 수 있다. 

(2) 손실 누적 단계

두 번째 단계는 첫 번째 단계에서 계산된 평가

대상 주기의 손실과 과거의 모든 평가 주기별

손실을 순차적으로 합산하는 단계이다. 합산된

손실은 하나의 단일 값으로 도출되며, 그 과정은

수식 3과 같이 정의할 수 있다. 해당 수식에서 𝑐는
현재까지 수행된 총 평가 주기의 수를 의미한다.

𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝑳𝒐𝒔𝒔 = ∑ 𝑳𝒐𝒔𝒔𝒄
𝒄
𝟏   (수식 3) 

(3) 누적손실 평균화 단계

마지막 단계는 두 번째 단계로부터 확보한

누적손실 값을 총 평가 주기 수로 평균화하는

단계이다. 평균화를 통해 단발적인 이상치의 영향을

완화함과 동시에 장기적인 평균 건전성 수준을

평가할 수 있으며, 그 과정은 수식 4와 같이

정의된다.

𝑯𝑰 = 𝑪𝒖𝒎𝒖𝒍𝒂𝒕𝒊𝒗𝒆 𝑳𝒐𝒔𝒔
𝒄

 (수식 4) 

이와 같은 과정을 통해 구축된 건전성 테스트 

메트릭은 단발적인 이상치에 대한 영향을 완화하고 

장기간에 걸쳐 발생하는 건전성 저하 경향성을 

명확하게 반영함으로써 산업용 기기의 효과적인 건전성 

테스트를 가능하게 한다. 그림 3은 그림 2와 동일한 

손실 값을 제안 메트릭에 적용하여 건전성 테스트를 

수행한 결과이다. 단일손실 메트릭을 활용한 그림 2와 

달리 단발적 이상치의 영향은 완화되는 반면 저하 

진행에 따른 정상 데이터와의 패턴 차이가 손실 

메트릭에 점진적으로 반영되는 양상을 명확히 보여준다. 

이는 제안 메트릭을 기반으로 건전성 테스트를 수행할 

경우 높은 정확도로 건전성 저하 추적이 가능함을 

시사한다. 

5. 검증 실험

본 장에서는 제안 메트릭의 효용성을 평가하기 위한

검증 실험 및 그 결과에 대해 설명한다. 

5.1 실험 설정 

(1) 데이터셋 구성

본 실험에서는 산업용 기기의 상태 모니터링을 위해

배포된 오픈 데이터셋 Condition monitoring of 

hydraulic systems[23]을 활용한다. 해당 데이터셋은 

그림 4와 같은 구조를 갖는 유압 설비에서 4가지 구성 

요소(Cooler, Pump, Accumulator, Valve)의 상태를 

정량적으로 변화시키며 수집된 압력, 유량 등의 센서 

데이터로 구성된다. 각 요소별 건전성 테스트를 위해 

평가 대상 요소가 점진적인 상태 저하를 보이도록 

데이터셋을 재구축하였다. 또한, 다양한 요소로 구성된 

산업용 기기에 대한 적용 가능성을 입증하기 위해 분석 

대상(Target)이 아닌 요소들을 다양한 상태로 설정하여 

실제 운용 환경을 고려한 데이터셋을 구성하였으며, 

이는 그림 5와 같다. 

그림 3. 누적손실기반 건전성 테스트 결과 

그림 4. 유압 설비 테스트 베드 구조 

그림 5. 실험 데이터셋 구성 
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표 4. 건전성 수준별 테스트 정확도                trans.: state transition 

 

(2) 모델 구성 

 제안 기법의 효과를 검증하기 위해 2가지 학습 모델 

(MLP-AutoEncoder, Conv-AutoEncoder)을 활용하여 

비지도 학습 기반 건전성 테스트 실험을 

진행하였으며, 각 모델의 구조는 표 2 및 3과 같다. 

모델 학습은 평가 대상 요소(Target)의 정상 데이터셋 

중 70%를 무작위로 선정하고, 가우시안 노이즈를 

추가하여 실데이터셋과 동일한 규모의 증강 데이터를 

생성하여 학습에 활용하였다. 이후, 학습에 사용되지 

않은 나머지 실데이터셋은 건전성 테스트를 위한 

테스트 용도로 활용하였다. 

 

표 2. MLP-AutoEncoder 모델 구조 

MLP-AutoEncoder 

Layer sizes Activation 

(Encoder) [seq_len, 32, 16, 8] 
(Decoder) [8, 16, 32, seq_len] 

ReLU (hidden) 
ReLU (hidden) 

 

표 3. Conv-AutoEncoder 모델 구조 

Conv-AutoEncoder 
Channels Kernel sizes Stride Activation 

(Encoder) [1, 8, 16, 32] [7, 5, 3] 2 ReLU 
(Decoder) [32, 16, 8, 1] [3, 5, 7] 2 ReLU 

 

5.2. 실험 결과 

해당 실험은 제안 기법의 건전성 수준별 평가 및 추적 

가능 여부를 정성적/정량적으로 검증하기 위한 

실험으로, MSE와 Euclidean Distance를 손실 함수로 

사용하였다. 정성적 평가는 건전성 저하에 따른 테스트 

결과 그래프의 변화 경향성을 기반으로 수행하였으며, 

정량적 평가는 이전 상태에서 산출된 손실 값 중 상위 

5%를 임계값으로 설정하여 분류 정확도를 산출하였다.  

이에 대한 실험 결과는 표 4 및 5와 같다. 임계값은 

건전성 테스트의 강도 설정 지표로 엄격한 평가가 

요구되는 경우 작은 값으로 설정할 수 있으며, 관대한 

평가가 요구되는 경우에는 큰 값으로 설정할 수 있다.  

정성적 평가 결과, 그림 6과 같이 기존 메트릭 대비 

제안하는 누적손실을 활용할 경우 건전성 저하에 따른 

손실 메트릭의 변화 경향성을 보다 명확하게 식별할 수 

있음을 확인하였다. 특히, 기존의 방식은 단일 평가 

주기만을 활용하기 때문에 저하에 따른 데이터 변동(예: 

분산 증가)의 영향을 매우 크게 받아 그림 6-(b)의 

좌측 그래프와 같이 저하가 심화될수록 손실 그래프를 

활용한 건전성 테스트 및 추적이 매우 어렵다. 그러나, 

제안하는 메트릭은 과거의 가동 데이터 패턴을 함께 

반영함으로써 그림 6의 우측 그래프와 같이 점진적인 

저하에 따라 발생하는 데이터 패턴의 변화 경향성 

식별이 용이하여 그래프를 활용한 높은 정확도의 

건전성 테스트 및 추적이 가능하다.  

     (a) 

     (b) 

 

또한, 정량적 평가 결과에서도 표 4와 같이 유압 

시스템 내에서의 물리적 영향력이 매우 커 건전성 

변화가 타 요소에 큰 영향을 미치는 Cooler에 대한 

정확도가 모두 100%인 경우를 제외하고, 나머지 세 

Model Component 
MSE Ours Euclidean Ours 

trans.1 trans.2 trans.3 trans.1 trans.2 trans.3 trans.1 trans.2 trans.3 trans.1 trans.2 trans.3 

MLP 
AE 

Cooler 100 100 - 100 100 - 100 100 - 100 100 - 

Pump 24.17 12.08 - 93.33 99.17 - 34.17 12.71 - 98.75 100 - 

Accumulator 55.28 21.67 0.27 80.28 95.28 98.37 33.33 21.11 0.81 82.78 90.56 92.41 

Valve 8.33 10.00 21.67 79.72 100 100 5.28 9.17 21.94 62.50 100 100 

Conv 
AE 

Cooler 100 100 - 100 100 - 100 100 - 100 100 - 

Pump 39.58 30.42 - 83.12 100 - 26.25 26.04 - 98.75 100 - 

Accumulator 52.78 20.83 0.54 78.33 94.17 91.33 33.89 20.83 0.54 81.67 89.72 87.26 

Valve 5.83 23.61 38.06 60.56 100 100 11.11 24.44 33.89 66.11 99.44 100 

그림 6. 건전성 저하 테스트 결과 그래프  

(a) Cooler의 Conv-AE, (b) Accumulator의 MLP-AE 
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요소의 건전성 상태 전이에 대하여 기존의 손실 메트릭 

대비 높은 평가 정확도를 보임을 확인하였다. 특히, 표 

5의 요소별 평균 정확도로 분석하였을 때, 최소 

56.56%에서 최대 79.91% 매우 큰 성능 향상을 

보임으로써 제안하는 누적손실기반의 평가 메트릭이 

그림 6과 같이 단발적인 이상치의 영향을 완화함에 

따라 건전성 테스트에 있어 매우 높은 효용성을 지님을 

검증하였다. 

 

표 5. 건전성 수준별 평가 종합 정확도 

 

6. 사례 연구 

5장의 검증 실험에서는 산업용 기기의 상태 

모니터링을 목적으로 구축된 오픈 데이터셋을 

활용하였다. 해당 데이터셋은 제안하는 건전성 테스트 

메트릭의 정량적 평가와 효용성을 분석하는 데에는 

적절하나 사전정의된 건전성 조건에 의해 각 상태가 

명확하게 구분된 특성을 갖는다. 그러나, 실제 산업 

환경에서의 건전성 저하는 장기간 운용에 의해 

점진적으로 발생함에 따라 그 상태 구분이 명확하지 

않은 경우가 많다. 이에, 본 장에서는 제안하는 건전성 

테스트 메트릭의 실효성 평가를 위해 인위적인 상태 

변화 없이 장기간 가동을 통해 점진적인 저하 및 

고장이 발생한 산업용 기기의 데이터셋을 활용하여 

검증을 수행하고 그 결과를 설명한다. 

 

6.1. 데이터셋 

사례 연구에서는 그림 7-(a)와 같이 설계된 

Neuromeka 사 Indy7 협동 로봇의 6번 관절 토크 

데이터를 활용한다. 해당 데이터셋은 약 7개월간의 

실제 운용을 통해 수집되었으며, 로봇의 건전성 

테스트를 위해 매 운용일마다 전원 인가 직후 각 

관절의 전체 가동 범위 수행 가능 여부를 확인하는 

동작 중 수집된 데이터로 구성된다. 그림 7-(b)는 정상 

데이터셋과 저하 상태 데이터셋의 예시로, 두 데이터 

간의 패턴 차이가 매우 미미하여 단순한 통계적 

비교만으로는 건전성 저하를 명확히 평가하기 어려운 

양상을 보인다. 이는 효과적인 건전성 테스트 메트릭의 

필요성을 보여준다.  

(a)                 (b) 

 

6.2. 검증 결과 

검증 결과, 두 가지 학습 모델 모두에서 그림 8과 

같이 기존의 손실 활용 방식 대비 제안하는 누적손실 

기반 평가 메트릭이 건전성 저하 양상을 명확하고 

직관적으로 식별하는 데에 효과적임을 확인하였다. 기존 

방식의 경우 건전성 저하에 따라 손실 값의 패턴이 

전반적으로 증가하는 경향을 보여 전체 구간에 대한 

사후 분석을 수행할 경우에는 건전성 테스트가 

가능하다. 그러나, 단기적으로 평가하였을 때 손실의 

등락 폭이 매우 커 부정확한 건전성 테스트 및 추적이 

수행될 위험이 있다. 반면, 제안하는 메트릭은 과거의 

가동 패턴을 반영함에 따라 평가 주기의 단발적 

이상치에 대한 영향을 매우 적게 받는다. 이에 따라 

고장(Fault) 지점까지 손실의 급격한 등락 없이 꾸준한 

증가 경향성을 보임으로써 높은 정확도로 건전성 

테스트 및 추적이 가능함을 확인하였으며 그 실효성을 

검증하였다. 

    (a) 

    (b) 

7. 결론 

본 논문은 산업용 기기의 건전성 테스트를 위한 

누적손실기반의 새로운 건전성 테스트 메트릭을 

제안한다. 제안 메트릭의 구축 방법은 총 3단계로, 평가 

주기의 손실을 산출하는 손실 계산 단계, 모든 평가 

Model Component MSE Ours Euclidean Ours 

MLP 
AE 

Cooler 100 100 100 100 

Pump 18.13 96.25 23.44 99.38 

Accumulator 25.74 91.31 18.42 88.58 

Valve 13.33 93.24 12.13 87.50 

Conv 
AE 

Cooler 100 100 100 100 

Pump 35.00 91.56 26.15 99.38 

Accumulator 24.72 87.94 18.42 86.22 

Valve 22.50 86.85 23.15 88.52 

그림 7. Indy7 협동 로봇 및 정상/저하 데이터셋 예시 

그림 8. 협동 로봇 관절의 건전성 테스트 결과 

(a) MLP-AE, (b) Conv-AE 
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주기의 손실을 누적 합산하는 손실 누적 단계 그리고 

누적된 손실을 평균화하는 누적손실 평균화 단계로 

구성된다. 제안 메트릭의 효용성 검증을 위한 건전성 

수준별 평가 실험 결과, 최소 86.22%에서 최대 

100%의 높은 평가 정확도를 달성함을 확인하였다. 

특히, 기존의 손실 활용 방법 대비 최대 79.91%의 

향상된 평가 성능을 보임으로써 건전성 테스트 

메트릭으로서 충분한 효용성을 가짐을 입증하였다. 또한, 

실적용 가능성 여부를 평가하기 위한 사례 연구 결과, 

제안 메트릭이 기존 메트릭에 비해 단발적 이상치의 

영향을 효과적으로 완화하여 손실 값의 급격한 변동을 

줄이고, 건전성 저하의 진행 양상을 명확하고 

직관적으로 나타낼 수 있음을 확인하였다. 이를 통해 

제안 메트릭의 실제 산업 현장 적용 가능성과 실효성을 

검증하였다. 향후 연구로는 장기적 부하 누적에 의한 

건전성 저하와 급격한 고장 징후를 동시에 평가하고, 

상태 변화 경향에 기반하여 손실을 초기화할 수 있는 

건전성 테스트 기법으로 확장할 예정이다. 
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요   약 

본 연구는 생성형 AI가 생성한 문서를 대상으로 한 오류 탐지 과제에서, 문서의 출처 라벨(AI 생성 vs. 

인간 작성)이 사용자 판단 인식과 실제 수행에 미치는 영향을 분석하였다. 조건 간 실험을 통해 오류 탐

지 수행, 판단 확신, 인지된 신뢰를 측정한 결과, 출처 라벨에 따른 수행 수준의 유의미한 차이는 관찰

되지 않았다. 그러나 자유서술 응답에서는 AI 조건에서만 ‘의심’과 ‘불신’을 명시적으로 표현하는 

언어적 반응들이 나타났다. 이는 출처 라벨이 판단 태도에는 영향을 미치지만, 실제 검증 수행으로 자동 

전이되지는 않음을 시사한다. 본 연구는 생성형 AI 사용자 판단에서 인식과 수행 간의 분리 가능성을 제

시하며, 단순한 출처 공시를 넘어 검증 행동을 유도하는 공정 중심 설계의 필요성을 논의한다. 

 

Abstract 

As generative AI becomes widely used, users increasingly act as evaluators responsible for 

detecting errors in AI-generated text. This study examines how source labels (AI vs. human) 

influence users’ error detection performance, judgment confidence, and perceived trust when 

reviewing a document containing errors. A between-subjects experiment was conducted with 25 

participants, who reviewed identical content with different source labels. The results showed no 

significant differences between conditions in error detection performance, judgment confidence, 

or perceived trust. In addition, error detection performance was not significantly correlated 

with judgment confidence or perceived trust. These findings suggest that source-based judgments 

may not readily translate into effective verification behavior, highlighting a potential 

disconnect between subjective judgment and actual performance in generative AI use. 

 

1. 서 론 

 

생성형 인공지능(Generative AI)의 급격한 확산은 

소프트웨어 개발 및 문서화 공정에서 사용자의 역할을 

근본적으로 변화시키고 있다. 오늘날 사용자는 AI가 

생성한 텍스트를 단순히 소비하는 수동적 존재에서 

벗어나, 그 결과물의 정확성과 타당성을 최종적으로 

판단하고 결함을 식별해야 하는 적극적인 검토 

주체이자 품질 보증(QA)의 핵심 동력으로 

기능한다[1][2]. 이러한 변화는 생성형 AI가 요구사항 

명세서 초안 작성, 서비스 설명서 생성, 정책 

가이드라인 수립 등 높은 정밀도를 요구하는 비정형 

텍스트 산출 과정에 깊이 통합됨에 따라, 소프트웨어 

서비스 설계 전반의 의사결정 공정에 핵심적인 요소로 

자리 잡았기 때문이다 [3][4]. 

그러나 소프트웨어 V&V(Verification & Validation) 

관점에서 볼 때, 생성형 AI의 출력물은 인간 검토자가 

품질 판단 역할을 수행하기에 반드시 최적화된 형태로 

제공되지 않는다는 구조적 한계를 지닌다. 생성형 AI가 

산출하는 문장은 언어적으로 매우 유창하고 구조적으로 

완결된 형태를 띠는 경우가 많아 사용자가 이를 

신속하게 이해하도록 돕지만, 동시에 내용의 타당성에 

대한 별도의 비판적 검증 없이 수용하게 만드는 

'인지적 안주'의 위험을 내포한다 [5]. 이러한 표면적 

그럴듯함은 사실과 어긋난 내용을 은폐할 수 있으며, 

특히 생성형 언어모델의 고질적인 문제인 
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'환각(Hallucination)' 현상은 소프트웨어 품질의 

신뢰성을 저해하는 치명적인 요인으로 작용한다 [6][7]. 

따라서 생성형 AI 기반 문서 활용 환경에서 사용자가 

출력의 신뢰성과 정확성을 비판적으로 평가하고, 

검증과 오류 탐지(error detection)를 수행하는 역할이 

필수적으로 요구된다 [8][9]. 소프트웨어 검증의 

전통적 관점에서, 검증자는 검토 대상에 결함이 존재할 

수 있음을 전제하고 이를 적극적으로 탐지하는 역할을 

수행한다. 즉, 검증 활동은 출처와 무관하게 비판적 

태도를 요구하며, 검증 대상이 사람에 의해 

작성되었는지, 혹은 자동화된 도구에 의해 

생성되었는지는 원칙적으로 검증 전략을 달리하는 

기준이 되어서는 안 된다. 그러나 생성형 AI 

환경에서는 이러한 규범적 전제가 실제 인간의 판단 

과정에서 항상 동일하게 작동하는지에 대한 의문이 

제기된다. 

한편, 인간–AI 상호작용 연구에서는 이러한 판단 

상황을 이해하기 위해 오랫동안 자동화 

편향(automation bias)과 AI에 대한 신뢰(trust) 

개념을 중심으로 논의해 왔다[10][11][12]. 자동화 

시스템의 제안은 인간 수행을 향상시키기도 하지만, 

과도한 신뢰로 인해 오류를 간과하게 만들 수 있음이 

보고되었다 [13][14]. 그러나 최근 생성형 AI 

환경에서는 기존의 설명만으로는 포착하기 어려운 

변화가 나타나고 있다. 생성형 AI의 오류 가능성에 

대한 사회적 인식이 확산되면서, 사용자들은 AI 출력에 

대해 이전보다 더 의심적이고 비판적인 태도를 보이는 

경향을 드러내고 있다[15]. 실제로 동일한 정보라 

하더라도 “AI가 생성했다”는 출처 라벨은 정보의 

인지된 정확도와 신뢰도를 유의미하게 낮추는 것으로 

보고되었으며, 이러한 효과는 정보의 실제 진위 여부와 

무관하게 나타난다[16][17]. 이는 자동화 편향 

논의에서 전제해 온 “AI에 대한 과도한 신뢰”와 

대비되는 양상으로, 생성형 AI 맥락에서 신뢰의 결여 

또는 알고리즘 회피(algorithm aversion)가 함께 

고려되어야 함을 시사한다 [18]. 문제는 이러한 인식 

변화가 실제 판단 수행으로 어떻게 연결되는지가 

여전히 명확하지 않다는 점이다. 사용자가 AI를 덜 

신뢰한다고 보고하는 것과 실제로 더 정확하게 오류를 

탐지하는 것은 동일한 과정이 아닐 수 있으며, 출처 

라벨로 인해 형성된 경계심이 검증 전략의 변화나 오류 

탐지 수행 향상으로 이어지는지는 경험적으로 충분히 

검증되지 않았다. 또한, 기존 연구들은 주로 

신뢰·정확도 평가·수용 의도 등 인식 수준의 지표를 

중심으로 출처 라벨의 효과를 분석해 왔고, 인식 

변화가 오류 탐지와 같은 수행 수준의 행동으로 

전환되는지에 대해서는 제한적으로 다루어져 왔다.  

이에 본 연구는 생성형 AI가 생성한 문서를 대상으로 

한 오류 탐지 과제에서, 문서의 출처 라벨(AI 생성 vs. 

인간 작성)이 (1) 오류 탐지 수행, (2) 판단 확신 및 

인지된 신뢰, 그리고 (3) 판단 인식과 수행 간의 

관계에 어떠한 영향을 미치는지를 수행 수준에서 

분석하고자 한다. 본 연구는 출처 라벨의 효과를 

입증하거나 부정하는 데 목적을 두기보다, 출처 기반 

판단 인식이 검증 수행으로 자동 전이되지 않을 수 

있는 조건을 실험적으로 규명함으로써, 생성형 AI 

환경에서의 인간 중심 검증 공정 설계에 대한 시사점을 

제공하고자 한다. 본 연구는 다음의 연구 질문을 

제시한다. 

RQ1. 출처 라벨은 실제 오류 탐지율에 유의미한 

차이를 유발하는가? 

RQ2. 문서 출처 라벨은 주관적 판단 확신과 신뢰도에 

어떠한 영향을 미치는가? 

RQ3. 출처로 인한 인식의 변화는 실제 수행 데이터와 

어떤 통계적 관계를 갖는가? 

이를 위해 본 연구는 (1) 동일한 내용과 오류를 

포함한 문서를 AI 생성 조건과 인간 작성 조건으로 

제시하고, (2) 참가자들의 오류 탐지 수행을 측정하며, 

(3) 과제 이후 판단 확신과 인지된 신뢰를 수집한다. 

이후 (4) 출처 라벨에 따른 수행 및 인식 차이를 

비교하고, (5) 인식 지표와 수행 간의 관계를 

탐색적으로 분석함으로써, 생성형 AI 기반 문서 검증 

공정에서 인식–행동 연결 구조를 규명한다. 

 

2. 선행 연구 

 

2.1 생성형 AI 출력물의 품질 특성과 환각 현상 

 

생성형 AI가 산출하는 텍스트의 한계는 소프트웨어 

공학에서 정의하는 품질 속성 중 신뢰성(reliability) 

관점에서 설명될 수 있다. 신뢰성은 시스템이 주어진 

조건에서 기대된 기능을 정확하고 일관되게 수행하는 

정도를 의미하지만, 대규모 언어모델(LLM)은 

본질적으로 확률적 추론에 기반한 비결정론적 

시스템으로서 이러한 요구를 안정적으로 충족시키지 

못한다. 특히 생성형 AI는 문법적으로 유창하고 

맥락적으로 자연스러운 텍스트를 생성하는 데에는 

탁월한 성능을 보이는 반면, 생성된 내용의 사실적 

정합성이나 논리적 정확성을 보장하지 못하는 환각 

문제를 구조적으로 내포하고 있음이 반복적으로 

지적되어 왔다 [6][7]. Bender는 이러한 언어모델의 

구조적 한계를 “실제 의미를 이해하지 못한 채 통계적 

확률에 기반하여 다음 토큰을 예측하는 확률적 

앵무새(Stochastic Parrots)”로 개념화하며, 언어적 

유창함이 곧 의미적 타당성이나 진실성을 보장하지 

않는다는 점을 비판적으로 논의하였다 [6]. 환각 

오류는 명시적인 오류 신호나 경고 없이 자연스러운 

문장 형태로 제시되기 때문에, 전통적인 소프트웨어 

오류와 달리 검토자가 오류의 존재 자체를 인식하기 

어렵다는 특징을 가진다. 이러한 특성은 생성형 AI 
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출력물이 소프트웨어 문서화, 요구사항 명세서, 정책 

초안과 같이 높은 정밀도와 검증 가능성을 요구하는 

공정에 사용될 경우, 잠재적으로 심각한 품질 리스크로 

작용할 수 있다.  

더 나아가, 생성형 AI 출력물의 높은 언어적 

유창성과 구조적 완결성은 인간 검토자의 인지 

과정에도 중요한 영향을 미친다. 기존 연구들은 

언어적으로 그럴듯한 텍스트가 사용자로 하여금 내용의 

타당성을 직관적으로 신뢰하게 만들며, 추가적인 

검증이나 반증 탐색을 수행하려는 동기를 약화시킬 수 

있음을 보고하였다 [1][5]. 이러한 현상은 생성형 AI 

출력이 실제로 더 정확해서가 아니라, 표면적으로 신뢰 

가능해 보이는 형태를 띠기 때문에 발생한다는 점에서 

중요하다 [5][8]. 이러한 표면적 신뢰성은 검토자의 

비판적 사고를 억제하고 인지적 안주(cognitive 

complacency)를 유도함으로써, 결과적으로 오류 탐지를 

위해 요구되는 인지적 비용을 증가시키는 

기제로  작용할 가능성이 있다. 즉, 생성형 AI 

출력물은 생산성 측면에서는 검토 대상 문서의 초안을 

빠르게 제공함으로써 효율을 향상시킬 수 있으나, 

동시에 오류를 식별하고 검증하는 공정의 난이도를 

구조적으로 높일 수 있다. 요컨대 생성형 AI 출력물의 

문제는 오류의 존재 여부 자체가 아닌, 오류가 

인간에게 어떻게 인식되고 검토되는가에 있다. 환각 

현상과 표면적 완결성은 결합되어, 검토자가 오류를 

탐지하기 어려운 조건을 형성하며, 이는 이후 자동화 

편향, 신뢰 교정 실패, 그리고 검증 수행 저하와 같은 

인간 요인 문제로 연결될 수 있다. 이러한 맥락에서 

생성형 AI 출력의 품질 특성은 기술적 성능 평가를 

넘어, 인간 중심의 검증 공정 관점에서 재검토될 

필요가 있다.  

 

2.2 자동화 편향과 알고리즘 회피: 검증 수행 실패의 

공통 메커니즘 

 

자동화된 시스템의 출력을 검토하는 인간의 판단 

과정은 인간–컴퓨터 상호작용(HCI) 및 소프트웨어 공학 

연구에서 오랫동안 자동화 편향 개념을 중심으로 

논의되어 왔다. 자동화 편향은 인간이 자동화 시스템의 

제안이나 판단을 과도하게 신뢰하여, 해당 출력의 

정확성을 충분히 검증하지 않은 채 수용함으로써 

오류를 간과하는, 과도한 신뢰(over-trust) 현상을 

의미한다 [10][13]. Skitka는 자동화된 의사결정 지원 

환경에서 사용자가 자신의 정확한 판단보다 시스템의 

잘못된 제안을 우선시하거나, 명백한 시스템 오류를 

탐지하지 못하는 경향을 실험적으로 입증하였다 [13]. 

이후 다수의 연구들은 자동화 시스템이 전반적인 수행 

정확도를 향상시킬 수 있음에도 불구하고, 오류 발생 

시 인간 검토자의 비판적 개입이 감소함으로써 새로운 

유형의 인적 오류(human error)를 유발할 수 있음을 

반복적으로 보고하였다. 즉, 시스템이 신뢰할 만하다는 

인식이 형성될수록 사용자는 검증 행동을 줄이고, 

결과적으로 오류 탐지 수행이 저하될 수 있다는 

설명이다. 이 관점에서 자동화 편향은 소프트웨어 품질 

검토 공정에서 검증 단계가 형식화되거나 생략되는 

위험을 설명하는 중요한 이론적 틀을 제공해 왔다. 

그러나 최근 생성형 AI 환경에서는 생성형 AI의 오류 

가능성, 특히 환각에 대한 사회적 인식이 확산되면서, 

사용자가 시스템의 출력을 충분히 검토하기 이전에 

출처에 근거한 선제적 불신을 보이는 경향이 보고되고 

있으며, 이는 알고리즘 회피로 개념화된다 [18]. 

알고리즘 회피는 자동화 시스템에 대한 과도한 신뢰가 

아니라, 오히려 시스템의 오류 가능성을 

과대평가함으로써 그 산출물 전반을 부정적으로 

평가하거나 회피하는 현상을 의미한다. 이러한 경향은 

출처 라벨링 연구에서도 확인된다. Altay 등은 동일한 

내용과 품질을 가진 정보라 하더라도 “AI가 

생성했다”는 출처 라벨이 부착될 경우, 사용자가 

인지하는 정확도와 신뢰도가 유의미하게 하락함을 

보고하였다 [16]. 이는 사용자가 정보의 객관적 

품질보다는 “AI 생성 여부”라는 외적 단서에 의해 

판단을 프레이밍할 수 있음을 시사한다. 다시 말해, 

생성형 AI 맥락에서는 시스템의 실제 성능과 무관하게, 

출처 정보 자체가 판단의 출발점을 규정하는 요인으로 

작동할 수 있다.  

자동화 편향과 알고리즘 회피는 표면적으로는 상반된 

현상처럼 보인다. 전자는 시스템에 대한 과도한 

신뢰에서, 후자는 시스템에 대한 과도한 불신에서 

출발하기 때문이다. 그러나 소프트웨어 검증 공정의 

관점에서 보면, 두 현상은 공통적으로 검증 수행의 

질을 보장하지 못한다는 점에서 중요한 문제를 

공유한다. 전자는 과도한 신뢰로 인해 검증이 생략되는 

위험을, 후자는 출처 기반 직관적 판단으로 인해 

체계적인 오류 탐지가 이루어지지 않는 위험을 

내포한다. 즉, 신뢰가 과도하든 부족하든, 그 

자체만으로는 효과적인 검증 수행을 보장하지 않는다는 

점에서 두 현상은 동일한 검증 실패 메커니즘으로 

이해될 수 있다. 나아가 이는 생성형 AI 기반 문서 

검토에서 인간 요인을 이해하기 위해, 단순한 신뢰 

수준의 증감이 아니라 실제 검토 수행(performance 

level behavior)을 분석할 필요성을 제기한다. 특히 

출처 정보가 제공된 상황에서 사용자가 자동화 편향과 

알고리즘 회피 중 어느 방향으로 반응하든, 그 결과가 

실제 오류 탐지 수행에 어떠한 영향을 미치는지는 

경험적으로 검증될 필요가 있다. 본 연구는 이러한 

문제의식에 기반하여, 출처 라벨이 사용자 판단 인식과 

더불어 검증 수행에 어떠한 방식으로 작용하는지를 

수행 수준에서 분석하고자 한다. 
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2.3 신뢰 교정 및 인식-수행 간의 불일치 

 

출처 라벨링(source labeling)은 사용자가 시스템의 

산출물을 해석하고 검토하는 과정에서 제공되는 

대표적인 인지적 보조 도구 중 하나로 논의되어 왔다. 

인간–AI 상호작용 연구에서는 사용자가 시스템의 실제 

성능과 자신의 신뢰 수준을 정합적으로 조정하는 

과정을 신뢰 교정(trust calibration)으로 정의하며, 

출처 정보는 이러한 교정을 유도할 수 있는 잠재적 

단서로 간주된다 [11][12]. Lee와 See에 따르면, 

신뢰가 시스템의 실제 역량보다 높을 경우 과잉 

의존(over-reliance)이 발생하고, 반대로 신뢰가 

지나치게 낮을 경우 시스템의 유용한 기능이 충분히 

활용되지 않는 오용(disuse)이 초래될 수 있다 [11]. 

이 관점에서 신뢰 교정은 인간 AI 협업의 효율성과 

품질을 유지하기 위한 핵심 조건으로 이해되어 왔다. 

최근 생성형 AI 맥락에서 출처 라벨링은 이러한 신뢰 

교정을 유도하는 구체적인 설계 요소로 주목받고 있다. 

다수의 실증 연구들은 동일한 내용의 정보라 하더라도 

“AI가 생성했다”는 라벨이 부착될 경우, 사용자가 

인지하는 신뢰도와 정확도 평가가 유의미하게 

낮아진다는 결과를 보고하였다 [16][17]. 이러한 

발견은 출처 라벨이 사용자의 판단 인식에 분명한 

영향을 미친다는 점을 보여주며, 출처 정보가 시스템 

산출물의 해석 과정에서 중요한 인지적 단서로 기능할 

수 있음을 시사한다. 

그러나 이러한 인식 변화가 실제로 검증 수행의 

향상으로 이어지는지는 명확히 규명되지 않았다. 일부 

연구들은 출처 라벨링이 사용자의 회의론을 증폭시켜 

주관적 신뢰를 낮추는 데에는 효과적이지만, 이것이 

반드시 더 정밀한 오류 탐지나 체계적인 검증 행동의 

강화로 전이되지는 않는다고 지적한다 [2][17]. 즉, 

“AI를 신뢰하지 않는다”는 인지적 태도의 형성과 

“오류를 찾기 위해 추가적인 인지적 노력을 

투입한다”는 행동적 실천 사이에는 괴리가 존재할 수 

있다. 

이러한 현상은 사회과학 및 HCI 연구에서 논의되어 

온 의도–행동 간격(intention–behavior gap) 개념과도 

연결된다 [2]. 사용자가 낮은 신뢰를 보고하거나 

비판적 태도를 표명하더라도, 실제 판단 과정에서 

오류를 탐지하기 위한 전략을 적극적으로 적용하지 

않거나 검토 깊이를 증가시키지 않을 가능성이 있다는 

것이다. 이는 신뢰와 확신과 같은 인식 지표가 검증 

수행을 직접적으로 대변하지 못할 수 있음을 의미하며, 

주관적 판단 척도만으로 검토 공정의 품질을 평가하는 

데 한계가 있음을 시사한다. 

소프트웨어 검토 및 품질 보증(QA) 공정의 관점에서 

볼 때, 이러한 인식–수행 간의 불일치는 중요한 

시사점을 가진다. 출처 라벨링과 같은 인터페이스 

수준의 정보 제공은 사용자의 인식과 태도를 조정하는 

데에는 기여할 수 있으나, 그것만으로는 인간 검토자가 

오류 탐지에 충분한 인지적 자원을 투입하도록 

강제하거나 보장하는 충분조건이 아닐 수 있다 [1]. 

다시 말해, 출처 라벨은 신뢰 교정을 위한 필요조건일 

수는 있으나, 검증 수행의 실질적 향상을 담보하기 

위해서는 보다 적극적인 검증 지원 메커니즘이나 공정 

차원의 설계 개입이 요구될 수 있다. 

이러한 선행연구들은 생성형 AI 기반 문서 검토에서 

핵심적인 문제를 “신뢰가 어떻게 변화하는가”가 

아니라, “그 변화가 실제 수행으로 어떻게 

연결되는가”로 재정의할 필요성을 제기한다. 본 

연구는 이러한 문제의식에 기반하여, 출처 라벨이 

사용자 판단 인식과 오류 탐지 수행에 각각 어떠한 

영향을 미치는지를 수행 수준에서 분석한다. 

 

3. 연구방법 

 

3.1 실험 참가자 

 

총 25명의 성인이 본 실험에 참여하였다. 참가자들은 

전공과 무관하게 일반적인 문서 읽기 및 검토 경험을 

보유한 성인으로 구성되었다. 모든 참가자는 연구 

목적과 절차에 대한 설명을 제공받았으며, 자발적 동의 

하에 실험에 참여하였다. 모든 참가자는 2개의 문서 

내용을 읽고 오류를 식별하는 과제를 수행할 수 있는 

기본적인 읽기 및 이해 능력을 갖추고 있었으며, 모든 

사전에 생성형 AI 사용 경험이 있는 것으로 확인되었다. 

실험 시작 전 모든 참가자는 연구 목적과 절차에 대한 

설명을 제공받았으며, 자발적 동의 하에 참여하였다. 

참가자는 무작위로 두 조건 중 하나에 배정되었으며, 

AI 출처 조건에는 12명, 사람 출처 조건에는 13명이 

포함되었다.  

 

3.2 실험 설계 

 

 

그림 1.  

 

본 연구는 문서 출처 라벨(source label)을 

독립변수로 하는 조건 간(between-subjects) 실험 

설계를 채택하였다. 출처 라벨은 두 수준으로 
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구성되었으며, 문서가 AI에 의해 생성되었다고 명시된 

조건과 사람이 작성한 문서라고 명시된 조건으로 

구분되었으며, 모든 참가자는 내용, 길이, 오류의 수와 

유형이 동일한 두 개의 문서를 제공받았다. 즉, 조건 

간 차이는 문서 상단에 제시된 출처 라벨 정보에 

한정되었다. 이를 통해 출처 정보가 사용자 판단에 

미치는 영향을 통제된 환경에서 검증하고자 하였다. 

그림 1은 참가자에게 실제로 제시된 오류 탐지 과제 

문서를 보여준다. 

 

3.3 실험 자극 및 과업 

 

오류ID 문장 오류 유형 설명 

E1 2-3 불일치 접근 권한 모순 

E2 3 모호성 구분 불명확 

E3 5-7 불일치 즉시 차단 vs 이용 후 환불 

E4 6 누락 환불 처리 시점 미명시 

표 1.   

오류ID 문장 오류 유형 설명 

E1 3-4 불일치 삭제된 데이터 재활용 

E2 2 모호성 저장 범위 등 불명확 

E3 5-6 불일치 원칙과 조항 충돌 

E4 7 누락 데이터 처리 방식 미명시 

 표 2.   

 

실험에 사용된 문서는 소프트웨어 개발 및 서비스 

운영 과정에서 생성형 AI가 초안 작성에 활용될 수 

있는 정책·설명·요구사항 성격의 문서를 추상화하여 

설계되었다. 각 문서는 정보성 텍스트 형태를 띠고 

있으며, 논리적 불일치, 의미적 모호성, 정보 누락 등 

실제 문서 검토 과정에서 발생할 수 있는 오류 유형을 

포함하고 있다. 각 문서에 포함된 오류 문장 및 오류 

유형은 표 1과 표 2에 정리되어 있다. 참가자의 과제는 

문서를 읽으면서 오류라고 판단되는 모든 문장을 

식별하는 것이었으며, 수행 시간에는 제한을 두지 

않았다. 

 

3.4 측정지표 

 

3.4.1 오류 탐지 수행 

 

오류 탐지 수행은 문서에 포함된 총 11개의 오류 

문장 중 참가자가 정확히 식별한 오류 문장의 비율로 

산출하였다. 각 참가자의 오류 탐지율은 정탐한 오류 

문장 수를 전체 오류 문장 수로 나누어 계산하였다. 

 

3.4.2 판단 확신  

 

판단 확신은 참가자가 자신의 오류 탐지 판단에 대해 

느낀 확신 수준을 측정하기 위해 사용되었다. 총 3개 

문항으로 구성되었으며, 각 문항은 7점 리커트 척도로 

응답되었다. 분석에는 3개 문항의 평균값을 사용하였다. 

 

3.4.3 인지된 신뢰  

 

인지된 신뢰는 참가자가 제공된 문서의 전반적인 

신뢰성을 어떻게 평가하는지를 측정하기 위해 

사용되었다. 총 2개 문항으로 구성되었으며, 각 문항은 

7점 리커트 척도로 응답되었다. 분석에는 2개 문항의 

평균값을 사용하였다. 

 

3.5 탐색적 자유서술 응답 수집 

 

본 연구에서는 출처 라벨이 문서 검토 과정에 미치는 

주관적 영향을 탐색적으로 파악하기 위해, 모든 

참가자에게 과제 종료 후 자유서술 문항을 추가로 

제시하였다. 해당 문항은 각 조건에 맞게 출처 주체를 

달리하여 제시되었으며(AI 조건: “AI 도구에 의해 

생성되었다는 정보”, 사람 조건: “사람이 작성했다는 

정보”), 출처 정보가 문서를 검토하거나 판단하는 

과정에 영향을 주었는지와 그 이유를 자유롭게 

서술하도록 요청하였다. 

이 자유서술 응답은 조건별로 분리하여 (i) 응답 수, 

(ii) 특정 표현(예: “의심”, “환각”, 

“상관없다”)의 등장 빈도(포함 여부 기준), (iii) 

대표 인용문을 중심으로 기술통계적으로 보고하였다. 

해당 분석은 수행 지표를 대체하기 위한 것이 아니라, 

정량 결과 해석을 위한 맥락 정보를 제공하기 위한 

목적의 기술적(descriptive) 분석이다. 

 

3.6 데이터 분석 

 

조건 간 차이를 검증하기 위해 Welch의 t-검정을 

사용하였다. 이는 조건별 표본 수와 분산이 동일하지 

않을 가능성을 고려한 것이다. 효과크기는 Cohen’s 

d로 보고하였다. 

오류 탐지율과 판단 확신 및 인지된 신뢰 간의 

관계를 분석하기 위해 Pearson 상관분석을 수행하였다. 

모든 통계 분석은 유의수준 α = .05에서 수행되었다. 

 

4. 연구 결과 

 

 

그림 2.  
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변수 AI(n=12), M(SD) 사람(n=13), M(SD) 

오류 탐지율 0.318 (0.999) 0.343 (0.054) 

판단 확신 5.278 (1.469) 5.077 (0.992) 

인지된 신뢰 4.083 (1.564) 4.000 (1.803) 

표 3.  

변수 Welch t(df) p Cohen’s d 

오류 탐지율 -0.76(16.82) 0.459 -0.31 

판단 확신 0.40(19.11) 0.696 0.16 

인지된 신뢰 0.12(22.92) 0.903 0.05 

표 4. 

 

4.1 오류 탐지율 

 

오류 탐지율은 두 과제에 포함된 총 11개 오류 문장 

중 참가자가 정확히 식별한 오류 문장의 비율로 

정의하였다. 

AI 조건(n = 12)의 평균 오류 탐지율은 M = 0.318, SD 

= 0.099였으며, 사람 조건(n = 13)의 평균 오류 

탐지율은 M = 0.343, SD = 0.054였다. 두 조건 모두 

오류 탐지율은 중간 수준 범위에 분포하였으며, 천장 

효과 또는 바닥 효과는 관찰되지 않았다. 

조건 간 오류 탐지율 차이를 Welch의 t-검정으로 

분석한 결과, 두 조건 간 차이는 통계적으로 유의하지 

않았다, t(16.82) = −0.76, p = .459. 

효과크기(Cohen’s d)는 −0.31로 나타났다. 조건별 

오류 탐지율의 기술통계는 표에 제시하였다. 

 

4.2 판단 확신과 인지된 신뢰 

 

판단 확신은 3개 문항의 평균값으로 산출하였다. AI 

조건의 판단 확신 평균은 M = 5.278, SD = 1.469였으며, 

사람 조건의 평균은 M = 5.077, SD = 0.992였다. 

Welch의 t-검정 결과, 조건 간 판단 확신 차이는 

통계적으로 유의하지 않았다, t(19.11) = 0.40, p 

= .696. 

인지된 신뢰는 2개 문항의 평균값으로 산출하였다. 

AI 조건의 인지된 신뢰 평균은 M = 4.083, SD = 

1.564였으며, 사람 조건의 평균은 M = 4.000, SD = 

1.803이었다. Welch의 t-검정 결과, 조건 간 인지된 

신뢰 차이는 통계적으로 유의하지 않았다, t(22.92) = 

0.12, p = .903. 

오류 탐지율, 판단 확신, 인지된 신뢰의 조건별 

기술통계는 표에 요약하였다. 

 

4.3 판단 인식 지표와 오류 탐지 수행 간의 관계 

 

오류 탐지율과 판단 확신 간의 Pearson 상관계수는 r 

= 0.02, p = .916으로 나타나 거의 상관이 관찰되지 

않았다. 오류 탐지율과 인지된 신뢰 간의 상관계수는 r 

= −0.27, p = .197로 나타났으며, 통계적으로 유의하지 

않았다. 

 

4.4 출처 라벨이 문서 검토에 미친 주관적 영향 

 

과제 종료 후, 모든 참가자에게 문서의 출처 정보가 

문서를 검토하거나 판단하는 과정에 영향을 주었는지에 

대해 자유서술로 응답하도록 요청하였다. 해당 문항은 

조건에 따라 출처 주체를 달리하여 제시되었으며(AI 

조건: “AI 도구에 의해 생성되었다는 정보”, 사람 

조건: “사람이 작성했다는 정보”), 총 17명의 

참가자가 응답을 제출하였다(AI 조건: 10명, 사람 

조건: 7명). 

AI 조건 응답자 10명 중 8명은 출처 정보가 문서 

검토 태도에 영향을 주었다고 응답하였다. 이들 

응답에서는 출처 기반의 경계적 반응을 직접적으로 

지시하는 표현들이 관찰되었으며, 구체적으로 

‘의심’(2/10), ‘환각’(1/10), ‘숨겨진 

의도’(1/10), ‘편향’(1/10), ‘틀릴 수 

있음’(1/10)과 같은 표현이 포함되었다. 예를 들어, 

한 참가자는 “AI의 환각이 미묘한 표현의 

불명확함으로 나타날 수 있다고 생각해서, 평소보다 더 

세심하게 읽어보게 되었다”고 응답하였고, 또 다른 

참가자는 “틀릴 수 있다는 생각에 문장 구조와 

논리성을 더 집중해서 봤다”고 기술하였다. 반면, AI 

조건 응답자 중 2명은 출처 정보가 검토 과정에 영향을 

주지 않았다고 응답하였다. 

사람 조건 응답자 7명 중 5명은 출처 정보가 문서 

검토에 영향을 주지 않았다고 응답하였으며, 이들은 

“출처와 무관하게 문장 자체에 집중했다”, “사람이 

작성했든 AI가 작성했든 상관없다”와 같은 방식으로 

출처 무관성을 직접적으로 진술하였다. 나머지 2명은 

사람이 작성한 문서라 하더라도 “실수가 있을 수 

있다”는 점을 고려하여 비판적으로 읽었다고 

응답하였으나, AI 조건에서 관찰된 것과 같은 

‘의심’이나 ‘불신’을 명시적으로 언급하지는 

않았다. 

이러한 자유서술 응답은 정량적 수행 지표를 

대체하기 위한 근거가 아니라, 출처 라벨이 참가자에게 

어떻게 언어화되어 인식되었는지를 확인하기 위한 

설명적 자료로 수집되었다. 특히 AI 조건 응답에서만 

출처 기반 경계 반응을 직접 지시하는 표현들이 

관찰되고(6/10), 사람 조건에서는 동일한 표현이 

관찰되지 않았다는 점(0/7)은, 출처 라벨이 주관적 

서술 수준에서 조건별로 다르게 활성화될 수 있음을 

보여주는 보조적 맥락 정보로 제시된다. 이러한 결과는 

정량적 수행 지표에서 관찰된 조건 간 차이 부재를 

해석하기 위한 맥락적 근거로 활용된다. 
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5. 논의 

 

본 연구는 생성형 AI 활용 맥락에서 문서의 출처 

라벨(AI 생성 vs. 인간 작성)이 사용자의 오류 탐지 

수행, 판단 확신, 인지된 신뢰에 어떠한 영향을 

미치는지를 수행 수준에서 실증적으로 검증하고자 

하였다. 정량적 분석 결과, 출처 라벨에 따라 오류 

탐지율에서는 통계적으로 유의미한 차이가 관찰되지 

않았으며, 판단 확신과 인지된 신뢰 역시 조건 간 

차이를 보이지 않았다. 또한 판단 인식 지표(확신, 

신뢰)와 실제 오류 탐지 수행 간의 상관관계는 매우 

약하거나 거의 관찰되지 않았다. 이러한 결과는 출처 

라벨이 사용자 판단의 인식적 측면에 일정한 영향을 

미칠 수 있음에도 불구하고, 그러한 인식 변화가 실제 

오류 탐지 수행으로 자동 전이되지 않음을 시사한다. 

표면적으로 보았을 때 이러한 결과는 출처 라벨의 

효과가 제한적이거나 미미한 것으로 해석될 수 있다. 

그러나 본 연구는 이러한 차이의 부재 자체가 생성형 

AI 사용자 판단의 중요한 특성을 드러낸다고 해석한다. 

특히 오류 탐지율이 중간 수준에 분포하고 천장 효과나 

바닥 효과가 관찰되지 않았음에도 불구하고, 출처 

라벨과 판단 인식 지표가 수행 수준의 행동 변화로 

이어지지 않았다는 점은, 사용자 판단에서 인식과 

수행이 필연적으로 연동되지 않으며 서로 독립적으로 

작동할 수 있음을 시사한다. 다시 말해, 사용자가 

무엇을 의심하고 어떻게 인식하는가와, 실제로 어떤 

검증 행동을 수행하는가는 동일한 인지 메커니즘의 

결과가 아닐 수 있다. 

이러한 해석은 자유서술 응답 분석에서 보다 

분명하게 드러난다. AI 출처 조건에 노출된 참가자들은 

“의심된다”, “틀릴 수 있다”, “환각”, “숨겨진 

의도”와 같은 표현을 반복적으로 사용하며, 출처 

정보가 문서 검토 태도에 영향을 주었다고 보고하였다. 

반면, 인간 작성 조건에 노출된 참가자들은 출처 

정보가 판단 과정에 영향을 주지 않았다고 응답하거나, 

출처와 무관하게 문장 자체의 내용과 논리적 일관성에 

집중했다고 서술하는 경향을 보였다. 즉, AI 

조건에서는 출처 라벨이 판단의 출발점으로 언어화되며 

명시적으로 활성화된 반면, 사람 조건에서는 출처 

정보가 판단 과정에서 거의 호출되지 않거나 

비가시적으로 처리되었다. 

그러나 이러한 언어적·태도적 차이는 실제 오류 

탐지 수행의 차이로는 이어지지 않았다. AI 출처 

조건에서 관찰된 의심은 보다 분석적인 검증 행동이나 

체계적인 오류 탐지 전략으로 전환되기보다는, 출처 

정보에 반응하여 형성된 상징적 회의(symbolic 

skepticism) 수준에 머물렀을 가능성이 크다. 

참가자들은 “AI는 틀릴 수 있다”는 사회적으로 

공유된 인식을 언어적으로 표명했지만, 그러한 인식이 

실제로 더 많은 인지적 자원 투입, 반복 검토, 또는 

대안적 추론 전략의 적용으로 이어지지는 않았다. 판단 

확신 및 인지된 신뢰와 오류 탐지율 간의 상관이 거의 

관찰되지 않았다는 점은, 이러한 인식–행동 간 분리를 

간접적으로 뒷받침한다. 

이러한 결과는 기존 자동화 편향(automation bias) 

연구에서 강조되어 온 “과도한 신뢰가 오류를 

유발한다”는 설명을 보완할 필요성을 제기한다. 본 

연구의 결과에 따르면, 신뢰가 낮아졌다고 해서 

자동적으로 더 정교한 판단이나 적극적인 검증이 

이루어지는 것은 아니다. 즉, 생성형 AI 맥락에서 

핵심적인 문제는 사용자가 AI를 얼마나 신뢰하거나 

불신하는가가 아니라, 출처 정보로 인해 형성된 판단 

태도가 실제 검증 전략으로 어떻게—혹은 왜—전환되지 

않는가에 있다. 

이 관점은 소프트웨어 검증 및 품질 보증(V&V) 

맥락에서도 중요한 시사점을 제공한다. 원칙적으로 

검증자는 문서의 출처와 무관하게 결함을 전제하고 

검토해야 하지만, 실제 인간 판단에서는 출처 정보가 

메타인지적 태도 수준에서만 작동하고, 구체적인 검증 

전략의 변화로 이어지지 않을 수 있다. 본 실험에서 

출처 라벨은 명시적으로 제공되었으나, 참가자에게 

오류를 어떻게 탐지해야 하는지에 대한 절차적 지침, 

단계적 검토 프레임, 또는 구조화된 검증 기준은 

제공되지 않았다. 그 결과, 출처 정보는 판단 인식이나 

태도 수준에서는 작동했을 가능성이 있지만, 실제 오류 

탐지 수행을 변화시키는 절차적 전략으로는 충분히 

활성화되지 않았을 가능성이 있다. 

결과적으로 본 연구는 생성형 AI 사용자 판단 문제를 

단순히 신뢰의 증감 문제로 환원하기보다, 검증 공정의 

설계 문제로 재정의할 필요성을 제기한다. 출처 

라벨링은 사용자의 판단 출발점을 형성하고 메타인지적 

평가를 유도할 수는 있으나, 그 자체로 검증 행동을 

강화하는 충분조건은 아니다. 생성형 AI 기반 문서 

검토 및 소프트웨어 품질 보증 환경에서는, 단순한 

정보 공시나 불신 유도에 머무르기보다, 사용자의 실제 

검증 행동을 구조적으로 유도할 수 있는 절차적 지침, 

검토 구조, 그리고 인터페이스 수준의 지원이 

병행되어야 할 필요가 있다. 

 

6. 결론 

 

본 연구는 생성형 AI가 생성한 문서를 대상으로 한 

오류 탐지 과제에서, 문서 출처 라벨(AI 생성 vs. 인간 

작성)이 사용자 판단 인식과 실제 수행에 어떠한 

방식으로 작용하는지를 수행 수준에서 분석하였다. 

실험 결과, 출처 라벨은 참가자의 언어적 반응과 판단 

태도에는 차이를 유발했으나, 오류 탐지 수행이나 판단 

확신, 인지된 신뢰의 정량적 차이로는 이어지지 않았다. 

특히 판단 인식 지표와 수행 지표 간의 관계가 매우 

약하게 나타났다는 점은, 생성형 AI 사용자 판단에서 
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인식과 행동이 구조적으로 분리될 수 있음을 

시사한다.  

본 연구의 주요 기여는 출처 라벨의 효과를 단순히 

입증하거나 부정하는 데 있지 않다. 대신, 출처 기반 

판단 인식의 변화가 수행 수준의 검증 행동으로 자동 

전이되지 않는 조건을 실험적으로 가시화했다는 점에 

있다. 이는 생성형 AI 사용자 판단을 이해함에 있어, 

신뢰나 태도 지표만으로 검증 수행을 예측하는 접근의 

한계를 드러내며, 검증 공정과 행동 수준의 분석이 

필요함을 강조한다. 동시에 본 연구는 몇 가지 한계를 

가진다. 표본 크기가 제한적이며, 단일 문서 유형과 

오류 탐지 과제를 사용하였다는 점에서 결과의 

일반화에는 주의가 필요하다. 또한 본 연구에서는 출처 

라벨만을 조작 변수로 사용하였으며, 구체적인 검증 

전략이나 절차적 지침을 제공하지 않았다. 이러한 

설계는 출처 라벨의 단독 효과를 검증하는 데에는 

적합했으나, 검증 수행을 촉진할 수 있는 다른 설계 

요소들과의 상호작용을 탐색하지는 못했다. 향후 

연구에서는 보다 다양한 과제 유형과 문서 맥락, 

그리고 검증 전략을 명시적으로 유도하는 인터페이스 

설계를 포함함으로써, 출처 정보가 실제 검증 행동으로 

전환되는 조건을 보다 정밀하게 분석할 필요가 있다. 

이러한 연구는 생성형 AI 기반 문서 지원 도구 및 

소프트웨어 품질 보증 시스템에서, 단순한 출처 공개를 

넘어 사용자의 검증 행동을 실질적으로 강화하는 공정 

중심 설계로 이어질 수 있을 것이다. 
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요   약 

 기존 지향성 퍼징은 특정 목표 지점 도달이나 취약점 재현에는 효과적이지만, 퍼저마다 사용하는 분석 정보와 탐색 

전략이 달라 대상 프로그램과 목표 지점에 따라 성능이 달라지며, 단일 퍼저로는 일관된 탐색 성능을 제공하기 어렵다. 

또한 기존 협력 퍼징 기법들은 주로 커버리지 확장에 초점을 두어 목표 지점 기반 탐색에서 효과적인 퍼저 선택과 자원 

집중에 한계가 있다. 이를 해결하기 위해 본 논문은 목표 지점 기반 탐색에 특화된 톰슨 샘플링 기반 지향성 협력 퍼저 

프레임워크 DCFuzz를 제안한다. 준비 단계에서는 퍼저별 목표 지점 중심 성능을 수집하고, 집중 단계에서는 순위 기반 

퍼저 업데이트 결과를 활용하여 톰슨 샘플링을 통해 가장 효과적인 퍼저를 동적으로 선택한다. 

총 25개의 실제 취약점 벤치마크 실험에서 DCFuzz는 단일 지향성 퍼저 대비 최초 목표 지점 도달 시간(TTR)과 취약점 

재현 시간(TTE)에서 전반적으로 우수한 성능을 보였고, 일부 목표 지점에서는 기존 퍼저가 장시간 도달하지 못한 

경우에도 성공적으로 탐색하였다. 

 

1. 서  론 
소프트웨어 퍼징[1,2]은 자동으로 대량의 입력을 

생성·실행하여 취약점을 탐지하는 대표적인 동적 분석 

기법이지만, 실제 취약점 분석에서는 프로그램 전체를 

무작위로 탐색하기보다 특정 취약 코드나 관심 지점과 

같은 목표 지점에 도달하거나 해당 지점에서 취약 조건을 

만족하는 입력을 생성하는 것이 중요하다. 이러한 요구에 

따라 지향성 퍼징[3,4,5]은 정적 분석이나 실행 경로 

정보를 활용해 목표 지점과의 거리 또는 관련성을 

정량화하고 이를 탐색 과정에 반영함으로써, 커버리지 

중심 퍼징 대비 목표 지점 도달 및 취약점 재현 효율을 

향상시킨다. 

그러나 기존 지향성 퍼징 기법들[3,4,5]은 서로 다른 

분석 정보와 휴리스틱에 기반해 탐색을 수행하므로, 대상 

프로그램이나 목표 지점의 특성에 따라 성능 편차가 크다. 

단일 지향성 퍼저는 일부 목표 지점에서는 효과적일 수 

있으나, 모든 목표 지점에 대해 일관된 성능을 보이기 

어렵다. 이를 보완하기 위해 여러 퍼저를 함께 활용하는 

협력 퍼징[6,7]이 제안되었지만, 기존 연구들은 주로 전체 

커버리지나 취약점 수와 같은 비지향적 성능 지표를 

기준으로 퍼저 선택과 자원 분배를 수행해 지향성 퍼징 

환경에는 한계가 있다. 특히 지향성 퍼저들은 서로 다른 

거리 측정 기준과 분석 정보를 사용하기 때문에, 동일한 

시드에 대해서도 퍼저별 성능을 공통된 기준으로 평가하기 

어렵다. 

본 연구는 이러한 문제를 해결하기 위해 톰슨 샘플링 

기반 지향성 협력 퍼저 프레임워크인 DCFuzz를 제안한다. 

DCFuzz는 준비 단계에서는 동일한 조건 하에 여러 지향성 

퍼저를 실행하여 공통된 평가 기준을 통해 목표 지점 중심 

탐색 성능을 정량화하고 수집한다. 집중 단계에서는 

수집된 성능을 순위 기반으로 갱신하고 톰슨 샘플링[8,9]에 

반영하여 현재 목표 지점에 가장 적합한 퍼저를 

확률적으로 선택한다. 25개의 실제 취약점을 포함한 

벤치마크 실험 결과, DCFuzz는 AFLGo[3], WindRanger[4], 
DAFL[5] 대비 평균 목표 지점 도달 시간(TTR)과 취약점 

재현 시간(TTE)에서 전반적으로 우수한 성능을 보였으며, 

지향성 퍼징 환경에서 협력 기반 접근과 동적 퍼저 선택의 

효과를 실험적으로 입증하였다. 

 

2. DCFuzz(Directed Collaborative Fuzzer) 
그림 1은 서로 다른 탐색 특성을 갖는 지향성 퍼저들을 

효과적으로 결합하기 위해, 톰슨 샘플링 기반의 지향성 

협력 퍼저 프레임워크인 DCFuzz의 전체 흐름을 보여준다. 

DCFuzz는 준비 단계와 집중 단계의 두 단계로 구성되며, 

이 두 단계는 라운드 단위로 반복 수행된다. 이러한 반복 

구조는 지향성 퍼징 과정에서 퍼저의 상대적 성능이 

시간에 따라 변화할 수 있다는 점을 고려하여, 고정된 

퍼저 선택이 아닌 동적인 퍼저 조합과 자원 재분배를 

가능하게 한다. 

준비 단계에서는 동일한 시간 예산과 동일한 초기 시드 

조건 하에서 여러 지향성 퍼저를 독립적으로 실행하고, 

공통된 평가 기준을 통해 목표 지점 중심 탐색 성능을 

정량화한다. 이는 각 퍼저가 사용하는 내부 휴리스틱이나 

고유 지표의 차이로 인해 직접적인 성능 비교가 어려운 

문제를 완화하기 위한 설계로, 퍼저 간 성능을 공정하게 

비교할 수 있는 기반 정보를 제공한다. 또한 준비 단계 

동안 각 퍼저가 생성한 시드 중 목표 지점과 의미적으로 

높은 관련성을 갖는 입력을 제한적으로 공유함으로써, 

특정 퍼저가 국소적인 실행 경로나 입력 공간에 과도하게 

편향되는 현상을 완화하고, 서로 다른 퍼저의 탐색 결과가  
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그림 1 톰슨 샘플링 기반 지향성 협력 퍼저 전체 흐름 

 

상호 보완적으로 활용되도록 유도한다. 이러한 과정은 

이후 단계에서 효과적인 퍼저 선택과 자원 분배를 

수행하기 위한 핵심적인 사전 정보 수집 단계로 기능한다. 

 

집중 단계에서는 준비 단계에서 수집된 성능 정보를 

바탕으로 퍼저 간 상대적 성능을 순위 기반으로 갱신하고, 

이를 톰슨 샘플링에 반영하여 현재 목표 지점에 가장 

적합한 퍼저를 확률적으로 선택한다. 선택된 퍼저는 

주어진 시간 동안 퍼징 자원을 집중적으로 할당받아 

실행되며, 이 과정에서 생성된 신규 시드와 크래시는 전체 

시드 집합과 크래시 집합에 누적 반영된다. 톰슨 샘플링을 

활용함으로써, DCFuzz는 관측된 성능이 우수한 퍼저를 

우선적으로 활용하는 동시에, 성능 추정의 불확실성을 

고려하여 다른 퍼저를 탐색할 기회를 유지한다. 이를 통해 

초기 성능이나 일시적인 우수성에 따른 선택 편향을 

완화하고, 탐색 진행에 따라 변화하는 목표 지점 도달 

특성에 유연하게 대응할 수 있다. 결과적으로 본 

프레임워크는 서로 다른 지향성 퍼저들의 상호 보완적 

탐색 특성을 지속적으로 결합함으로써, 목표 지점 기반 

취약점 탐색의 효율을 점진적으로 향상시키는 적응적 협력 

퍼징 메커니즘으로 동작한다. 

 

3. 실험 설정 및 평가 
다음의 두 가지 연구 질문을 설정하여 본 연구에서 

제시한 DCFuzz를 평가하였다. 

⚫ 연구 질문 1. DCFuzz는 단일 지향성 퍼저에 비해 

빠르게 목표 지점에 도달하는가? 

⚫ 연구 질문 2. DCFuzz는 단일 지향성 퍼저에 비해 

빠르게 목표 지점의 취약점을 재현했는가? 

본 연구에서는 AFLGo[4], WindRanger[5], DAFL[6]의 세 

가지 대표적인 지향성 퍼저를 비교 대상으로 하여, 총 

25개의 실제 취약점 목표 지점에 대해 DCFuzz의 성능을 

평가한다. 각 실험은 목표 지점별로 24시간씩 총 10회 

반복 수행되었다. 이를 위해 평균 목표 지점 도달 

시간(TTR) 순위와 평균 취약점 재현 시간(TTE) 순위를 

지표로 사용하여 협력 지향성 퍼징의 효율성을 분석하였다. 

표 1 은 DCFuzz와 단일 지향성 퍼저들 간의 평균 TTR 

순위와 평균 TTE 순위 비교한 결과를 보여준다. . DCFuzz는 

평균 TTR 순위 1.52를 기록하여, 2위를 차지한 

DAFL(2.00)보다 0.48 순위 높은 성능을 보였다. 또한 평균 

TTE 순위에서도 1.48을 기록하여, DAFL(2.00) 대비 

0.52순위 향상된 결과를 나타냈다. 이는 DCFuzz가 서로 

다른 지향성 퍼저들의 탐색 특성을 협력적으로 

활용함으로써, 단일 퍼저 대비 목표 지점 도달 및 취약점 

재현 과정에서 안정적인 성능 우위를 달성했음을 보여준다. 

표 1 DCFuzz와 단일 지향성 퍼저들 간의 평균 TTR 순위와 평

균 TTE 순위 비교 

 AFLGo WindRanger DAFL DCFuzz 
TTR 순위 2.80 2.64 2.00 1.52 

TTE 순위 2.68 2.56 2.00 1.48 
 

4. 결론 및 향후 연구 
본 논문은 다양한 지향성 퍼저들의 실시간 성능을 기반

으로 목표 지점 기반 퍼징에 적합한 퍼저를 동적으로 선택

하는 톰슨 샘플링 기반 지향성 협력 퍼저 프레임워크 

DCFuzz를 제안한다. DCFuzz는 동일 조건에서 퍼저별 목표 

지점 중심 성능을 수집하는 준비 단계와, 이를 순위 기반

으로 정량화하여 톰슨 샘플링을 통해 가장 효과적인 퍼저

를 선택·집중 실행하는 단계로 구성된다. 실험 결과, 

DCFuzz는 단일 지향성 퍼저 대비 목표 지점 도달 시간과 

도달 횟수에서 일관되게 우수한 성능을 달성하였다. 본 연

구는 향후 목표 지점 도달 이후의 취약점 재현 단계까지 

고려한 협력 퍼징 전략으로 확장 가능함을 시사한다. 
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1. Introduction 
A major characteristic of embedded control software, 
besides hardware dependency, is statefulness, meaning 
that previous interactions or data influence future ones. 
For example, an automatic transmission controller decides 
gear-shifting controls depending not only on the current 
values of throttle position and vehicle speed, but also on 
the past values. It is known to be common in practice [1] 
that a functional requirement of a stateful controller 
program can be defined as an input-output relation 
condition, namely a functional property, asserted for a 
specific control state. For example, a functional property 
for an automatic transmission controller may be specified 
as “given a throttle position of 50% in the ECO mode, the 

controller shifts the gears up at moderate RPMs". The 
practice of testing controller software against functional 
properties is called Property-based Testing (PBT), and has 
been actively explored by many researchers [1,2,3,4]. 

Ensuring that controller software satisfies a functional 
property is challenging because state variables (e.g., the 
“mode" in the above example) may influence not only 
control-flow but also data-flow and output of the 
controller systems. Rigorous exploration of varying 
control scenarios with respect to changing internal states 
requires either formal verification on a formal model 
[5,6,7], or a testing with varying test sequences carefully 
designed by domain experts [8]. Either case is costly and 
limited in scalability.  

 

컨트롤러 소프트웨어의 속성 검사를 위한 상태 기반  

테스트 생성 기법의 평가 

러자빈1, 홍신2, 최윤자1 
1경북대학교, 2충북대학교 

zavinhle@gmail.com, hongshin@chungbuk.ac.kr, yuchoi76@knu.ac.kr 
 

Stateful System, Stateless Techniques: Initial Assessment on Test Generation Techniques for 
Property Checking of Controller Software 

 
Za Vinh Le1, Shin Hong2, Yunja Choi1 

1Kyungpook National University, 2Chungbuk National University 
 

Abstract 
Property verification is one of the essential activities to ensure the functional correctness of a system that 
typically requires formal specifications and rigorous verification methods. In search of an alternative 
technique, this study evaluates state-of-the-art test input generation techniques to assess their ability to detect 
functional property violations, particularly in controller systems. From a set of benchmark C programs for 
controller software, we evaluated three representative test generation techniques, dynamic symbolic execution 
(CREST), greybox fuzzing (AFL, AFL++), and stateful fuzzing (LTL-FUZZER), in terms of their property 
violation detection ability and detection time. The results show that these test generation techniques are 
promising for complementing formal methods in property checking and, at the same time, need 
improvements. 
 
Keywords: property checking, test generation, greybox fuzzing, stateful fuzzing, concolic testing 
 
 
 

 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

21

mailto:zavinhle@gmail.com
mailto:hongshin@chungbuk.ac.kr


Recent advances in test generation techniques, such as 
concolic testing [9] and greybox fuzzing [10], have come 
to the forefront as new alternatives to automatically 
generate test inputs. By leveraging both static and 
dynamic program analysis, they aim to maximize code 
coverage and failure detection. From the large volume of 
literature demonstrating their effectiveness and efficiency 
in uncovering crashes [10,11,12], it is natural to 
conjecture that these techniques would detect functional 
property violations with similar efficiency and 
effectiveness in finding crash bugs. However, this 
conjecture needs to be formally evaluated as the 
effectiveness of test generation techniques in detecting 
functional property violations, especially in stateful 
controller software, remains largely unexamined. 

  The functional properties of a controller system often 
involve complex conditions over multiple variables in 
different computation cycles, requiring references to the 
previous state of the system. This distinct challenge of 
statefulness may limit the fault detection ability of the test 
generation techniques, which are otherwise highly 
effective in uncovering crashes. Although several test 
generation techniques [13,14,15,16,17,18] have been 
specially designed to uncover crashes and security 
vulnerabilities in stateful network protocol 
implementations [19,20,21,13], there exists very limited 
research with stateful controller software as target 
programs. 

  This work presents the first (to our knowledge) 
empirical evaluation of test generation techniques to find 
functional property violations in controller software. 
Specifically, we experimented with four highly popular 
test generation techniques, a concolic testing tool CREST, 
coverage-based greybox fuzzers AFL and AFL++ [22], 
and a stateful fuzzer LTL-Fuzzer [14]. We evaluated their 
fault detection abilities using mutation testing for seven C 
programs derived from a popular Simulink Stateflow 
model benchmark of controller systems, with a total of 
331 mutants. As functional properties for the target 
programs, we derived and used a total of 72 properties 
from the source code of the controller programs using an 
active model learning technique (see Section 2.2), which 
has been proven to be sound through formal completeness 
checking [23]. For each test generation technique, we 
measured mutation scores for detecting functional 
property violations and compared their fault detection 
performances. 

Our evaluation shows that AFL++ performs the best 
with 99% of detection ratio, but LTL-FUZZER, designed 
for stateful systems, exhibited more limitations. We 
discuss our findings with respect to the promises and 
shortcomings of test generation techniques, and suggest 
potential improvements. 

 

2. Study Design 

2.1. Overview 
We designed the empirical studies to answer the following 
two research questions: 

• RQ1. Effectiveness: To what extent does a test 
generation technique generate test inputs that detect 
property violations? 

• RQ2. Efficiency: How much time does a test 
generation technique take to generate test inputs that 
detect property violations? 

We studied the following four test generation techniques 
covering concolic testing, coverage-based greybox fuzzers 
and stateful fuzzer: 

• CREST: a concolic testing technique for C programs. 
We used an improved version of the original CREST 
tool [24] such that it supports modeling complex C 
features such as bitwise operators and floating point 
arithmetic which are commonly found in embedded 
controller software, and uses SMT solver Z3 [25]. 

• LTL-FUZZER [14]: a property-directed stateful fuzzer 
for C programs. Implemented on top of a general-
purpose greybox fuzzer AFL v.2.49b, LTL-FUZZER 
generates inputs by random mutation while guiding the 
input generation process toward satisfying given 
temporal properties on state variables. We used LTL-
Fuzzer at commit 716ac30, the latest version available 
at the time of the experiments. 

• AFL++ [22]: the state-of-the-art general-purpose 
greybox fuzzer for C. AFL++ generates test inputs by 
random mutation and leads the input generation process 
toward maximizing code coverage. AFL++ is 
recognized for its widespread adoption and superior 
performance in vulnerability detection. We used AFL++ 
v4.22a, the latest version available at the time of the 
experiments. 
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• AFL [26]: a general-purpose greybox fuzzer used as 
the ground fuzzer for LTL-FUZZER. Specifically, we 
used AFL v.2.49b embedded in the LTL-FUZZER 
distribution. We employ this technique for a fair 
comparison of LTL-FUZZER and its baseline fuzzer that 
does not use any property and state information. 

To experiment with various property-violating programs, 
we applied property inference and program mutation in 
sequence, to seven C programs of controller software, and 
obtained a total of 331 mutants each of which violates a 
functional property with certain inputs. 

2.2. Controller Program Under Tests 
  Target program selection Table 1 shows the seven 
target programs, P1 to P7, with their number of lines of 
code in the second column. These programs were selected 
from a total of 45 C programs [23] derived from the 
controller software benchmark [27], through the following 
steps:  

1. randomly choose one program from a set of similar 
programs, i.e. variations of the same controller 
system 

2. exclude programs that fail to generate functional 
properties using active learning 

3. exclude programs that generate too simple 
functional properties, e.g., those which have the 
maximum length of functional properties less than 
or equal to 3 

4. randomly choose a half of the remaining programs 
at most one program from the same group.  

For each target program, we constructed the test harnesses 
for the four studied techniques in a consistent manner, 
ensuring that they share the same input format. 

  Since a controller program is designed to repeat control 
loops indefinitely, we set the number of loop iterations in 
a test execution (the third column of Table 1), same as the 
configurations used in the previous work [23].  

  Functional property specification We obtained the 
functional properties of each target controller program 
using the active model-learning method [23]. This method 
infers behavior models of a target system from its 
execution traces by program synthesis [28] and model 
checking [29]. This approach guarantees to produce a 
sound model, meaning that the resulting statemachine 
models admit all observable behaviors of the system. 
From the inferred statemachine of a target program, we 
generated a functional property for each state transition 
condition as an assertion statement. Each assertion 
statement specifies the expected state transition behavior 
as a condition on the input, output, and state variables. 
The fourth and fifth columns of Table 1 show the number 
of generated assertions and the minimum, maximum, and 
average number of binary conditions in the assertion 
statements, respectively. 

  Figure 1 illustrates an example of a statemachine model 
inferred from a simple event counting system, with four 
states and six transitions labeled with specific conditions. 
For instance, this model asserts that, at State 4 
(IN_Observe), if !(1 > rtU.u) holds, the system 
transits to State 3 (IN_Collect_Data); otherwise, the 
system remains at State 4. This condition defines a 
functional property of the system and is specified as an 
assertion as follows:  

 assert(!(dw.is_c1_model == IN_Observe  
           && ! (1 > rtU.u))  
       || rtDW.is_c1_model == IN_Collect_Data) 

 
  Mutant generation To obtain various cases of property 
violations, we applied mutation operators to the target 
controller programs and generated mutants, taking the 
following three steps: (1) a set of distinct mutation 
operators was applied to each applicable line of a target 
program except the property-checking assertion statement, 
generating a comprehensive set of mutants, (2) we 

Table 1. Programs used for comparison 

Prog. LoCs Itr. Spec Length 
(Min/Max/Avg) Mutants 

P1 240 62 8 3 / 8 / 5.50 161  
(3152) 

P2 137 10 9 4 / 6 / 4.67 31  
(333) 

P3 177 60 8 3 / 10 / 5.00 112  
(1808) 

P4 148 25 10 3 / 5 / 3.60 70  
(960) 

P5 223 30 13 3 / 7 / 3.54 118  
(3250) 

P6 297 100 8 3 / 8 / 4.63 704  
(11240) 

P7 473 205 16 5 / 75 / 12.75 2654 
(33504) 
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retained only property-violating mutants by checking the 
property violation using CBMC, and (3) we randomly 
choose 50 mutants if the number of mutants retained 
exceeds 50. We chose the following five from the large set 
of mutation operators [30], considering the earlier works 
on selecting representative mutation operators [31,32,33]: 

- OAAN: Arithmetic operator mutation [31,33] 

- OLLN: Logical operator mutation [31,33] 

- ORRN: Relational operator mutation [31,33] 

- SSDL: Statement deletion [32] 

- VSCR: Structural component replacement [33] 

We first generated all possible mutants from the target 
programs using MUSIC [34]. Following mutant generation, 
we filtered out equivalent mutants that do not violate the 
given property in any execution, since they are not 
meaningful for evaluating property violation performance. 
We used CBMC [29] to identify property-violating 
mutants by verifying each property-checking mutant, with 
the same loop bounds configured for the test harnesses 
(see Section 2.2). In Table 1, the sixth column presents the 
number of property-violating mutants, alongside the total 
number of mutants (shown in parentheses). Since too 
many mutants remain, we randomly sampled them to 
retain 50 mutants for each target program, except for all 
31 mutants of P2. The final dataset consists of a total of 
331 mutants spanning all seven programs. 

2.3. Test Generation and Measurement 
For each technique and mutant studied, we conducted test 
generation 10 times, each with a time limit of 30 minutes. 
The result of each test generation run consists of a series 
of test inputs continuously produced by the technique 
during the 30 minutes. Given the size of the target 
programs, this time limit was sufficient to draw reliable 
conclusions. Since the studied techniques involve 

randomness, the test generation by each technique with a 
mutant was repeated 10 times, and the average result was 
measured. 
  From the ten test generation results of each technique 
and mutant, we first measured the ratio of the test 
generation runs where at least one property-violating test 
input was generated within the time limit, addressing RQ-
1. We counted only the test input that resulted in the 
property violation while ignoring other crashing inputs. 
Second, we computed the average time required for the 
technique to generate the first property-violating test input, 
addressing RQ 2. We considered that a test generation 
took 30 minutes if it failed in detecting the property 
violation within 30 minutes.  

We used one zero-filled file as the initial seed corpus 
for all test generation using the four studied techniques. 
As the tool-specific configurations, CREST was configured 
to use DFS (Depth-First Search) as the search strategy. 
Regarding LTL-FUZZER, we identify target lines by 
mapping each event in the functional property to the 
specific program location where the corresponding 
variable is directly assigned a specific value appearing in 
the property. All experiments were performed on a 3.3-
GHz Intel Xeon Gold 6234 CPU with 200 GB RAM, 
running Ubuntu 20.04 64-bit version. 

 

3. Results 

3.1 RQ1. Effectiveness 

Table 2 shows the functional property violation detection 
ratio of each technique averaged over all experiments of 
each target program, together with the branch coverage 
measured for each original program before applying 
mutation operators. The detection ratio is calculated as the 
proportion of the total number of functional property 
violations detected from all mutants, across 10 repetitions. 
For example of CREST for P1, the detection ratio is 0.98 as 

 

Figure 1. Statemachine generated by active learning 
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CREST detected 49 out of 50 violations across 10 
repetitions. As denoted in the parenthesis, CREST achieved 
100% branch coverage across 10 repetitions. 

  In case of programs P2-P5, all four test generation 
techniques could detect all functional property violations, 
50 out of 50 cases in all repetitions. However, all 
techniques failed to detect violations induced by three 
mutants in P6, because they are blocked out by 
segmentation faults before reaching the assert statements. 
AFL++ and AFL achieve the highest detection rates by 
detecting all functional property violations in every 
program except P6. CREST detected fewer violations than 
others in programs P1 (0.98), P6 (0.76), and its detection 
ratio dropped significantly in the largest-sized program P7 
(0.30). LTL-FUZZER demonstrated comparable 
performance to AFL++ and AFL, except for P7 where it 
detected only 44 violations out of 50. It is notable that 
CREST and LTL-FUZZER show a tendency to decrease the 
detection rate as their branch coverage decreases, while 
AFL++ and AFL show the independency between the 
detection ratio and the branch coverage. 

  The last column of the table shows that the model 
checker CBMC detects all property violations without an 
exception. 

3.2 RQ.2 Efficiency 
Table 3 shows the average detection time in seconds for 
each technique for all mutants, together with the number 
of mutants ranked 1st in detection times using the 
technique. 

AFL++ emerges as the fastest, achieving an average 

violation detection time of 40.17 seconds. CREST 
consistently performed well across benchmarks, ranking 
first 227 times in total, while AFL++, LTL-FUZZER and 
AFL ranked first 170 times, 134 times and 113 times in 
total, respectively. CREST performs efficiently for smaller 
programs, such as achieving the least detection time in P2 
(0.09 seconds), but becomes less effective as the program 
size increases. CREST exhibits the slowest detection time 
in larger programs, P6 and P7, exceeding 500 seconds on 
average.  

AFL shows better performance than LTL-FUZZER in 
most cases, except for P6 and P7. This is an unexpected 
result, as LTL-FUZZER is implemented on top of AFL for a 
specialized handling of stateful systems, and thus, it is 
supposed to perform better than AFL. Interestingly, LTL-
FUZZER’s performance improves with increasing program 
size. In P6, LTL-FUZZER shows better performance in 
average detection time and number of mutants ranked first 
in detection times. In P7, the largest program, although 
LTL-FUZZER has a slower average detection time than 
AFL, it ranks first 16 times, while AFL ranks first only 
once. 

  The last column of the table shows the detection time 
by CBMC for comparison. We note that CBMC 
outperforms the four test generation techniques for 
programs with higher complexities, e.g., P5, P6 and P7. 
 
4. Discussion 

4.1. Stateless techniques vs. stateful techniques 
For the first time, this work presents an empirical 

Table 2. Violation detection ratio and branch coverage in parenthesis (%) 

Program CREST LTL-FUZZER AFL++ AFL CBMC 

P1 0.98 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 

P2 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 

P3 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 

P4 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 (100.00) 1.00 

P5 1.00 (100.00) 1.00 (96.60) 1.00 (99.15) 1.00 (94.89) 1.00 

P6 0.76 (92.50) 0.94 (98.00) 0.94 (99.25) 0.94 (98.25) 1.00 

P7 0.30 (50.00) 0.88 (63.44) 1.00 (81.87) 1.00 (77.08) 1.00 
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comparison of three representative test generation 
techniques, concolic testing, general purpose fuzzing, and 
stateful fuzzing, on detecting property violations in 
controller software, to evaluate their potential as 
complements of model checking.  

  Overall, the three stateful and stateless fuzzers 
effectively detect property violations except for cases 
blocked by segmentation faults that occurred during the 
search, whereas CREST shows limitations with larger 
programs. Interestingly, the stateless fuzzer AFL++ 
performed the best, demonstrating its effectiveness and 
efficiency in exploring stateful behaviors.  

LTL-FUZZER does not perform as well as expected even 
though it is specialized for stateful systems. In the nine 
mutants that LTL-FUZZER failed to detect functional 
property violations, we found that the mutations changed 
the operations on the state variables dependent on the 
assertions for the functional property checking. In these 
cases, LTL-FUZZER fails in the instrumentation phase or 
crashes at the runtime phase (i.e., segfault). Even when it 
operates successfully, LTL-FUZZER often shows an 
unexpectedly slower detection time when mutations 
involve state variables (see P7 of LTL-FUZZER compared 
to that of AFL in Table 3). 

4.2 Test generation vs. Model checking 

Our initial experiments confirm that model checking is 
highly effective and efficient as long as the programs 
under checking are manageable by model checkers. It also 
shows high potential for state-of-the-art test generation 
techniques in property-checking stateful systems when the 

complexity of the program under checking is beyond the 
capability of model checking.  

Although with a great increase in detection time, 
AFL++ still achieves at least 94% violation detection. 
However, given that the sizes of the benchmark programs 
are not large, this result underscores the need for 
comprehensive empirical evaluations of test generation 
techniques using large-scale controller programs. 

4.3 Limitations and future direction 

The scope of our study is limited, highlighting the need 
for more extensive empirical evaluations: (1) our study 
focused solely on C programs ranging from 137 to 473 
LoCs, (2) the scope of test generation techniques was 
restricted to the three test generation techniques, and (3) 
experiments were performed using only syntactic 
mutations.  

  Therefore, it is too early to claim that the stateless 
fuzzer AFL++ is good enough to check property violations 
in general. However, we believe that our findings on the 
limitations of current state-of-the-art stateful fuzzers 
provide valuable insights into future directions. Strictly 
speaking, those fuzzers known as stateful are not dealing 
with actual system states, but only assume specific 
variables as representing states, which could cause various 
unexpected negative side effects.  

  We plan to generalize our findings by extending our 
research to evaluate a wider variety of test generation 
techniques (e.g., [13,35,36,37]) on larger-scale programs, 
and investigate improvements on the stateful fuzzing, e.g., 

Table 3. Average detection time (in second) and the number of the 1st ranks 

Program 
CREST LTL-FUZZER AFL++ AFL CBMC 

Detection 
time 

# 1st 
rank 

Detection 
time 

# 1st 
rank 

Detection 
time 

# 1st 
rank 

Detection 
time 

# 1st 
rank 

Detection 
time 

P1 37.24 46 5.07 24 0.30 26 0.56 26 0.64 
P2 0.09 31 1.00 0 0.28 0 0.59 0 0.18 
P3 0.01 50 0.06 44 0.03 44 0.04 44 0.73 
P4 87.44 34 20.43 24 0.39 40 1.28 25 0.29 
P5 1.42 49 21.82 3 2.54 4 6.76 3 0.43 
P6 537.51 17 187.85 23 187.19 23 268.02 14 10.77 

P7 1429.16 0 395.68 16 90.43 33 251.59 1 14.85 

Average 298.98 - 90.27 - 40.17 - 75.55 - 3.98 
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methods to identify actual states in the stateful system, 
and to trace states and their dependent variables for 
providing more effective and efficient search strategy. 

 

5. Conclusion 
We empirically evaluate three state-of-the-art test input 
generation techniques to assess their ability to detect 
functional property violations, particularly in controller 
systems through mutation testing. From a set of 
benchmark C programs for controller software, we 
generated total 3850 mutants, and then we measured the 
property violation detection ability and detection time of 
three representative test generation techniques, dynamic 
symbolic execution CREST, greybox fuzzers AFL and 
AFL++, and stateful fuzzer LTL-FUZZER. The results 
show that these test generation techniques are promising 
for complementing formal methods in property checking. 
At the same time, the results demonstrate their limitations, 
which imply the need for further improvement. 
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요   약 

본 연구는 로컬 대규모 언어 모델(LLM) 기반의 파이썬 자동 프로그램 정정(APR)에서 발생하는 과도한 코드 

재작성(Over-editing)과 구조적 불일치 문제를 해결하기 위한 프레임워크를 제안한다. 해당 기법은 최종 패치를 즉시 생성하는 

대신, 정적 분석 정보와 검색 증거를 조건으로 디퓨전 기반 AST 편집 계획을 우선 도출함으로써 모델의 정정 범위와 방향을 

구조적으로 제약한다. BugsInPy 데이터셋의 단일 라인 버그 51개를 대상으로 평가한 결과, StarCoder2-7B 모델에서 

Success@10 50.98%의 성능을 기록하였다. 실험 결과, 편집 계획의 도입이 탐색 공간을 축소하여 후보 패치의 안정성을 

높이고 전반적인 정정 성능을 유의미하게 개선함을 확인하였다. 

 
1. 서 론 

소프트웨어의 복잡성 심화는 APR 기술의 필연적 발전을 이끌었으나, 

기존 방식은 탐색 공간의 효율적 제어 및 일반화 성능 확보에 

어려움을 겪어왔다. 최근 LLM 기반 APR이 대안으로 부상했음에도 

불구하고, 로컬 환경의 모델은 수정 지점과 방법론 사이의 괴리로 

인해 코드를 전체적으로 재구성하며 구조적 왜곡을 초래하는 한계가 

명확하다. 본 연구에서는 이를 극복하기 위해 디퓨전 방식의 AST 

편집 가이드와 검색 기반 증거를 결합하여 정정 과정의 정합성을 

보장하는 프레임워크를 제안한다. 

 

2. 제안 기법  

 제안기법은 정정 프로세스를 위치 식별, 편집 방식 결정, 참조 사례 

활용의 세 단계로 체계화한다. 기술적 핵심은 AST(Abstract Syntax 

Tree) 수준의 편집 계획을 선행 도출함으로써, LLM의 생성 자유도를 

제어하고 수정 범위를 국소적으로 제한하는 데 있다. 

● 학습 단계: 정상적인 함수에 인위적 결함을 주입하여 

clean/buggy 코드 쌍을 구축한다. 이후 두 코드 간의 AST 

차분 분석[5]을 통해 도출된 편집 연산 시퀀스를 학습 

데이터로 활용하여, 정정 방향을 예측하는 디퓨전 

모델[3]을 훈련시킨다. 

● 추론 단계: 정적 분석을 통해 코드 내 의심 노드 분포를 

산출하고, 이를 조건부 입력으로 하여 디퓨전 모델이 

구체적인 편집 계획을 샘플링한다. 동시에 RAG[4] 

기법으로 검색된 유사 정정 사례를 증거로 결합하여 

프롬프트를 구성하며, 최종적으로 로컬 LLM이 해당 제약 

조건 하에서 패치를 생성하도록 유도한다. 

  입력:  

  - b: 버그가 포함된 함수 코드 

  - D*: 학습된 디퓨전 편집 계획 모델 

  - R: 유사 패치 데이터베이스 

  - N: 계획 샘플링 횟수 (N=12) 

  - P: 생성할 프롬프트 조합 수 (P=3) 

  - C: 프롬프트당 패치 후보 생성 수 (C=10) 

출력: 패치 집합 P 및 평가 지표 

알고리즘: 

1:  ctx ← 버그 문맥 및 에러 메시지 추출(b) 

2:  S ← 정적 분석 수행(ctx)                   // AST 기반 의심 노드 분포 산출 

3:  R_sim ← 하이브리드 검색(R, ctx, top-k=5)  // 유사 패치 증거 회수 

4:  Plans ← 계획 샘플링(D*, S, N)            // N개의 AST 편집 계획 후보 생성 

5:  Prompts ← 프롬프트 구성(ctx, R_sim, Plans, P) // 계획과 증거를 결합한 P개의 

프롬프트 생성 

6:  Candidates ← ∅ 

7:  for each prompt p in Prompts do 

8:      Candidates ← Candidates ∪ LLM_Generate(p, C) // 각 프롬프트로부터 

C개의 후보 생성 

9:  end for 

10: P ← 테스트 검증 및 랭킹(Candidates)       // Docker 샌드박스 내 테스트 수행 

11: return P 

 그림 1. 제안기법의 학습 및 추론 절차 의사 코드 

 

3. 실험 및 결과 요약 

3.1 실험 설정 

 본 연구는 로컬 LLM 환경에서 제안기법의 성능을 검증하기 위해 

BugsInPy[1] 데이터셋 내 51개의 단일 라인 결함을 실험 대상으로 

선정하였다. 기저 모델로는 Qwen[2] 및 StarCoder2[7]등을 

활용하였으며, 모든 실험은 동일한 후보 생성 예산 하에 진행되었다. 

디퓨전 계획 모델은 L=16, t=50으로 설정하고, 손실 가중치는 Keep 

0.1, 편집 연산 1.0을 적용하여 학습을 수행하였다. 

 

_____________________________________ 
* 이 논문은 한경국립대학교 국립대학육성사업(2025)지원을 받아 작성되었음 
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3.2 평가 지표 및 비교 방법 

  정정 성능은 테스트 케이스를 모두 통과한 Plausible Patch 수와 

Success@k를 통해 측정하였다. 또한, 제안된 편집 계획의 정밀도를 

평가하기 위해 수정 위치 적중률인 LocHit@k, 연산 일치도를 

나타내는 OpMatch@k, 그리고 실제 코드 변경이 계획 범위 내에 

국한되는 정도를 측정하는 Alignment@k를 평가지표로 채택하여 

over-editing 완화 효과를 분석하였다. 

 

3.4 실험 결과 및 분석(RQ1~RQ3) 

RQ1: 제안기법이 Baseline 대비 성능을 얼마나 올리나? 

표 1. BugsInPy 벤치마크 성능 비교 

Method 
Plausible 

(bugs/51) 

Success@1 

(%) 

Success@5 

(%) 

Success@10 

(%) 

Qwen1.5-7B-chat 

(Baseline) 
23 36.67 43.08 45.10 

Our Methodology 

(Qwen1.5-7B-chat) 
24 37.45 44.83 47.06 

Our Methodology 

(Deepseek-Coder-6.7B) 
24 37.45 44.83 47.06 

Our Methodology 

(StarCoder2-7B) 
26 40.88 48.15 50.98 

 실험 결과 표1을 참고하면, StarCoder2-7B[7] 기반의 제안기법이 

Success@10에서 50.98%를 기록하며 베이스라인 대비 5.88%p의 

가장 높은 성능 개선을 보였다. 이는 구조적 제약 조건의 결합이 상위 

후보군 내에 유효 패치가 포함될 확률을 실질적으로 상승했음을 

의미한다. 

 

RQ2:증거가 있을 때 편집계획 추가(diff_on)가 얼마나 기여하나?: 

표 2. StarCoder2-7B 기반 구성 요소 제거 결과 

  표2의 구성 요소 제거 실험에서 정적 분석과 검색 증거만 활용한 

diff_off 설정은 성능 향상이 미미하였으나, 편집 계획을 통합한 

diff_on 설정에서 유의미한 수치 상승이 관찰되었다. 이는 증거 

제공만으로는 후보 생성의 분산을 억제하기 어려우며, AST 수준의 

계획이 탐색 공간 축소의 핵심 기제로 작용함을 입증한다. 

 

RQ3:계획이 실제 수정(위치/연산)과 얼마나 맞고, over-editing 

완화에 기여하나? 

표 3. . StarCoder2-7B 기반 편집 계획 품질 지표 

k LocHit@k OpMatch@K  Alignment@K  

1 60.78% (31/51) 93.55% (29/31) 43.14% (173/401) 

3 66.67% (34/51) 94.12%  (32/34) 44.64% (179/401) 

5 68.63% (35/51) 97.14%  (34/35) 45.89% (184/401) 

10 68.63% (35/51) 100.00% (35/35) 46.63% (187/401) 

  품질 지표 분석 결과, LocHit@1은 60.78%를 달성하였으며 위치 

적중 시 OpMatch@10은 100%에 도달하여 연산 예측의 높은 

안정성을 확인하였다. 특히 Alignment@k 수치가 k값 증가에 따라 

동반 상승하는 경향은 편집 계획이 LLM의 수정 범위를 효과적으로 

구속하여 over-editing을 완화하고 있음을 뒷받침한다. 

 

 4.결론 

 본 연구에서는 로컬 LLM을 활용한 파이썬 프로그램 정정 과정에서 

빈번히 발생하는 과도한 코드 재작성과 출력의 불안정성을 제어하기 

위해, 정적 분석 정보와 디퓨전 기반 AST 편집 계획, 그리고 

하이브리드 검색 증거를 통합적으로 운용하는 기법을 제안하였다. 

정상 함수로부터 추출한 AST 차분 시퀀스를 학습 데이터로 활용하여 

정정 모델을 구축하였으며, 추론 시에는 의심 노드 국소화와 디퓨전 

샘플링을 연계하여 패치 생성의 범위와 방향성을 엄격히 통제하였다. 

BugsInPy[1] 데이터셋을 활용한 성능 검증 결과, StarCoder2[7] 

모델 기반으로 50.98%의 Success@10을 기록하였으며, 소거 

실험을 통해 AST 편집 계획이 탐색 공간의 구조적 축소와 정정 성능 

향상에 기여하는 핵심 기제임을 실증하였다. 본 연구의 구현체 및 

실험 데이터는 저장소[6]를 통해 접근 가능하다. 향후에는 실행 

신호(Execution Signals) 및 전역적 데이터 흐름 분석을 체계적으로 

통합하여 정정 성능을 고도화하고, 다양한 프로그래밍 언어로 적용 

범위를 확장한 범용 APR 모델을 개발할 계획이다. 
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Setting 
Plausible 

(bugs/51) 

Success@1 

(%) 

Success@5 

(%) 

Success@10 

(%) 

diff_off 23 39.46 45.02 45.1 

diff_on  26 40.88 48.15 50.98 
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커밋 메시지는 코드 변경의 목적과 범위를 간결하게 전달하는 핵심 산출물이지만, 실제 개발 환경에서는 시간 
제약과 작성 습관 등의 이유로 메시지가 과도하게 축약되거나 변경 의도를 충분히 반영하지 못하는 경우가 
빈번하다. 이러한 문제를 완화하기 위해 커밋 메시지 자동 생성 연구가 지속되어 왔으며, 최근에는 코드 
변경(diff)만을 입력으로 활용하는 LLM 기반 접근이 널리 시도되고 있다. 그러나 동일한 diff-only 조건에서  단일 
에이전트(단일 추론으로 즉시 생성) 와 다중 에이전트(초안–비평–수정의 단계적 상호작용) 구조가 생성 결과에 
미치는 영향을 체계적으로 비교한 연구는 상대적으로 제한적이다. 본 연구는 생성 구조의 효과만을 분리해 
관찰하기 위해, 입력 정보(오직 diff), 데이터 분포, 전처리(최대 6,000자 제한), 모델 및 생성 규칙을 동일하게 
통제한 상태에서 두 구조를 비교하였다. MCMD 데이터셋에서 8,000개 커밋을 추출해 실험을 수행하고, 
BLEU·METEOR·ROUGE-L로 정량 성능을 평가하는 동시에, 동일 입력에 대한 반복 생성 실험을 통해 Self-BLEU 
기반 재현성(출력 안정성/변동성)을 분석하였다. 또한 자동 지표가 포착하기 어려운 차이를 보완하기 위해 일부 
샘플에 대한 정성 분석과 추론 시간 측정을 병행하였다. 실험 결과, 단일 에이전트는 BLEU 1.28, METEOR 6.73, 
ROUGE-L 10.55로 다중 에이전트(1.18/6.02/10.08) 대비 자동 평가 지표에서 소폭 우세했으며, Self-BLEU 
98.50으로 동일 입력에 대해 매우 높은 출력 일관성을 보였다. 반면 다중 에이전트는 Self-BLEU 1.28로 출력 
변동성이 매우 컸고, 정성적으로는 변경 목적(예: 동시성 개선)이나 핵심 주제를 더 명시적으로 드러내며 
파일명/구현 세부를 의미적으로 재구성하는 경향이 관찰되었다. 따라서 diff-only 환경에서 생성 구조 선택은 
자동 평가 지표의 정답 표현 유사도, 동일 입력 반복 실행에서의 출력 안정성, 그리고 계산 비용 측면에서 서로 
다른 특성을 보이며, 적용 목표가 무엇인지에 따라 합리적인 선택이 달라질 수 있음을 확인하였다. 
 

 
1. 서론 
 소프트웨어 개발 과정에서 커밋 메시지는 코드 변경의 목적과 
내용을 자연어로 요약하여 전달하는 핵심적인 산출물이다[1,2,3]. 
커밋 메시지는 코드 리뷰 과정에서 변경 의도를 빠르게 파악하게 
하고, 변경 이력 추적과 유지보수, 협업 과정에서 개발자의 이해를 
돕는 중요한 역할을 수행한다[2,3]. 특히 대규모 프로젝트나 
다수의 개발자가 참여하는 환경에서는 커밋 메시지가 코드 변경의 
맥락을 보존하는 주요 수단으로 기능한다. 
  그러나 실제 개발 환경에서는 커밋 메시지가 불완전하거나 코드 
변경 내용을 충분히 반영하지 못하는 경우가 빈번하게 관찰된다. 
메시지가 지나치게 간략하거나 변경 의도와 직접적인 관련이 없는 
표현으로 작성되는 사례도 적지 않다. 이러한 문제는 개발자의 
작업 부담, 시간 제약, 또는 커밋 메시지 작성에 대한 낮은 
우선순위 인식 등 다양한 요인에서 비롯된다. 그 결과, 커밋 메시지 
자동 생성은 코드 변경 이력을 보다 체계적으로 관리하기 위한 
중요한 소프트웨어 공학 연구 주제로 지속적으로 다루어져 왔다. 
  최근에는 대규모 언어 모델(Large Language Model, LLM)의 
발전과 함께, 코드 변경(diff) 정보를 입력으로 활용하여 커밋 
메시지를 자동으로 생성하는 접근법이 활발히 제안되고 있다. 
이러한 접근법들은 주로 하나의 모델이 입력된 코드 변경을 
바탕으로 메시지를 생성하는 단일 에이전트(single-agent) 구조를 
중심으로 발전해 왔다. 단일 에이전트 기반 접근법은 구조가 
단순하고 계산 비용이 상대적으로 낮으며, 대규모 데이터셋을 
활용한 학습과 추론이 용이하다는 장점을 가진다. 실제로 다수의 
기존 연구에서 단일 에이전트 기반 모델은 자동 평가 지표 
기준에서 안정적인 성능을 보이는 것으로 보고되었다. 
  한편, 최근 자연어 처리 및 코드 생성 분야 전반에서는 하나의 
모델이 아닌 여러 에이전트 간의 상호작용을 통해 출력을 
개선하고자 하는 다중 에이전트(multi-agent) 기반 접근법이 

주목받고 있다. 다중 에이전트 구조는 초안 생성, 비평, 수정과 
같은 단계적 상호작용을 포함함으로써, 단일 모델이 놓칠 수 있는 
오류를 보완하거나 출력의 표현을 점진적으로 개선하는 것을 
목표로 한다. 이러한 접근법은 문서 요약, 질의 응답, 코드 생성 등 
다양한 과제에서 출력의 풍부함이나 의미적 충실도를 향상시킬 
가능성을 보여 왔다. 그러나 커밋 메시지 생성 과제에서 단일 
에이전트와 다중 에이전트 기반 접근법을 동일한 조건 하에서 
체계적으로 비교한 실험적 분석은 상대적으로 제한적이다. 기존 
연구의 다수는 특정 접근법을 제안하고, 자동 평가 지표를 통해 
성능을 보고하는 데 초점을 두었으며, 생성 구조 자체의 차이가 
결과에 미치는 영향에 대해서는 충분히 분석하지 않았다. 특히 
코드 변경(diff) 정보만을 입력으로 사용하는 diff-only 환경에서 두 
접근법이 어떠한 생성 특성을 보이는지에 대한 비교 연구는 
충분히 이루어지지 않았다. 
  또한 커밋 메시지 생성 연구에서 널리 사용되는 BLEU, METEOR, 
ROUGE-L과 같은 자동 평가 지표는 생성된 메시지와 정답(Gold 
Label) 메시지 간의 표면적 유사도를 중심으로 점수를 산출한다. 
이러한 지표는 대규모 실험을 수행하는 데 효율적이지만, 생성된 
메시지가 실제 코드 변경 내용을 얼마나 충실히 반영하는지, 혹은 
변경의 목적을 명확히 전달하는지와 같은 정성적 특성을 충분히 
설명하지 못하는 한계를 가진다. 특히 diff-only 환경에서는 코드 
변경의 배경 맥락이 제한적으로 제공되기 때문에, 메시지의 표현 
방식이나 정보 선택에 따라 자동 평가 지표 결과와 실제 유용성 
간의 차이가 발생할 가능성이 존재한다. 
  이러한 문제의식에 기반하여, 본 연구는 diff-only 커밋 메시지 
생성 환경에서 단일 에이전트와 다중 에이전트 기반 접근법을 
동일한 실험 조건 하에서 비교 분석한다. 본 연구에서는 MCMD 
데이터셋에서 추출한 8,000개의 커밋을 대상으로 대규모 실험을 
수행하였으며[4], 모든 실험에서 입력 정보와 데이터 분포를 
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동일하게 유지함으로써 생성 구조의 차이만이 결과에 영향을 
미치도록 설계하였다. 생성된 커밋 메시지는 BLEU, METEOR, 
ROUGE-L을 사용하여 정량적으로 평가하였고[5,6,7], 동일 입력에 
대한 반복 생성 실험을 통해 출력의 재현성(Self-BLEU)을 함께 
분석하였다[8]. 또한 일부 샘플에 대해 정성적 사례 분석을 
수행하여 자동 평가 지표로는 포착하기 어려운 생성 특성을 
보완적으로 관찰하였다. 
  실험 결과, 단일 에이전트 기반 접근법은 자동 평가 지표 
기준에서 상대적으로 높은 점수를 기록하며 안정적인 출력을 
생성하는 경향을 보였다. 반면, 다중 에이전트 기반 접근법은 동일 
입력에 대해 다양한 표현의 메시지를 생성하는 특성을 
나타냈으며, 정성적 사례 분석에서는 코드 변경의 구체적인 
내용이나 변경 목적을 보다 명시적으로 반영하는 사례가 다수 
관찰되었다. 또한 재현성(Self-BLEU)과 추론 시간 분석을 통해, 두 
접근법은 ‘정량 점수의 단순 우열’이라기보다 출력 
안정성(일관성)과 표현 전략(다양성), 그리고 계산 비용의 
관점에서 서로 다른 설계 선택을 유도함을 확인하였다. 
 
본 논문의 주요 기여도는 다음과 같이 정리된다. 

● 동일한 입력 조건을 유지한 diff-only 환경에서 단일 
에이전트와 다중 에이전트 기반 커밋 메시지 생성 방식을 
대규모로 비교하였다. MCMD 데이터셋에서 추출한 
8,000개 커밋을 대상으로 입력 정보, 데이터 분포, 평가 
절차를 동일하게 통제하여 생성 구조(single-agent vs. 
multi-agent) 차이만이 결과에 영향을 미치도록 
설계했으며, 이를 통해 두 생성 구조 간 특성을 
체계적으로 관찰하였다. 

● BLEU, METEOR, ROUGE-L로 정량 평가하고, 동일 입력 
반복 생성으로 Self-BLEU 기반 재현성을 분석했으며, 
일부 샘플에 대해 정성 분석을 병행했다. 그 결과 단일 
에이전트는 BLEU 1.28, METEOR 6.73, ROUGE-L 10.55 
및 Self-BLEU 98.50으로 높은 점수와 안정성을 보였고, 
다중 에이전트는 BLEU 1.18, METEOR 6.02, ROUGE-L 
10.08 및 Self-BLEU 1.28로 상대적으로 낮은 점수와 높은 
출력 변동성을 나타냈다. 정성 분석에서는 자동 지표로 
포착하기 어려운 표현 특성과 코드 변경 반영 양상을 
함께 확인했다. 

● 실험을 통해 단일·다중 에이전트 구조가 자동 평가 지표 
성능, 재현성, 표현 특성, 계산 비용에서 서로 다른 
trade-off를 보임을 확인했다. 특히 다중 에이전트는 초안 
생성–비평–수정 단계로 인해 단일 에이전트 대비 추론 
비용이 약 4.26배 높아, diff-only 환경에서 생성 구조 
선택이 성능뿐 아니라 출력 안정성과 계산 효율에도 
영향을 준다는 점을 제시한다. 

 
2. 배경지식 
  커밋 메시지는 코드 변경의 의도와 범위를 짧은 자연어로 요약해 
개발자의 이해를 돕는 소프트웨어 산출물이다. 이 메시지는 변경 
이력 추적과 유지보수, 코드 리뷰 과정에서 변경 목적을 빠르게 
파악하게 하는 역할을 한다. 특히 대규모 프로젝트에서는 커밋 
로그 자체가 개발 기록의 “요약 인덱스”처럼 기능하기 때문에, 
메시지 품질이 협업 효율과 직결되는 경우가 많다. 그러나 실제 
개발 환경에서는 시간 제약이나 우선순위 문제로 인해 메시지가 
지나치게 짧거나(예: update, fix), 변경 내용과 충분히 대응하지 
않는 경우가 발생한다. 또한 동일한 변경이라도 팀 또는 개인의 
작성 습관에 따라 메시지 스타일이 달라 일관성이 깨지기도 한다. 
이러한 문제를 보완하기 위해 커밋 메시지 자동 생성 연구가 
지속적으로 수행되어 왔으며, 최근에는 대규모 언어 모델을 
활용한 생성 방식이 주요 흐름으로 자리 잡고 있다. 본 장에서는 본 
연구의 실험 설정과 결과 해석에 필요한 핵심 개념을 정리한다. 
 
2.1 커밋 메시지 자동 생성 과제 개요 
  커밋 메시지 자동 생성은 코드 변경 정보로부터 변경의 핵심 
내용을 자연어로 요약하는 과제이다. 일반적으로 입력은 한 
커밋에서 발생한 변경 사항이며, 출력은 해당 변경을 설명하는 한 
문장 또는 짧은 구 형태의 메시지이다. 이 과제는 “코드 변경을 
자연어로 번역/요약한다”는 관점으로 다룰 수 있으며, 모델은 

변경된 파일, 수정된 함수나 로직, 버그 수정이나 기능 추가와 같은 
의도 정보를 메시지 형태로 압축해 전달해야 한다. 요약 관점에서 
보면, 모델은 diff에 포함된 여러 단서 중 무엇을 핵심으로 
선택할지(정보 선택)와, 그 핵심을 어떤 형식으로 표현할지(표현 
전략)를 동시에 결정해야 한다. 
커밋 메시지는 동일한 변경에 대해서도 허용 가능한 표현이 여러 
가지 존재할 수 있다는 특성이 있다. 예를 들어 “Fix null check in 
parser”와 “Handle null input in parser”는 의미적으로 유사하지만 
표면 표현은 다르다. 더 나아가 “Prevent NPE in parser”처럼 약어를 
쓰거나, “parser: handle null input”처럼 범위 표기를 섞는 등 표현 
형식도 다양하다. 또한 실제 데이터에서 정답 메시지 자체가 항상 
변경을 완전하게 설명한다고 가정하기 어렵고, 프로젝트별 작성 
관습(짧은 동사형, 범위 표기, 파일명 포함 여부 등)도 다르다. 
따라서 커밋 메시지 자동 생성은 단순한 문자열 일치 
문제라기보다, “변경의 핵심 정보를 선택해 요약하는 문제”로 
이해하는 것이 적절하다. 이런 특성 때문에 연구에서는 정량 
평가뿐 아니라, 생성 메시지가 변경 내용을 얼마나 충실히 
반영하는지에 대한 정성적 관찰을 함께 수행하는 경우가 많다. 
 
2.2 Diff와 diff-only 입력 설정 
  본 연구는 코드 변경을 git diff 형식으로 표현한 텍스트를 
입력으로 사용한다. diff에는 파일 단위의 변경 경계와 함께 삭제 
라인과 추가 라인이 포함되며, 변경 전후 차이가 라인 수준으로 
드러난다. 이 입력은 변경된 코드 조각을 직접 제공한다는 점에서 
메시지 생성에 필요한 최소 단서를 제공하지만, 변경의 배경이나 
개발 의도와 같은 상위 문맥은 포함하지 않는다. 즉 diff는 “무엇이 
바뀌었는가”를 비교적 직접적으로 보여주지만, “왜 
바뀌었는가”는 충분히 설명하지 못할 수 있다. diff-only 설정은 
입력을 diff 텍스트로 제한한다는 의미이며, 다음과 같은 정보는 
입력에 포함되지 않는다. 커밋 메시지 히스토리, 저장소 설명, 이슈 
트래킹이나 풀 리퀘스트 설명, 이전 커밋의 연속 맥락, 외부 문서나 
검색 기반 지식 등이 이에 해당한다. 또한 AST와 같은 구조화된 
코드 표현이나 별도의 정적 분석 결과도 사용하지 않는다. 이처럼 
입력을 제한하면 모델이 활용할 수 있는 정보원이 명확해지고, 
실험에서 관찰되는 차이가 “추가 문맥 덕분”인지 “생성 구조의 
차이”인지를 구분하기가 쉬워진다. 본 연구가 diff-only 환경을 
채택한 이유는 두 가지 측면에서 설명할 수 있다. 첫째, 생성 
구조의 효과를 분리하기 위한 통제된 조건이 필요하다. 입력이 
풍부해질수록 성능 변동의 원인이 늘어나고, 단일 에이전트와 
다중 에이전트의 차이를 생성 구조 자체로 귀속하기 어려워진다. 
둘째, diff-only는 커밋 메시지 생성에서 가장 기본적이며, 다양한 
시스템에서 공통적으로 확보 가능한 입력이라는 장점이 있다. 즉 
특정 플랫폼 정보(이슈/PR)나 추가 메타데이터에 의존하지 않고도 
적용 가능한 설정이므로, 생성 구조 비교라는 본 연구 목적에 
적합한 실험 기반을 제공한다. 
 
2.3 단일 에이전트와 다중 에이전트 생성 구조 
 단일 에이전트 기반 생성은 하나의 언어 모델이 diff를 입력으로 
받아 메시지를 한 번에 생성하는 구조를 의미한다. 입력과 출력 
사이에 별도의 중간 산출물이나 수정 단계가 없고, 한 번의 추론 
과정에서 최종 메시지가 만들어진다. 이 구조는 구현이 단순하고 
계산 비용이 낮으며, 같은 입력에 대해 출력이 비교적 안정적으로 
유지되는 경향이 나타날 수 있다. 또한 파이프라인 관점에서 실패 
지점이 적고, 대규모 데이터셋 전체를 빠르게 처리하기에 
유리하다. 반면, 자기 검토나 재작성 과정이 명시적으로 포함되지 
않기 때문에, 모델이 초기 선택한 정보(예: 파일명, 함수명, 
키워드)에 과도하게 의존하거나, 변경 목적을 충분히 명시하지 
못한 상태로 종료될 가능성도 존재한다. 다중 에이전트 기반 
생성은 여러 역할의 에이전트가 단계적으로 상호작용하며 결과를 
만드는 구조이다. 본 연구에서는 초안 생성, 비평, 수정의 순서를 
갖는 3단계 절차로 구성한다. 먼저 초안 단계에서 diff를 요약한 
초기 메시지를 만든 뒤, 비평 단계에서 초안과 diff의 대응 관계, 
표현의 명확성, 누락 정보, 불필요한 세부 정보 포함 여부 등을 
점검하고, 마지막 수정 단계에서 비평을 반영해 최종 메시지를 
재작성한다. 이때 핵심은 입력 정보가 늘어나는 것이 아니라, 같은 
diff를 두고 “한 번 더 점검하고 고쳐 쓰는 절차”가 추가된다는 
점이다. 다중 에이전트 구조는 출력이 한 번에 고정되지 않고 
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단계적으로 수정되기 때문에, 결과적으로 메시지 표현이 더 
다양해지거나 특정 변경 목적이 더 명시적으로 반영되는 양상이 
나타날 수 있다. 예를 들어 초안이 단순한 변경 나열에 머물렀다면, 
비평 과정에서 “목적(왜) 또는 효과(무엇이 좋아졌는가)”를 
강조하도록 유도될 수 있다. 반면 단계 수만큼 추론이 추가되므로 
계산 비용이 증가하며, 동일 입력이라도 실행마다 표현이 달라질 
가능성이 커진다. 특히 각 단계가 자연어로 피드백을 생성하는 
방식이라면, 작은 표현 차이가 다음 단계로 전파되면서 최종 출력 
변동성을 키울 수 있다. 따라서 다중 에이전트 접근은 품질 향상 
가능성과 함께, 비용과 안정성 측면의 trade-off를 동반한다. 
 
2.4 자동 평가 지표와 재현성 평가 
  커밋 메시지 생성 연구에서는 대규모 실험을 위해 자동 평가 
지표가 널리 사용된다. 본 연구는 BLEU, METEOR, ROUGE-L을 
사용해 생성 메시지와 정답(Gold Label) 메시지 사이의 표면적 
유사도를 정량화한다. BLEU는 주로 n-gram 중첩을 기반으로 
유사도를 측정하며, ROUGE-L은 최장 공통 부분 수열을 활용해 
요약 과제에서의 유사도를 평가한다. METEOR는 단어 정렬 및 
변형을 고려해 유사도를 산출하는 방식으로 사용된다. 이들 
지표는 동일한 데이터셋에서 여러 접근법의 성능 경향을 비교하는 
데 유용하고, 실험 재현과 보고가 상대적으로 용이하다는 장점이 
있다. 다만 이들 지표는 기본적으로 정답 메시지와의 표면적 
중첩을 중심으로 점수를 계산한다. 따라서 의미적으로 타당한 
다른 표현이 정답과 겹치지 않는 경우 점수가 낮게 나올 수 있으며, 
정답 메시지가 변경 의도를 충분히 반영하지 못하는 경우에도 
평가가 정답 중심으로 고정된다는 한계가 있다. 특히 커밋 
메시지는 길이가 짧아 단어 하나의 선택이 점수에 미치는 영향이 
클 수 있고, 스타일 차이(동사 선택, 범위 표기, 약어 사용)가 
중첩도를 크게 흔들 수 있다. 그래서 자동 지표 점수는 “정답 
표현과의 유사도”를 측정하는 관찰값으로 해석하고, 생성 결과의 
특성은 다른 분석과 함께 종합적으로 판단할 필요가 있다. 본 
연구는 출력 특성의 또 다른 축으로 재현성을 함께 분석한다. 
재현성은 동일한 diff 입력에 대해 반복 실행 시 출력이 얼마나 
일관되게 유지되는지를 의미한다. 이를 정량화하기 위해 
Self-BLEU를 사용하며, 동일 입력에 대해 여러 번 생성된 출력들 
간의 n-gram 중첩 정도를 계산한다. Self-BLEU가 높으면 출력이 
거의 동일하게 반복되는 경향을 의미하고, 낮으면 동일 
입력에서도 표현이 다양하게 변동함을 의미한다. 커밋 메시지는 
허용 가능한 표현이 여러 가지일 수 있으므로 출력 다양성이 
반드시 부정적인 특성은 아니지만, 자동화 파이프라인이나 동일 
결과의 반복 생성이 필요한 환경에서는 높은 변동성이 실용적 
제약으로 작용할 수 있다. 따라서 본 연구는 자동 평가 
지표(유사도), 재현성(Self-BLEU), 정성적 사례 관찰을 함께 
사용하여 생성 구조가 만들어내는 차이를 다각도로 해석한다. 즉, 
자동 지표가 보여주는 표면적 유사도 경향과, 반복 실행 시 출력이 
안정적으로 유지되는지, 그리고 실제 diff 반영 방식이 어떻게 
달라지는지를 함께 보면서 단일 에이전트와 다중 에이전트 생성 
구조의 차이를 정리한다. 
 
3. 제안한 방법 
  본 장에서는 diff-only 조건에서 단일 에이전트와 다중 
에이전트(Writer–Critic–Refiner) 생성 구조를 동일 설정으로 
비교하기 위해, 각 구조의 생성 절차를 요약한다. 
  두 접근법은 모두 코드 변경 사항을 나타내는 diff 텍스트만을 
입력으로 사용하며, 데이터 구성, 입력 전처리, 모델 설정, 생성 
규칙은 동일하게 유지된다. 차이는 커밋 메시지에 도달하기까지의 
내부 생성 절차에 있으며, 단일 에이전트 기반 접근법은 하나의 
추론 단계에서 메시지를 생성하는 반면, 다중 에이전트 기반 
접근법은 여러 단계의 역할 분리를 통해 메시지를 점진적으로 
완성한다. 본 장에서는 이러한 생성 절차의 흐름과 각 단계가 
수행하는 기능을 중심으로 두 접근법을 설명한다. 
그림 1은 본 연구에서 비교하는 단일 에이전트 기반 생성 구조와 
다중 에이전트 기반 생성 구조의 전체 흐름을 나타낸다. 두 
접근법은 동일한 데이터로부터 동일한 diff 입력을 받아 메시지를 
생성하며, 생성된 결과는 동일한 평가 절차를 통해 분석된다. 단일 
에이전트 기반 기준선에서는 하나의 언어 모델이 입력된 코드 
변경(diff)을 받아, 추가적인 중간 단계 없이 최종 커밋 메시지를 

직접 생성한다. 이 구조에서는 입력과 출력이 단일 추론 단계에서 
연결되며, 메시지 생성 과정이 비교적 단순하게 구성된다. 생성 
과정에서 초안이나 검토 단계가 분리되지 않기 때문에, 모델은 
diff에 포함된 변경 단서를 한 번의 생성 과정에서 선택하고 
요약하여 최종 문장을 구성한다. 이러한 구조에서는 동일한 
입력에 대해 반복 실행 시 출력이 유사한 형태로 유지되는 경향이 
나타날 수 있으며, 계산 비용 또한 상대적으로 낮게 유지된다. 
반면, 다중 에이전트 기반 생성 구조에서는 동일한 diff 입력을 
유지한 상태에서 초안 생성, 비평, 수정의 단계가 순차적으로 
수행된다. 초안 단계에서는 단일 에이전트 기반 방식과 동일한 
입력 조건 하에서 초기 커밋 메시지가 생성되며, 이후 비평과 수정 
단계는 해당 초안을 검토하고 재구성하는 역할만을 수행한다. 이 
과정에서 입력 정보가 추가되거나 확장되지는 않으며, 모든 
단계는 동일한 diff 텍스트를 공통 기준으로 참조한다. 즉, 다중 
에이전트 기반 구조는 입력 정보의 확장이 아닌 생성 과정의 
절차적 분리를 통해 최종 메시지에 도달하는 방식으로 정의된다. 
이와 같이 두 접근법은 입력 데이터, 데이터 분포, 모델 설정을 
동일하게 유지하면서, 최종 메시지를 생성하기까지의 절차만을 
다르게 구성한다. 따라서 이후 실험 장에서 관찰되는 자동 평가 
지표 성능, 출력의 재현성, 추론 시간 차이는 입력 정보나 데이터 
조건의 차이가 아니라, 그림 1에 요약된 생성 구조의 차이에서 
비롯된 결과로 해석된다. 

 
그림 1. 단일 에이전트 기반 기준선과 다중 에이전트 기반 커밋 
메시지 생성 프레임워크의 전체 흐름 
 
3.1 단일 에이전트 기반 커밋 메시지 생성 
  단일 에이전트 기반 접근법에서는 하나의 언어 모델이 입력으로 
제공된 코드 변경 사항(diff)을 바탕으로 커밋 메시지를 생성한다. 
모델은 git diff 형식으로 표현된 코드 변경 텍스트 전체를 하나의 
입력 시퀀스로 받아들이며, 이에 대응하는 단일 커밋 메시지를 
출력하도록 구성된다. 이 과정은 입력으로부터 최종 출력이 직접 
생성되는 단일 단계의 생성 구조로 이루어지며, 초안 생성, 검토, 
수정과 같은 중간 단계는 포함하지 않는다. diff-only 입력은 파일 
경로, 수정된 코드 구문, 함수 및 변수와 같은 심볼 이름, 그리고 
코드 라인의 추가 및 삭제 정보 등을 텍스트 형태로 포함한다. 단일 
에이전트는 이러한 변경 단서를 하나의 입력 공간에서 동시에 
고려하여, 코드 변경의 핵심 내용을 요약한 문장을 생성한다. 
생성된 커밋 메시지는 일반적으로 변경된 대상이나 변경의 성격을 
중심으로 구성되며, “무엇이 변경되었는가”를 간결하게 서술하는 
형태를 따른다. 이때 메시지는 한 문장 또는 이에 준하는 짧은 
텍스트로 제한되며, diff에 명시적으로 나타난 정보에 기반하여 
생성된다. 단일 에이전트 기반 접근법의 주요 특징은 생성 과정이 
단일 경로로 고정되어 있다는 점이다. 동일한 diff 입력이 주어질 
경우, 모델은 한 번의 생성 과정만을 수행하여 메시지를 완성하며, 
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생성 결과를 다시 평가하거나 수정하는 절차는 존재하지 않는다. 
이로 인해 출력은 모델의 내부 표현과 학습된 생성 패턴에 따라 
특정 표현 양식으로 수렴하는 경향을 보일 수 있다. 또한 반복 실행 
시에도 유사한 문장 구조나 어휘 선택이 나타나는 경우가 
관찰된다. 단일 에이전트는 diff를 입력으로 단 한 번의 추론으로 
최종 커밋 메시지를 생성한다. 본 연구에서는 이를 비교 
기준선으로 두고, 이후 절의 다중 에이전트 절차와 동일 조건에서 
비교한다. 
 
3.2 다중 에이전트 생성 구조 개요 (Writer–Critic–Refiner) 
  다중 에이전트 기반 접근법은 하나의 언어 모델이 입력으로부터 
최종 커밋 메시지를 즉시 생성하는 방식과 달리, 서로 다른 역할을 
부여받은 에이전트들이 단계적으로 상호작용하면서 메시지를 
완성하는 생성 구조이다. 본 연구는 diff-only 환경에서 “입력 
정보의 확장 없이도” 생성 절차의 구조적 분리가 결과에 어떤 
영향을 주는지 관찰하기 위해, 커밋 메시지 생성 과정을 초안 
생성(Writer)–비평(Critic)–수정(Refiner)의 3단계로 분리하여 
정의하였다. 각 단계는 동일한 diff 텍스트를 공통 기준으로 
참조하되, 역할(관점)만 달리하여 같은 입력을 반복적으로 
해석하도록 설계된다. 
다중 에이전트 절차에서 핵심은 “더 많은 정보를 넣는 것”이 
아니라 “같은 정보를 더 체계적으로 읽게 만드는 것”이다. 즉 
Writer가 diff를 보고 1차 메시지를 생성한 뒤, Critic이 초안의 근거 
적합성과 문장 규칙 준수 여부를 점검하고, Refiner가 비평을 
반영해 최종 문장을 재작성한다. 이때 단계 간에 전달되는 것은 
외부 문맥이나 추가 지식이 아니라, 생성 과정 내부에서 산출된 
초안과 비평 텍스트뿐이다. 따라서 다중 에이전트는 retrieval, 
이슈/PR 설명, 저장소 문서 등 외부 신호를 이용해 메시지를 
풍부하게 만드는 방식이 아니라, diff-only 조건하에서 생성 과정 
자체의 검토·수정 루프가 메시지 구성에 미치는 영향을 분리해 
관찰할 수 있게 한다. 
  또한 본 연구는 각 단계에서 에이전트의 역할을 명확히 고정하기 
위해 시스템 프롬프트를 사용한다. Writer는 전문 소프트웨어 
엔지니어로서 간결한 커밋 메시지를 작성하며, Critic은 코드 
리뷰어로서 초안의 문제점을 지적하는 비평만 출력하고, Refiner는 
비평을 반영해 최종 메시지만 출력하도록 제한한다. 이러한 역할 
분리는 다중 에이전트 절차가 단순히 “한 번 더 생성한다”는 
형태로 흐려지지 않게 하며, 단계별 목적(초안 작성 vs 근거 점검 
vs 재작성)이 실험적으로 구분되도록 한다. 
  결과적으로 다중 에이전트 생성 구조는 동일한 diff-only 입력을 
기반으로 하되, 초안에서 선택된 변경 초점이 비평을 통해 
재검토될 수 있고, 누락되거나 과도하게 일반화된 표현이 수정 
단계에서 보완될 수 있으며, 규칙 위반(예: 동사로 시작하지 않음, 
지나치게 장황함, 모호한 서술)이 최종 문장에 남지 않도록 하는 
절차적 장치를 제공한다. 본 연구는 이와 같은 구조적 차이가 자동 
평가 지표, 재현성(Self-BLEU), 그리고 정성적 사례에서 어떤 
차이로 나타나는지를 비교 분석한다. 
 
3.3 단계별 생성 절차와 프롬프트 구성 
  본 절에서는 다중 에이전트 기반 생성 구조의 단계별 절차와 
프롬프트 구성을 요약한다. 모든 조건은 diff-only로 통제되며, 
입력은 전처리된 DIFF만 사용한다(최대 6,000자). 저장소/이슈/PR 
정보, 커밋 히스토리, 외부 문서·검색 지식, AST/정적 분석 결과 등 
추가 문맥은 사용하지 않는다. 
  다중 에이전트는 Writer–Critic–Refiner의 3단계로 구성된다. 
Writer는 DIFF로부터 1줄 커밋 메시지 초안을 생성한다. Critic은 
DIFF와 초안을 대조하여 근거 부족, 누락/과잉 정보, 
명확성·간결성, 규칙 위반 여부를 불릿 형태로 비평하며(커밋 
메시지 출력 금지), Refiner는 DIFF+초안+비평을 입력으로 받아 
최종 1줄 커밋 메시지만 출력한다. 단일 에이전트는 DIFF를 
입력으로 1회 생성으로 최종 1줄 메시지를 출력한다. 모든 
모드에서 출력은 “한 줄”, “명령형 동사로 시작”, “마침표 
없음”으로 제한한다. 
  생성 파라미터와 디코딩 설정은 단일 에이전트와 다중 에이전트 
조건에서 동일하게 고정하였다. 재현성 평가는 동일 DIFF 입력에 
대해 각 접근을 N=10회 반복 생성한 출력들로부터 Self-BLEU를 
계산하여 산출하였다. 

  아래는 각 모드의 입력과 출력 제약을 정리한 것이다. 
 

모드 입력 출력 / 제약 

단일 
에이전트 
(Single-A
gent) 

DIFF (최대 6,000자) 
최종 커밋 메시지 1줄 
(명령형 동사로 시작, 
마침표 없음) 

Writer DIFF (최대 6,000자) 초안 커밋 메시지 1줄 (동일 
제약) 

Critic DIFF + 초안(Draft) 비평만 출력(불릿); 커밋 
메시지 출력 금지 

Refiner DIFF + 초안(Draft) + 
비평(Critique) 

최종 커밋 메시지 1줄 (동일 
제약) 

 
4. 실험 
4.1 실험 세팅 
  본 연구는 diff-only 환경에서 단일 에이전트 기반과 다중 
에이전트 기반 커밋 메시지 생성 방식을 동일 조건에서 비교한다. 
모든 실험에서 모델 입력은 코드 변경 사항을 나타내는 diff 
텍스트로만 제한했으며, 파일 경로, 커밋 히스토리, 이슈 설명 등 
추가 메타데이터와 정답 커밋 메시지(Gold Label)는 생성 과정에 
제공하지 않고 평가 단계에서만 활용했다. 또한 두 접근법은 
동일한 커밋 샘플 집합과 동일한 데이터 분포를 사용하여, 결과 
차이가 데이터 구성이나 입력 범위가 아니라 생성 구조에서 
비롯되도록 통제하였다. 생성 품질은 BLEU, METEOR, 
ROUGE-L로 정량 평가했으며, 단일 출력 평가의 한계를 보완하기 
위해 동일 diff에 대한 반복 생성 실험을 수행하고 Self-BLEU로 
출력의 안정성과 변동성을 분석했다. 추가로 계산 비용 차이를 
확인하기 위해 추론 시간(inference time)도 함께 측정하였다. 
실험은 동일 환경(Ubuntu 24.04.2 LTS, Intel Xeon Silver 4310 
2.10GHz논리 코어 24개, RAM 125 GiB, RTX 4090 24GB ×2, 
NVIDIA Driver 560.35.05, CUDA driver 12.6, nvcc 11.8)에서 
수행하였다. 
 
4.2 데이터셋 및 평가 척도 
  본 실험에서는 MCMD 데이터셋을 사용하였다. 본 연구는 
MCMD에서 총 8,000개 커밋을 추출하여 사용했으며, 프로그래밍 
언어 간 분포 불균형이 결과에 영향을 미치는 것을 줄이기 위해 
주요 언어별로 균등한 비율을 유지하도록 샘플을 구성하였다. 각 
샘플은 git diff 형식의 텍스트와 이에 대응하는 정답 커밋 메시지로 
이루어지며, 정답 메시지는 생성 과정에는 제공하지 않고 평가 
단계에서만 활용하였다. 또한 입력 길이 제약을 고려하여 diff 
텍스트는 최대 6,000자까지만 사용하도록 전처리하였다. 
  정량적 성능 평가는 생성된 커밋 메시지와 정답 메시지 간의 
표현적 유사도를 측정하기 위해 BLEU, METEOR, ROUGE-L 자동 
평가 지표를 사용하였다. BLEU 지표는 n-gram 단위의 중첩 정도를 
기반으로 생성 문장과 정답 문장 간의 유사도를 측정하며[5], 
METEOR 지표는 단순한 n-gram 중첩뿐만 아니라 단어 정렬 
기반의 일치 정도를 함께 반영한다[6]. ROUGE-L 지표는 생성 
결과와 정답 메시지 간의 최장 공통 부분 수열(Longest Common 
Subsequence)을 기반으로 문장 수준의 중첩 정도를 측정한다[7]. 본 
연구는 커밋 메시지가 일반적으로 길이가 짧고, 동일한 코드 
변경을 요약하는 표현이 다양한 형태로 나타날 수 있다는 점을 
고려하여, 단일 평가 지표에 의존하지 않고 세 가지 지표를 함께 
사용하여 결과를 분석하였다. 이를 통해 각 지표가 포착하는 
표현적 유사도의 서로 다른 측면을 종합적으로 관찰할 수 있도록 
하였다. 추가적으로, 생성 결과의 재현성 및 출력 안정성을 
분석하기 위해 Self-BLEU 지표를 사용하였다. Self-BLEU는 
동일한 입력 diff에 대해 반복적으로 생성된 커밋 메시지들 간의 
유사도를 측정하는 지표로, 반복 실행 시 출력이 어느 정도 
일관되게 유지되는지를 정량적으로 나타낸다. 본 연구에서는 
Self-BLEU 값이 상대적으로 높게 나타나는 경우 동일 입력에 대해 
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생성 결과가 유사하게 유지되는 경향이 크다고 해석하였으며, 
반대로 값이 낮게 나타나는 경우 출력 표현의 변동성이 크게 
나타나는 경향이 있는 것으로 정의하였다 [8]. 이를 통해 단일 
에이전트와 다중 에이전트 접근법이 생성 안정성 측면에서 어떠한 
차이를 보이는지를 함께 분석하였다. 본 연구에서 Self-BLEU는 
동일 diff 입력에 대해 N회 반복 생성한 출력 집합을 구성한 뒤, 
출력들 간 중첩도를 계산하여 산출하였다. 여기서 N은 모델 
내부가 아니라 실험 실행 스크립트(반복 생성 루프)에서 고정된 
반복 횟수이며, 본 실험에서는 N=10으로 설정하였다. 또한 다중 
에이전트(Writer–Critic–Refiner)는 초안과 비평이 다음 단계 
입력으로 전달되는 구조이므로, 초기 단계의 작은 표현 차이가 
누적되어 동일 diff에 대해서도 최종 메시지의 변동성이 커질 수 
있다. 출력 변동성은 디코딩 설정(temperature, top-p 등)과 
프롬프트 제약에 의해 달라질 수 있으므로, 본 연구는 반복 
횟수(N)와 생성 설정을 실험 실행 스크립트에 명시하여 재현 
가능하도록 관리하였다. 
 
4.3 실험 결과 
  본 절에서는 diff-only 환경에서 단일 에이전트 기반 커밋 메시지 
생성 접근법과 다중 에이전트 기반 접근법이 자동 평가 지표 
기준에서 어떠한 정량적 차이를 보이는지를 분석한다. 정량 
평가는 BLEU, METEOR, ROUGE-L 지표를 사용하여 
수행되었으며, MCMD 데이터셋에서 추출한 총 8,000개 커밋 샘플 
전체에 대해 각 지표의 평균 점수를 계산하였다. 
  모든 실험 조건에서는 입력으로 제공되는 정보의 범위, 데이터 
분포, 실행 환경이 동일하게 유지되었으며, 이러한 설정은 생성 
구조(단일 에이전트 vs. 다중 에이전트)의 차이만이 평가 결과에 
영향을 미치도록 통제하기 위한 것이다. 각 접근법의 정량적 성능 
비교 결과는 표 1에 정리되어 있다. 
 
 표 1. 단일 에이전트와 다중 에이전트 기반 커밋 메시지 생성의 
정량적 성능 비교 
 

Generation Method BLEU METEOR ROUGE-L 
Single Agent 1.28 6.73 10.55 
Multi-Agent 

(Writer–Critic–Refiner) 
1.18 6.02 10.08 

 
표 1은 동일한 diff-only 조건에서 Single-Agent와 
Multi-Agent(Writer–Critic–Refiner) 생성 구조를 비교한 자동 평가 
지표 결과를 요약한다. 표 1에 제시된 결과에 따르면, 단일 
에이전트 기반 접근법은 BLEU, METEOR, ROUGE-L의 세 가지 
자동 평가 지표 모두에서 다중 에이전트 기반 접근법보다 높은 
평균 점수를 기록하였다. BLEU 점수는 단일 에이전트가 1.28, 
다중 에이전트가 1.18로 나타나 약 0.10의 절대 차이가 
관찰되었으며, METEOR 점수는 각각 6.73과 6.02로 약 0.71의 
차이를 보였다. ROUGE-L 점수는 단일 에이전트가 10.55, 다중 
에이전트가 10.08로 약 0.47의 차이가 확인되었다. 
  모든 지표에서 단일 에이전트 기반 접근법이 상대적으로 높은 
점수를 기록하였으나, 각 지표에서 관찰된 차이는 절대값 
기준으로는 비교적 제한적인 범위 내에 머물러 있다는 점도 함께 
확인된다. 이는 두 접근법 모두 diff-only 환경에서 커밋 메시지를 
생성할 수 있으나, 자동 평가 지표가 포착하는 표현적 유사도 
측면에서 생성 구조에 따른 차이가 소폭의 수치 차이로 
반영되었음을 의미한다. 이러한 결과는 자동 평가 지표의 평가 
방식과 생성 구조의 차이를 함께 고려하여 해석할 수 있다. BLEU, 
METEOR, ROUGE-L 지표는 공통적으로 생성된 메시지와 정답 
커밋 메시지(Gold Label) 간의 n-gram 수준 또는 문장 구조 수준의 
중첩 정도를 기반으로 점수를 산출한다. 단일 에이전트 기반 
접근법은 하나의 추론 과정에서 커밋 메시지를 생성하는 구조를 
가지며, 이 과정에서 비교적 간결하고 일반화된 표현을 선택하는 
경향이 관찰되었다. 이러한 특성은 정답 메시지가 짧고 요약적인 
형태로 구성된 경우, 단어 또는 구 수준의 중첩을 유지하는 
방향으로 작용할 가능성이 있다. 
  반면, 다중 에이전트 기반 접근법은 초안 생성 이후 비평 및 수정 
단계를 거치는 다단계 생성 구조를 가지며, 이 과정에서 코드 
변경의 세부 요소를 보다 명시적으로 포함하거나 변경의 목적과 

효과를 자연어로 확장하여 서술하는 경향이 관찰되었다. 이러한 
생성 특성은 메시지의 정보량을 증가시키는 방향으로 작용할 수 
있으나, 동시에 정답 메시지와의 표현적 일치도 또는 단어 수준 
중첩을 감소시키는 방향으로 작용할 가능성이 있다. 그 결과, 자동 
평가 지표 기준에서는 다중 에이전트 기반 접근법의 점수가 
상대적으로 낮게 나타나는 양상이 관찰될 수 있다. 재현성 분석은 
동일한 코드 변경(diff) 입력에 대해 커밋 메시지 생성을 여러 차례 
반복 수행한 후, 반복 실행 과정에서 생성된 출력 간의 유사도를 
정량적으로 측정하는 방식으로 수행되었다. 본 분석의 목적은 
단일 에이전트 기반 접근법과 다중 에이전트 기반 접근법이 동일 
입력 조건에서 어느 정도 일관된 출력을 생성하는지, 혹은 반복 
실행 시 출력 표현이 어느 정도 변동하는지를 비교 관찰하는 데 
있다. 본 연구에서는 동일 입력에 대한 출력 간 유사도를 
수치화하기 위해 Self-BLEU 지표를 사용하였다. Self-BLEU는 
하나의 생성 결과를 기준 문장(reference)으로 두고, 동일 
입력으로부터 생성된 다른 출력들을 비교 대상으로 삼아 BLEU 
점수를 계산하는 방식으로 산출된다. 이 지표는 반복 생성 결과 
간의 표현적 중첩 정도를 나타내며, Self-BLEU 값이 높을수록 
반복 실행 시 생성 결과가 서로 유사하게 유지되는 경향이 크고, 
값이 낮을수록 출력 표현의 다양성 또는 변동성이 크게 나타나는 
경향이 있음을 의미한다. 재현성 분석 결과는 표 2에 정리되어 
있다. 
 
 표 2. 동일 입력에 대한 단일 에이전트와 다중 에이전트의 
재현성(Self-BLEU) 비교 

Generation 
Method 

Consistency Score 
(Self-BLEU) Interpretation 

Single Agent 98.50 매우 높음 
Multi-Agent 1.28 매우 낮음 

 
표 2에 제시된 결과에 따르면, 단일 에이전트 기반 접근법은 
Self-BLEU 98.50이라는 매우 높은 값을 기록하였다. 이는 동일한 
코드 변경(diff) 입력에 대해 커밋 메시지 생성을 반복 수행하였을 
때, 생성된 메시지들이 표현적으로 거의 동일한 형태를 유지하는 
경향이 매우 강하게 나타났음을 의미한다. 즉, 반복 실행 간 출력 
간 중첩 정도가 높아, 출력 안정성 측면에서 높은 일관성을 
보였음을 확인할 수 있다. 
반면, 다중 에이전트 기반 접근법은 Self-BLEU 1.28이라는 매우 
낮은 값을 기록하였다. 이는 동일한 코드 변경 입력에 대해서도 
반복 실행 시 생성된 커밋 메시지들 간의 표현적 중첩이 극히 낮게 
나타났음을 의미하며, 실행마다 서로 다른 표현의 메시지가 
생성되는 경향이 크게 나타났음을 보여준다. 이러한 결과는 다중 
에이전트 기반 접근법이 동일 입력에 대해서도 다양한 표현을 
생성하는 특성을 갖고 있음을 수치적으로 반영한 것으로 볼 수 
있다. 단일 에이전트와 다중 에이전트 기반 접근법 간의 
Self-BLEU 점수 차이는 약 97.22 포인트로 나타났으며, 이는 동일 
입력 조건 하에서 출력의 안정성 및 변동성 측면에서 두 접근법이 
매우 상이한 특성을 보였음을 정량적으로 보여주는 결과로 정리할 
수 있다. 본 재현성 분석 결과는 앞선 정량 평가 결과와 함께, 생성 
구조의 차이가 반복 실행 시 출력 특성에 어떠한 영향을 
미치는지를 이해하기 위한 보조적 근거로 활용된다. 정성적 사례 
분석은 앞선 정량 평가 결과(BLEU, METEOR, ROUGE-L) 및 
재현성 분석(Self-BLEU)에서 관찰된 차이를 보다 구체적으로 
이해하기 위해 수행되었다. 본 분석의 목적은 단일 에이전트 기반 
접근법과 다중 에이전트 기반 접근법이 동일한 코드 변경(diff) 
입력에 대해 어떠한 방식으로 커밋 메시지를 구성하는지, 그리고 
그 생성 특성이 출력 내용과 표현 구조에 어떠한 차이로 
나타나는지를 질적으로 확인하는 데 있다. 분석 대상은 전체 
데이터셋에서 무작위로 선택된 커밋 샘플로 구성되었으며, 각 
샘플에 대해 동일한 diff 입력을 기준으로 단일 에이전트와 다중 
에이전트가 생성한 커밋 메시지를 직접 비교하였다. 이 과정에서 
출력 길이, 포함된 정보의 범위, 변경 내용에 대한 요약 방식, 
표현의 추상화 수준 등을 중심으로 관찰을 수행하였다. 분석 결과, 
단일 에이전트 기반 접근법은 동일 입력에 대해 출력 표현이 거의 
변하지 않는 경향이 관찰되었으며, 이는 재현성 분석에서 확인된 
높은 Self-BLEU 값과 일관된 양상으로 나타났다. 단일 에이전트는 
하나의 추론 과정에서 메시지를 생성하는 구조를 가지며, diff에 
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포함된 변경 요소를 비교적 포괄적으로 나열하거나 기술하는
방식으로 메시지를 구성하는 경향이 관찰되었다. 이로 인해 
변경된 파일명, 구성 요소, 세부 구현 항목 등이 메시지에 
직접적으로 포함되는 사례가 다수 확인되었다. 
  반면, 다중 에이전트 기반 접근법은 비평 및 수정 단계를 거치는 
과정에서 표현 방식과 정보의 강조점이 달라지며, 동일 입력에 
대해서도 최종 출력이 여러 표현 후보로 분산되는 경향이
관찰되었다. 이러한 특성은 재현성 분석에서 낮은 Self-BLEU 
값으로 나타난 출력 변동성과 대응되는 결과이다. 다중 
에이전트는 초기 초안 이후 메시지를 반복적으로 검토·수정하는 
구조를 가지며, 이 과정에서 변경 내용을 하나의 핵심 개념이나 
목적 중심으로 재구성하는 경향이 관찰되었다. 
  Self-BLEU 관점에서 Single-Agent의 높은 값은 “동일 입력에 대해 
거의 동일한 출력을 재생성할 수 있다”는 의미로, 자동화된 커밋 
파이프라인이나 대규모 배치 생성에서 운영 안정성 측면의
장점이다. 반대로 Multi-Agent의 매우 낮은 Self-BLEU는 “동일 
diff에서도 결과가 크게 흔들린다”는 뜻이므로, CI/CD나 규정 
준수가 필요한 환경에서는 신뢰성 리스크로 작동할 수 있다. 다만 
이 변동성은 사람이 최종 선택을 하거나 후보 중 하나를 고르는
워크플로우(예: top-k 후보 생성 후 선택)에서는 ‘다양한 요약
관점’을 제공하는 장점이 될 수 있다. 따라서 Multi-Agent를
실용적으로 쓰려면 디코딩을 결정적으로 고정하거나, Critic 점수
기반 리랭킹/검증을 추가하거나, 출력 형식 제약을 강화하는
방식으로 변동성을 통제하는 보완책이 필요하다.
구체적인 사례를 통해 이러한 차이를 확인할 수 있다.

Cython 관련 문서 설정 변경 사례에서는, 정답(Gold Label)
메시지가 실제 코드 변경 내용과 직접적인 관련이 없는 라벨로
구성된 경우가 관찰되었다. 이 사례에서 단일 에이전트는 
README 파일에 포함된 설치 방법, 스크립트 템플릿, 정의 설명, 
실행 방식 등 diff에 포함된 세부 항목을 메시지에 명시적으로 
포함하는 양상을 보였다. 

<Single-Agent Output> 
“Update README.md with Cython installation instructions, script 
template, and enhanced documentation on definitions and running 
Cython code” 

반면, 다중 에이전트 기반 접근법은 동일한 변경 내용을 하나의 
핵심 개념으로 압축하여 표현하는 양상을 보였다. 

<Multi-Agent Output> 
“Update README.md with Cython setup” 

이 사례는 다중 에이전트가 세부 변경 내용을 포괄적으로
나열하기보다는, 변경의 중심 주제를 추출하여 요약 수준을 높인 
메시지를 생성하는 경향을 보여준다. 
  유사한 경향은 자료구조 변경 사례에서도 관찰되었다. 
HashMap에서 ConcurrentHashMap으로의 변경 사례에서 단일 
에이전트는 변경 대상 클래스, 사용 위치, 교체된 자료구조를 
메시지에 포함하여 구현 세부 중심의 설명을 제공하였다. 

<Single-Agent Output> 
“Update Shardingsphere’s InlineExpressionParser to use 
ConcurrentHashMap for SCRIPTS, replacing HashMap for better 
concurrency” 

반면, 다중 에이전트는 동일 변경을 변경의 목적(동시성 개선)을 
중심으로 요약하여 표현하였다. 

<Multi-Agent Output> 
“Update InlineExpressionParser to use ConcurrentHashMap for 
improved concurrency” 

이 사례에서는 단일 에이전트가 ‘무엇이 어떻게 바뀌었는지’에
초점을 둔 반면, 다중 에이전트는 ‘왜 변경되었는지’를 중심으로
메시지를 구성하는 경향이 나타났다.
  또한 번역 파일 수정 사례에서는, 단일 에이전트가 diff에 포함된 
파일명(cs.json)을 그대로 메시지에 포함하는 경향을 보인 반면, 
다중 에이전트는 해당 파일이 체코어 번역 파일임을 자연어로
해석하여 표현하는 양상이 관찰되었다. 

<Single-Agent Output> 
“Update translations for components: cs.json, adding and modifying 
entries…” 

<Multi-Agent Output> 
“Update translations for ACMeda in Czech” 

이 사례는 다중 에이전트가 파일명이나 코드 수준 정보보다는
의미적 해석을 기반으로 메시지를 재구성하는 경향을 갖고 있음을
보여준다. 따라서, 정성적 사례 분석 결과는 단일 에이전트 기반
접근법과 다중 에이전트 기반 접근법이 동일한 diff 입력을 서로
다른 관점에서 요약하고 표현한다는 점을 보여준다. 단일
에이전트는 변경된 요소를 비교적 포괄적으로 기술하며 출력의
일관성이 높은 반면, 다중 에이전트는 변경의 핵심 개념이나 
목적을 중심으로 메시지를 재구성하고, 그 과정에서 표현의 
다양성이 크게 나타나는 경향이 관찰되었다. 이러한 정성적 
관찰은 앞선 정량 평가 및 재현성 분석 결과에서 확인된 수치적
차이를 구체적인 출력 사례 수준에서 보완적으로 설명하는 근거로
활용될 수 있다. 시간 비용 분석에서는 단일 에이전트 기반 
접근법과 다중 에이전트 기반 접근법이 동일한 실험 환경과
동일한 입력 데이터 조건에서 커밋 메시지 생성을 수행할 때
요구되는 추론 시간(inference time)을 함께 측정하였다. 측정 
대상은 MCMD 데이터셋에서 추출한 총 8,000개 커밋 샘플 
전체이며, 각 접근법에 대해 전체 데이터셋을 처리하는 데 소요된 
총 시간과 샘플당 평균 추론 시간을 기록하였다. 측정 결과는 표 
3에 정리되어 있다. 

 표 3. 단일 에이전트와 다중 에이전트 기반 접근법의 추론 시간 
비교

Generation 
Method 

Total Time Time per Sample Relative Cost 

Single Agent 2h 15m ~1.01 sec 1.0x (Base) 
Multi-Agent 9h 35m ~4.31 sec 4.26x 

 표 3에 따르면, 단일 에이전트 기반 접근법은 전체 8,000개 커밋 
샘플을 처리하는 데 약 2시간 15분이 소요되었으며, 샘플당 평균 
추론 시간은 약 1.01초로 측정되었다. 이는 단일 추론 과정에서 
커밋 메시지를 생성하는 구조를 가지는 접근법의 시간적 특성이
반영된 결과로 볼 수 있다. 
  반면, 다중 에이전트 기반 접근법은 동일한 데이터셋을 처리하는 
데 약 9시간 35분이 소요되었으며, 샘플당 평균 추론 시간은 약 
4.31초로 측정되었다. 다중 에이전트 기반 접근법은 하나의 커밋 
메시지를 생성하기 위해 초안 생성, 비평, 수정 단계가 순차적으로 
수행되는 구조를 가지며, 이로 인해 단일 에이전트 기반 접근법에 
비해 추론 시간이 크게 증가하는 경향이 관찰되었다. 전체 처리 
시간 기준으로 볼 때, 다중 에이전트 기반 접근법은 단일 에이전트 
기반 접근법 대비 약 4.26배의 시간 비용이 소요되는 것으로 
나타났다. 이러한 결과는 두 접근법 간의 생성 구조 차이가 계산 
자원 소요 측면에서 뚜렷한 차이로 반영되었음을 수치적으로
보여주는 결과로 정리할 수 있다. 본 장에서는 diff-only 환경에서 
수행된 단일 에이전트 기반 접근법과 다중 에이전트 기반
접근법의 커밋 메시지 생성 실험 결과를 종합적으로 보고하였다. 
정량 평가 결과에서는 단일 에이전트 기반 접근법이 BLEU, 
METEOR, ROUGE-L 자동 평가 지표 기준에서 다중 에이전트 기반 
접근법보다 소폭 높은 평균 점수를 기록하는 경향이 관찰되었다. 
재현성 분석에서는 단일 에이전트 기반 접근법이 동일 입력에
대해 매우 높은 출력 안정성을 보인 반면, 다중 에이전트 기반 
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접근법은 반복 실행 시 출력 표현의 변동성이 크게 나타나는 
경향이 관찰되었다. 정성적 사례 분석에서는 다중 에이전트 기반 
접근법이 코드 변경의 세부 요소를 나열하기보다는 변경의 핵심 
개념이나 목적을 중심으로 메시지를 재구성하는 경향을 보였으며, 
단일 에이전트 기반 접근법은 변경된 요소를 비교적 포괄적으로 
기술하는 경향이 관찰되었다. 시간 비용 분석에서는 이러한 생성 
구조의 차이가 추론 시간 증가라는 계산 비용 측면의 차이로 함께 
나타났음을 확인하였다. 
  본 실험에서 자동 평가 지표(BLEU/METEOR/ROUGE-L), 출력 
일관성(Self-BLEU), 추론 시간은 모두 Single-Agent가 우세했다. 
따라서 본 연구가 관찰한 핵심은 ‘정량 성능의 상호 교환’이 
아니라, 동일한 diff-only 조건에서도 생성 구조에 따라 정보 
선택과 표현 전략, 그리고 실행 안정성이 달라진다는 점이다. 
 
5. 관련연구 
5.1 커밋 메시지 자동 생성 연구 
  커밋 메시지 자동 생성은 코드 변경 이력을 자연어로 요약하는 
문제로 정의되며, 코드 리뷰, 변경 이력 추적, 유지보수 및 협업 
과정에서 개발자의 이해를 지원하는 것을 주요 목표로 한다[2,3]. 
이 문제는 주어진 코드 변경 정보와 이에 대응하는 커밋 메시지 
간의 대응 관계를 학습하여, 새로운 코드 변경에 대해 적절한 
자연어 설명을 생성하는 과제로 다루어져 왔다. 
  초기 연구들은 커밋 메시지 생성을 전통적인 자연어 처리 문제로 
접근하였다. 이들 연구에서는 규칙 기반 방법이나 통계적 기계 
번역 기법을 활용하여 코드 변경 내용을 요약하는 방식을 
제안하였다. 규칙 기반 접근법은 사전에 정의된 패턴이나 
휴리스틱을 활용하여 메시지를 생성하였으며, 통계적 접근법은 
코드 변경과 커밋 메시지 간의 대응 관계를 확률적으로 
모델링하는 데 초점을 두었다. 그러나 이러한 방법들은 규칙 
설계에 대한 수작업 의존도가 높고, 다양한 형태의 코드 변경이나 
복잡한 수정 패턴에 대해 일반화하기 어렵다는 한계를 
지닌다[1,10]. 이후 신경망 기반 모델의 발전과 함께, 커밋 메시지 
생성 문제는 신경 기계 번역(neural machine translation) 관점에서 
본격적으로 연구되기 시작하였다[11,12]. 이 접근법에서는 코드 
변경 정보를 입력 시퀀스로, 커밋 메시지를 출력 시퀀스로 
간주하여 인코더–디코더 구조를 적용하였다. 이를 통해 코드 
변경과 자연어 메시지 간의 순차적 대응 관계를 데이터로부터 
학습할 수 있게 되었으며, 커밋 메시지 생성 과제를 번역 문제로 
정식화하는 데 기여하였다. 이러한 설정은 이후 다수의 연구에서 
기본적인 실험 프레임워크로 채택되었고, 커밋 메시지 자동 생성 
연구의 표준적인 접근 방식으로 자리 잡았다[10,11]. 최근에는 
대규모 언어 모델의 등장으로, 사전 학습된 모델을 활용한 커밋 
메시지 생성 접근법이 활발히 제안되고 있다[14,15]. 이러한 
모델들은 대규모 코드 데이터와 자연어 데이터를 기반으로 
학습되어, 기존 신경 기계 번역 기반 모델에 비해 보다 유연한 
표현과 일반화 능력을 보이는 것으로 보고되었다. 특히 코드 
변경(diff) 텍스트를 직접 입력으로 사용하면서도 비교적 안정적인 
출력을 생성할 수 있다는 점에서 주목받고 있으며, 다양한 
프로그래밍 언어와 프로젝트에 대해 적용 가능성이 보고되고 
있다[16]. 
  한편, 커밋 메시지 생성 성능을 향상시키기 위해 입력 정보의 
범위를 확장하려는 연구들도 다수 제안되었다[17]-[20]. 이러한 
연구들은 텍스트 형태의 코드 변경 정보 외에도 추상 구문 
트리(AST), 코드 토큰 시퀀스, 변경 전후 코드 스냅샷, 파일 경로 
정보 등을 함께 활용함으로써 코드 변경의 구조적 또는 문맥적 
정보를 보다 풍부하게 반영하고자 하였다. 일부 연구에서는 
이러한 입력 확장이 자동 평가 지표 기준 성능 향상으로 
이어졌음을 보고하였다. 그러나 입력 정보와 모델 구조가 동시에 
확장되는 경우, 실험 조건 간 비교가 복잡해지고 생성 결과에 
영향을 미치는 요인을 개별적으로 분리하여 해석하기 어렵다는 
문제점도 함께 제기되었다[21]. 
  특히 기존 연구의 다수는 새로운 입력 정보나 모델 구조를 
제안하고, 해당 접근법의 성능을 자동 평가 지표를 통해 보고하는 
데 초점을 두었다. 그 결과, 동일한 입력 조건 하에서 메시지 생성 
과정의 구조적 차이가 커밋 메시지 생성 결과에 미치는 영향에 
대해서는 상대적으로 제한적인 분석만이 이루어졌다. 예를 들어, 
단일 에이전트 기반 생성 방식과 다중 에이전트 기반 생성 방식이 

동일한 입력 정보와 동일한 데이터 분포 하에서 어떠한 차이를 
보이는지에 대한 체계적인 비교는 충분히 다루어지지 않았다. 
또한 많은 연구에서 입력 정보의 확장, 모델 용량 증가, 생성 구조 
변경이 동시에 이루어졌기 때문에, 생성 결과의 차이가 어떤 
요인에 의해 발생했는지를 명확히 분리하여 분석하기 어려운 
경우가 많았다. 
  본 연구는 이러한 기존 연구의 한계를 인식하고, 입력 정보나 
모델 용량을 확장하지 않은 상태에서 생성 구조의 차이에 초점을 
맞춘 비교 분석을 수행한다는 점에서 기존 연구와 차별화된다. 
구체적으로, 코드 변경(diff) 정보만을 입력으로 사용하는 diff-only 
환경에서 단일 에이전트 기반 커밋 메시지 생성 방식과 다중 
에이전트 기반 생성 방식을 동일한 실험 조건 하에서 비교한다. 
이를 통해 입력 정보, 데이터 분포, 평가 절차를 모두 동일하게 
유지한 상태에서, 생성 과정의 구조적 차이(single-agent vs. 
multi-agent)가 커밋 메시지 생성 결과에 어떠한 영향을 미치는지를 
실험적으로 관찰하고자 한다. 이러한 관점은 기존 커밋 메시지 
자동 생성 연구에서 상대적으로 충분히 분리되어 분석되지 않았던 
생성 구조 효과를 보다 명확히 드러내기 위한 시도로 위치 지을 수 
있다. 
 
5.2 단일 에이전트 기반 커밋 메시지 생성 
  단일 에이전트 기반 커밋 메시지 생성은 하나의 언어 모델이 코드 
변경 정보를 입력으로 받아, 해당 변경을 설명하는 커밋 메시지를 
단일 추론 과정에서 직접 생성하는 방식을 의미한다. 이 
구조에서는 코드 변경과 자연어 메시지 사이의 대응 관계가 
하나의 생성 경로 내에서 처리되며, 생성 결과에 대해 별도의 검토, 
수정, 또는 반복적 상호작용 단계는 포함되지 않는다. 그 결과, 
입력과 출력 간의 관계가 비교적 단순한 형태로 구성되며, 시스템 
구현과 실행 측면에서 구조적 복잡도가 낮게 유지된다. 
  이러한 특성으로 인해 단일 에이전트 기반 구조는 커밋 메시지 
자동 생성 연구에서 가장 기본적인 기준선 접근법으로 널리 
활용되어 왔다. 기존 다수의 연구들은 단일 에이전트 기반 모델을 
기준으로 삼아, 입력 정보의 확장이나 모델 구조 변경에 따른 성능 
변화를 비교하는 방식으로 실험을 설계하였다[2,3,10,11]. 특히 
신경 기계 번역 기반 방법이 도입된 이후, 코드 변경을 입력 
시퀀스로, 커밋 메시지를 출력 시퀀스로 처리하는 단일 에이전트 
구조는 커밋 메시지 생성 연구에서 표준적인 실험 설정으로 자리 
잡았다. 
  사전 학습된 대규모 언어 모델이 등장하면서, 단일 에이전트 기반 
접근법의 표현 능력 또한 크게 확장되었다. 이러한 모델들은 
대규모 코드 데이터와 자연어 데이터를 기반으로 학습되었으며, 
코드 변경과 자연어 설명 사이의 일반적인 대응 관계를 
효과적으로 내재화하고 있는 것으로 알려져 있다. 그 결과, 기존의 
신경 기계 번역 기반 모델에 비해 보다 자연스러운 문장 구성과 
유연한 표현을 생성할 수 있게 되었고, 다양한 프로그래밍 언어 및 
프로젝트 환경에서도 비교적 안정적인 성능을 보이는 사례들이 
보고되었다. 
단일 에이전트 기반 접근법에서 반복적으로 관찰되는 특징 중 
하나는 출력의 일관성이 높다는 점이다. 동일한 코드 변경 입력에 
대해 여러 차례 메시지를 생성할 경우, 생성 결과가 유사한 어휘 
선택과 문장 구조로 수렴하는 경향이 나타난다. 이러한 출력 
안정성은 BLEU, METEOR, ROUGE-L과 같이 정답 메시지와의 
표면적 중첩을 기반으로 점수를 산출하는 자동 평가 지표 
환경에서 상대적으로 유리하게 작용할 수 있다. 실제로 기존 
연구들에서는 단일 에이전트 기반 접근법이 이러한 자동 평가 
지표 기준에서 비교적 높은 점수를 기록하는 사례가 다수 
보고되었다[3,11]. 이는 단일 에이전트 구조가 특정 코드 변경에 
대해 일반화된 표현을 선택함으로써, 정답 메시지와의 어휘적 
유사도를 안정적으로 유지하는 경향과 관련된 결과로 해석될 수 
있다. 
  그러나 단일 에이전트 기반 접근법의 이러한 특성은 동시에 
한계로 작용할 여지도 존재한다. 생성 과정에 자기 검토나 재작성 
단계가 포함되지 않기 때문에, 코드 변경의 세부적인 의미나 
변경의 목적이 메시지에 충분히 반영되지 못하는 경우가 발생할 
수 있다. 특히 diff-only 환경과 같이 코드 변경 정보만이 입력으로 
제공되는 조건에서는, 변경의 배경이나 개발 의도가 명시적으로 
드러나지 않는 경우가 많아, 생성된 메시지가 상대적으로 
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일반적인 표현에 머무르거나 변경의 핵심적인 차이를 명확히 
구분하지 못하는 사례가 관찰되었다. 
  이러한 점은 단일 에이전트 기반 접근법이 자동 평가 지표 
기준에서는 안정적인 성능을 보일 수 있으나, 생성된 메시지가 
실제 코드 변경을 얼마나 충실하게 설명하는지에 대해서는 
추가적인 분석이 필요함을 보인다. 이러한 문제의식은 이후 커밋 
메시지 생성 연구에서 검토 또는 수정 단계를 포함하는 생성 구조, 
즉 다중 에이전트 기반 접근법이 제안되는 배경 중 하나로 
작용하였으며, 생성 과정의 구조적 변화를 통해 메시지 표현 
특성을 보완하고자 하는 연구 흐름으로 이어졌다. 
 
5.3 다중 에이전트 기반 생성 접근법 
  최근 자연어 처리 및 코드 생성 분야에서는 하나의 모델이 단일 
추론 경로를 통해 결과를 산출하는 방식만으로는 복잡한 생성 
과제를 충분히 다루기 어렵다는 인식이 확산되면서, 여러 
에이전트의 단계적 상호작용을 통해 출력을 구성하는 다중 
에이전트 기반 접근법이 점차 주목받고 있다[22,23]. 이 
접근법에서는 단일 모델이 모든 판단을 수행하는 구조에서 
벗어나, 서로 다른 역할을 부여받은 에이전트들이 생성 과정에 
순차적으로 참여함으로써 최종 결과를 형성한다. 
다중 에이전트 기반 생성 방식에서는 생성 절차가 명시적인 
단계로 분리되는 경우가 일반적이다. 대표적으로 초안 작성 
단계에서 초기 출력을 생성한 뒤, 이후 단계에서 다른 에이전트가 
해당 출력을 점검하거나 재구성하는 흐름이 사용된다. 각 
에이전트는 동일한 입력 정보를 공유하거나, 이전 단계에서 
생성된 중간 산출물을 참조하여 역할을 수행한다. 이러한 절차적 
분리는 단일 모델 내부에서 암묵적으로 이루어지던 판단 과정을 
외부의 단계적 상호작용으로 드러내며, 생성 과정에 명시적인 
검토 및 수정 메커니즘을 포함할 수 있게 한다[22,23]. 
  기존 연구들에서는 이러한 다중 에이전트 기반 구조가 문서 요약, 
질의 응답, 코드 생성 등 다양한 자연어 생성 과제에서 출력 결과의 
정확성이나 표현의 다양성을 향상시킬 수 있음을 보고하였다. 
특히 단일 단계 생성 과정에서 발생할 수 있는 오류나 부정확한 
표현이, 후속 에이전트의 검토 과정을 통해 완화될 수 있다는 점이 
주요 장점으로 언급되어 왔다. 이와 같은 결과들은 다중 에이전트 
구조가 생성 결과를 한 번에 고정하기보다는, 단계적으로 
조정·개선할 수 있는 가능성을 가진다는 점을 실험적으로 
보여준다. 
  커밋 메시지 생성 과제에서도 다중 에이전트 기반 접근법을 
적용하려는 시도가 일부 이루어졌다[24,25]. 해당 연구들은 주로 
생성된 커밋 메시지의 품질 향상 가능성에 초점을 두고, 단일 
에이전트 기반 접근법과의 비교를 통해 자동 평가 지표 기준 
성능이 향상되었음을 보고하였다. 다만 이러한 비교는 비교적 
제한된 데이터셋이나 특정 실험 조건에 기반한 경우가 많았으며, 
코드 변경 정보 외에 추가적인 문맥 정보나 확장된 입력을 함께 
사용하는 설정이 포함되는 경우도 적지 않았다. 
  이러한 이유로 기존 연구 결과만을 바탕으로 다중 에이전트 기반 
접근법의 성능 향상이 생성 구조 자체에서 비롯된 효과인지, 혹은 
입력 정보 확장이나 모델 설정 차이에 기인한 것인지를 명확히 
구분하기에는 한계가 존재한다. 또한 단일 에이전트와 다중 
에이전트 기반 접근법을 동일한 입력 조건과 동일한 평가 기준 
하에서 체계적으로 비교한 실험적 분석은 상대적으로 제한적으로 
이루어져 왔다. 특히 코드 변경 정보만을 입력으로 사용하는 
diff-only 환경에서는, 다중 에이전트 기반 생성 구조가 어떠한 
출력 특성을 보이는지에 대한 분석이 충분히 축적되지 않았다. 
  본 연구는 이러한 기존 연구의 제약점을 인식하고, 입력 정보의 
범위나 모델 용량을 변경하지 않은 상태에서 생성 구조의 
차이에만 초점을 맞춘 비교 분석을 수행한다. 구체적으로, 
diff-only 환경이라는 제한된 입력 조건을 유지한 채 단일 에이전트 
기반 커밋 메시지 생성 방식과 다중 에이전트 기반 방식을 동일한 
실험 설정으로 비교함으로써, 생성 절차의 구조적 차이가 커밋 
메시지 생성 결과에 어떠한 영향을 미치는지를 보다 명확히 
관찰하고자 한다. 이를 통해 기존 연구에서 충분히 분리되어 
분석되지 않았던 생성 구조 효과를 실험적으로 검토하는 것을 본 
연구의 목표로 한다. 
 
5.4 커밋 메시지 생성의 평가와 재현성 

  커밋 메시지 자동 생성 연구에서 생성 결과의 품질을 정량적으로 
비교하기 위한 수단으로는 자동 평가 지표가 가장 널리 활용되어 
왔다. BLEU, METEOR, ROUGE-L과 같은 지표는 본래 기계 
번역과 문서 요약 과제에서 사용되어 온 평가 방식으로, 커밋 
메시지 생성 연구에서도 표준적인 성능 측정 도구로 자리 
잡았다[26,27]. 이들 지표는 생성된 메시지와 정답 메시지 간의 
어휘 중첩이나 문장 구조 유사도를 기반으로 점수를 산출하며, 
대규모 데이터셋을 대상으로 여러 접근법의 성능 경향을 
효율적으로 비교할 수 있다는 장점을 가진다. 
  다만 자동 평가 지표가 제공하는 점수는 생성된 메시지의 표면적 
유사도에 초점을 두고 있으며, 메시지가 코드 변경의 의미를 
얼마나 적절하게 전달하는지까지 포괄적으로 설명하지는 못한다. 
커밋 메시지 생성 과제에서는 동일한 코드 변경에 대해 여러 
자연어 표현이 의미적으로 허용될 수 있고, 실제 데이터에서 
정답(Gold Label) 메시지 자체가 항상 변경의 핵심을 정확히 
반영한다고 가정하기도 어렵다. 이러한 특성으로 인해 자동 평가 
지표 점수와 생성 메시지의 실제 활용 가능성 사이에 차이가 
발생할 수 있다는 점이 기존 연구에서 반복적으로 지적되어 왔다. 
  이러한 한계를 인식한 일부 연구들은 자동 평가 결과를 보완하기 
위한 방법으로 사람 평가를 도입하거나, 생성된 메시지에 대한 
정성적 사례 분석을 함께 제시하였다. 사람 평가는 생성 메시지가 
코드 변경을 얼마나 명확하게 설명하는지를 직접 판단할 수 
있다는 점에서 의미 있는 접근으로 평가된다. 그러나 대규모 
데이터셋을 대상으로 일관된 기준의 사람 평가를 수행하는 데에는 
상당한 시간과 비용이 요구되며, 평가자의 주관적 판단이 결과에 
영향을 미칠 수 있다는 점도 동시에 문제로 제기된다. 이러한 
현실적 제약으로 인해, 다수의 커밋 메시지 생성 연구에서는 자동 
평가 지표를 주요 평가 수단으로 유지하면서 정성적 분석을 
보조적으로 활용하는 방식을 채택해 왔다. 
  한편 자연어 생성 연구 전반에서는 출력 품질 평가와 더불어, 
동일 입력에 대해 생성 결과가 얼마나 안정적으로 유지되는지, 
또는 얼마나 다양한 표현이 생성되는지 역시 중요한 분석 
대상으로 다루어지고 있다. 재현성은 동일한 입력 조건에서 생성 
결과가 반복 실행 시 어느 정도 일관되게 유지되는지를 나타내는 
개념이며, 출력 다양성은 동일 입력에 대해 표현이 얼마나 폭넓게 
변화하는지를 의미한다. 이 두 특성은 생성 모델이 출력 공간을 
어떤 방식으로 탐색하는지를 이해하는 데 중요한 정보를 
제공한다. 
  커밋 메시지 생성 과제의 특성을 고려할 때, 출력 다양성은 
반드시 부정적인 속성으로만 해석되지는 않는다. 하나의 코드 
변경에 대해 여러 요약 표현이 의미적으로 허용될 수 있기 때문에, 
다양한 표현을 생성하는 능력은 모델의 표현력이나 요약 전략의 
유연성을 반영할 수 있다. 반면, 동일한 입력에 대해 생성 결과가 
과도하게 달라지는 경우, 자동화된 개발 도구나 반복 실행이 
요구되는 환경에서는 출력의 안정성이 실용적인 제약 요소로 
작용할 수 있다. 따라서 재현성과 출력 다양성은 서로 배타적인 
개념이라기보다, 사용 목적과 적용 맥락에 따라 균형 있게 
해석되어야 할 특성으로 이해할 수 있다. 
  이러한 관점에서 최근 연구들에서는 동일한 입력에 대해 반복 
생성된 출력들 간의 유사도를 정량적으로 측정하기 위한 지표로 
Self-BLEU가 활용되고 있다[8,28]. Self-BLEU는 동일 
입력으로부터 생성된 여러 출력 간의 n-gram 중첩도를 
계산함으로써, 생성 결과의 일관성과 변동성을 수치적으로 
표현한다. 본 연구에서는 Self-BLEU를 사용하여 단일 에이전트 
기반 접근법과 다중 에이전트 기반 접근법의 재현성 특성을 비교 
분석한다. 이를 통해 자동 평가 지표만으로는 충분히 드러나지 
않는 출력 안정성과 표현 다양성 측면의 차이를 실험적으로 
관찰하고자 한다. 
 
6. 토의 
6.1 실험 결과 분석 
  정량 평가 결과(표 1)에서 단일 에이전트 기반 접근법은 BLEU, 
METEOR, ROUGE-L 전 지표에서 다중 에이전트 기반 접근법보다 
일관되게 높은 점수를 기록하였다. 이 차이는 특정 지표에 
국한되지 않고 모든 자동 평가 지표에서 동일한 방향으로 
나타났으며, 이는 우연적 변동보다는 두 접근법의 출력 특성이 
지표 계산 방식에 체계적으로 다르게 반영되었음을 보인다. 특히 
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BLEU와 ROUGE-L은 n-gram 및 서열 기반 중첩 비율에 크게 
의존하고, METEOR 역시 어휘 정합성을 주요 요소로 포함한다는 
점에서, 해당 결과는 두 접근법 간 어휘 선택 분포 및 문장 구조 
안정성의 차이가 점수 차이로 누적된 결과로 볼 수 있다. 
  단일 에이전트 기반 접근법은 단일 추론 단계에서 메시지를 
생성하며, 동일하거나 유사한 입력 diff에 대해 반복 실행 시 출력 
문장이 매우 높은 수준으로 수렴하는 특성을 보였다. 이 특성은 
재현성 분석(표 2)에서 Self-BLEU 98.50이라는 값으로 정량적으로 
확인되었으며, 이는 생성 결과가 거의 동일한 어휘 집합과 문장 
구조를 반복적으로 사용하는 경향을 가진다는 것을 의미한다. 
이러한 출력 수렴성은 자동 평가 지표 관점에서 볼 때, 정답(Gold 
Label) 메시지와의 어휘 중첩을 안정적으로 유지하는 데 기여했을 
가능성이 크다. 즉, 단일 에이전트 기반 접근법은 표현 
다양성보다는 표현 일관성(consistency)이 우세한 분포를 형성하고 
있으며, 이 분포 특성이 자동 평가 지표 점수의 안정적인 우위를 
설명하는 핵심 요인으로 작용한다. 
  반면 다중 에이전트 기반 접근법은 Self-BLEU 1.28이라는 극히 
낮은 값을 기록하였으며, 이는 동일한 입력에 대해 반복 실행 시 
출력 문장이 거의 겹치지 않을 정도로 다양한 표현이 생성되고 
있음을 의미한다. Self-BLEU가 0에 가까울수록 출력 간 어휘 및 
구조 중첩이 낮다는 점을 고려하면, 두 접근법 간 약 97.22포인트의 
차이는 단순한 출력 변동성 수준을 넘어, 생성 과정 자체가 서로 
다른 확률 분포를 따르고 있음을 보인다. 다중 에이전트 기반 
접근법에서는 초안 생성 이후 비평과 수정 단계가 반복적으로 
적용되면서, 각 단계에서 강조되는 코드 변경 요소나 설명 방식이 
달라지고, 그 결과 최종 출력이 매 실행마다 상이한 조합으로 
재구성되는 양상이 나타난다. 이러한 구조적 특성은 표현 
다양성을 증가시키는 동시에, 정답 메시지와의 n-gram 중첩 
비율을 불안정하게 만드는 요인으로 작용한다. 정성적 사례 분석 
결과는 이러한 분포 차이를 보다 구체적으로 뒷받침한다. 다중 
에이전트 기반 접근법의 출력에서는 특정 라이브러리 옵션 변경, 
내부 자료구조 교체, 다국어 리소스 파일 수정 등 diff에 포함된 
세부 변경 사항이 문장 단위로 명시되는 빈도가 높게 관찰되었다. 
또한 변경의 원인이나 기대 효과를 설명하는 부가적인 
절(clause)이 포함되는 경우도 반복적으로 나타났다. 이는 출력 
메시지의 정보 밀도와 서술 범위가 확장되는 방향으로 분포가 
이동하고 있음을 의미한다. 반면 단일 에이전트 기반 접근법은 
핵심 변경 사항을 하나의 일반화된 표현으로 요약하는 사례가 
상대적으로 많았으며, 메시지 길이와 어휘 다양성 분포가 좁은 
범위에 집중되는 양상을 보였다. 흥미로운 점은 정답(Gold Label) 
메시지가 실제 코드 변경 내용과 불일치하는 일부 샘플에서도 두 
접근법의 반응이 다르게 나타났다는 것이다. 단일 에이전트 기반 
접근법은 이러한 경우에도 정답 메시지에서 자주 등장하는 표현 
패턴과 유사한 문장을 생성하는 경향을 유지한 반면, 다중 
에이전트 기반 접근법은 diff에 포함된 변경 요소를 중심으로 
메시지를 구성하는 비율이 상대적으로 높게 관찰되었다. 이는 
다중 에이전트 기반 접근법이 정답 텍스트 분포보다는 입력 diff 
정보에 대한 반응성을 더 크게 반영하는 생성 특성을 가진다는 
점을 보인다. 
  계산 비용 분석 결과(표 3)는 생성 구조의 차이가 시간 비용에 
직접적으로 반영됨을 보여준다. 단일 에이전트 기반 접근법은 
전체 8,000개 커밋 처리에 약 2시간 15분이 소요되었고, 샘플당 
평균 추론 시간은 약 1.01초로 측정되었다. 반면 다중 에이전트 
기반 접근법은 동일한 데이터셋 처리에 약 9시간 35분이 
소요되었으며, 샘플당 평균 추론 시간은 약 4.31초로 나타났다. 
이는 다중 에이전트 기반 접근법이 단일 에이전트 대비 약 
4.26배의 시간 비용을 요구함을 의미하며, 초안 생성 이후 비평 및 
수정 단계가 추가적인 추론 호출과 토큰 소비를 유발한 결과로 
해석할 수 있다. 
  Multi-Agent가 자동 평가 지표에서 소폭 낮게 측정된 이유는, 
(평가 지표가 본질적으로 Gold label과의 표면 중첩(n-gram/LCS)에 
민감하고, 실제 데이터의 Gold label이 짧고 관습적인 표현(예: 
“fix”, “update”)으로 수렴하는 경우가 있어, 표현을 재구성하거나 
목적/효과를 서술하는 생성물이 오히려 불리하게 채점될 수 있기 
때문이다. 본 연구의 정성 사례에서 Multi-Agent는 파일명/구현 
세부를 그대로 복제하기보다 의미 단위로 재진술하는 경향이 
관찰되었고, 이 과정에서 동의어 치환이나 문장 구조 변화가 

발생해 중첩 기반 지표 점수가 하락하는 방향으로 작용할 수 있다. 
따라서 본 결과는 “Multi-Agent가 변경을 덜 반영한다”기보다, 
“정답 표현과의 유사도 관점에서는 불리한 표현 전략을 
선택했다”로 해석하는 것이 타당하다. 
 
6.2 위협요소 
  본 연구의 실험 결과는 해석 시 몇 가지 제한 조건을 함께 고려할 
필요가 있다. 본 연구는 diff-only 환경에서 단일 에이전트 기반 
접근법과 다중 에이전트 기반 접근법을 비교하였다. 이 설정은 
코드 변경 정보만을 입력으로 사용하는 조건에서 생성 구조의 
차이가 출력 특성에 미치는 영향을 비교적 명확하게 관찰할 수 
있다는 장점을 가지지만, 실제 개발 환경에서 활용될 수 있는 
저장소 수준의 문맥 정보, 파일 간 의존 관계, 이전 커밋 히스토리, 
이슈 트래킹 정보와 같은 추가적인 맥락을 포함하지 못한다는 
한계를 가진다. 따라서 본 연구에서 관찰된 결과는 코드 변경(diff) 
자체에 기반한 커밋 메시지 생성 특성으로 해석하는 것이 
적절하며, 보다 풍부한 문맥 정보가 제공되는 환경에서는 생성 
양상이나 접근법 간 상대적 특성이 다르게 나타날 가능성을 
배제할 수 없다. 평가 방법 측면에서도 제한이 존재한다. 본 연구는 
8,000개 커밋을 대상으로 BLEU, METEOR, ROUGE-L과 같은 자동 
평가 지표를 사용하여 대규모 정량 비교를 수행하였다. 이러한 
지표는 접근법 간 전반적인 경향을 효율적으로 비교하는 데에는 
유용하지만, 생성된 커밋 메시지가 실제 코드 변경의 의도와 
맥락을 얼마나 정확하게 전달하는지, 혹은 개발자가 메시지를 
읽었을 때 얼마나 유용하게 인식하는지와 같은 질적 요소를 
직접적으로 반영하지는 못한다. 본 연구에서는 이러한 한계를 
인식하고 정성적 사례 분석을 병행하였으나, 사람 평가를 포함한 
체계적인 사용자 기반 품질 평가는 포함하지 못하였다. 따라서 
자동 평가 지표 결과가 실제 개발자 관점의 유용성과 완전히 
일치한다고 일반화하기에는 추가적인 검증이 필요하다. 또한 
정답(Gold Label) 메시지 자체의 품질 변동 역시 평가 결과에 
영향을 줄 수 있는 요인이다. 일부 사례에서는 정답 메시지가 실제 
코드 변경 내용과 완전히 일치하지 않거나, 변경의 목적을 충분히 
설명하지 못하는 경우가 관찰되었다. 이러한 상황에서는 표면적 
유사도에 기반한 자동 평가 지표가 정답 메시지의 오류나 
불완전성을 그대로 반영하는 방향으로 작동할 수 있으며, diff 
정보를 충실히 반영한 생성 결과가 오히려 낮은 점수로 평가되는 
경우도 발생할 수 있다. 본 연구가 정량 지표 결과를 단독으로 
해석하지 않고 정성적 사례 분석과 함께 논의한 이유는 이러한 
데이터 특성이 결과 해석에 영향을 미칠 수 있음을 고려했기 
때문이다. 재현성 분석에서 관찰된 다중 에이전트 기반 접근법의 
출력 변동성 또한 적용 관점에서 제한 요소로 고려될 수 있다. 
동일한 입력에 대해 실행마다 서로 다른 표현이 생성되는 특성은 
표현 다양성이나 탐색 범위 측면에서는 의미 있는 특성으로 
해석될 수 있으나, 반복 실행 시 동일한 출력을 요구하는 자동화된 
개발 도구나 파이프라인 환경에서는 제약으로 작용할 가능성이 
있다. 본 연구에서는 이러한 출력 변동성을 관측된 결과로 
보고하였으나, 변동성을 제어하거나 안정화하기 위한 메커니즘에 
대한 분석이나 실험은 포함하지 않았다. 계산 비용 역시 실제 적용 
시 고려해야 할 요소이다. 실험 결과에서 확인된 바와 같이 다중 
에이전트 기반 접근법은 단일 에이전트 기반 접근법 대비 추론 
시간이 크게 증가하였다. 이는 생성 품질 측면에서 일부 긍정적인 
특성이 관찰되는 경우에도, 시스템 자원이나 응답 시간이 제한된 
환경에서는 활용이 제한될 수 있음을 의미한다. 본 연구에서는 
시간 비용을 측정하여 보고하는 데에 초점을 두었으며, 다중 
에이전트 구조의 단계 축소, 호출 횟수 감소, 또는 효율화 전략에 
대한 분석은 범위에 포함하지 않았다. 마지막으로 데이터셋 구성 
역시 결과 해석에 영향을 줄 수 있다. 본 연구는 MCMD 
데이터셋에서 추출한 8,000개의 커밋을 사용하였으며, 언어별 
샘플링을 통해 특정 언어 편향을 완화하고자 하였다. 그럼에도 
불구하고 특정 프로젝트나 도메인에 특화된 커밋 메시지 작성 
관습, 조직별 스타일 가이드, 혹은 개발 문화의 차이는 충분히 
반영되지 않았을 가능성이 있다. 따라서 본 연구의 결과는 개별 
프로젝트의 특수한 상황보다는 다양한 오픈소스 프로젝트 
전반에서 관찰될 수 있는 일반적인 경향으로 해석하는 것이 
적절하다. 향후 연구에서는 프로젝트 단위 분석, 도메인별 비교, 
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그리고 추가적인 문맥 정보를 포함한 확장 실험을 통해 결과의 
일반화 가능성을 보다 정밀하게 검증할 필요가 있다. 
 
7. 결론 
  본 연구에서는 코드 변경 정보만을 입력으로 사용하는 diff-only 
환경에서 단일 에이전트와 다중 에이전트 기반 커밋 메시지 생성 
접근법을 비교 분석하였다. 동일한 데이터셋과 동일한 입력 
조건을 유지한 상태에서 생성 구조의 차이가 자동 평가 지표, 
출력의 재현성, 그리고 생성된 메시지의 표현 특성에 미치는 
영향을 실험적으로 관찰하였다. 정량 평가 결과, 단일 에이전트 
기반 접근법은 BLEU, METEOR, ROUGE-L 지표에서 다중 
에이전트 기반 접근법보다 소폭 높은 점수를 기록하였다. 이는 
자동 평가 지표가 생성된 메시지와 정답 메시지 간의 표면적 
유사도를 기준으로 점수를 산출한다는 평가 특성과 관련된 결과로 
해석될 수 있다. 반면, 다중 에이전트 기반 접근법은 생성 과정에서 
초안 생성 이후 비평과 수정 단계를 거치면서 메시지 표현이 
변화하는 경향을 보였으며, 그 결과 정답 메시지와의 표현적 
차이가 증가하는 양상이 관찰되었다. 재현성 분석에서는 두 
접근법 간의 차이가 보다 명확하게 나타났다. 단일 에이전트 기반 
접근법은 동일한 코드 변경 입력에 대해 반복 실행 시 매우 유사한 
출력을 생성하는 경향을 보였으며, 이는 높은 Self-BLEU 값으로 
확인되었다. 반면, 다중 에이전트 기반 접근법은 동일 입력에 
대해서도 서로 다른 표현의 메시지를 생성하는 경우가 빈번하게 
관찰되었으며, 출력 간 유사도는 상대적으로 낮게 나타났다. 
이러한 결과는 생성 구조에 따라 출력의 안정성과 표현 다양성이 
서로 다른 양상으로 나타날 수 있음을 보여준다. 정성적 사례 
분석을 통해서는 자동 평가 지표만으로는 포착하기 어려운 생성 
특성의 차이가 확인되었다. 다중 에이전트 기반 접근법은 코드 
변경의 세부적인 내용이나 변경 목적을 메시지에 보다 명시적으로 
반영하는 사례가 다수 관찰되었다. 특히 일부 사례에서는 정답 
메시지가 실제 코드 변경 내용을 충분히 반영하지 못하는 
경우에도, 다중 에이전트 기반 접근법이 코드 변경 정보에 기반한 
메시지를 생성하는 양상이 확인되었다. 또한 시간 비용 분석 결과, 
다중 에이전트 기반 접근법은 단일 에이전트 기반 접근법에 비해 
더 많은 추론 시간이 소요되는 것으로 관찰되었다. 이는 초안 생성, 
비평, 수정 단계로 구성된 생성 구조의 특성에 기인한 결과로 볼 수 
있다. 이상의 결과를 종합하면, 단일 에이전트와 다중 에이전트 
기반 커밋 메시지 생성 접근법은 diff-only 환경에서 자동 평가 
지표 성능, 출력의 재현성, 메시지 표현 특성, 그리고 계산 비용 
측면에서 서로 다른 특성을 보이는 것으로 관찰된다. 단일 
에이전트 기반 접근법은 자동 평가 지표 기준에서 안정적인 
성능과 높은 출력 일관성을 보인 반면, 다중 에이전트 기반 
접근법은 출력의 다양성과 코드 변경 반영 측면에서 상이한 
특성을 나타냈다. 본 연구는 diff-only 환경이라는 제한된 입력 
조건 하에서 생성 구조의 차이에 초점을 맞추어, 단일 에이전트와 
다중 에이전트 기반 접근법의 특성을 실험적으로 비교하였다. 
이러한 분석은 기존 커밋 메시지 생성 연구에서 널리 사용되어 온 
자동 평가 지표 중심의 평가 관행을 유지하면서도, 생성 구조에 
따른 출력 특성의 차이를 보다 명확히 이해하는 데 기여한다. 향후 
연구에서는 저장소 수준의 문맥 정보를 포함한 입력 확장, 출력 
안정성을 고려한 생성 제어 기법, 그리고 사람 평가를 포함한 
보완적 분석을 통해 본 연구에서 관찰된 결과를 확장할 수 있을 
것이다. 
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요   약 
 최근 LLM 기반 결함 위치 추정 기법은 코드와 자연어 간 의미적 관계를 활용하여 기존 통계적·정보검
색 기반 기법 대비 경쟁력 있는 성능을 보이고 있다. 그러나 동일한 입력과 추론 설정에서도 반복 실행 
시 후보 메서드의 출력 순위가 변동되는 문제가 관찰되며, 이는 결과 일관성과 실험 재현성을 저해한다. 
본 논문은 이러한 출력 변동성을 완화하기 위해, LLM의 입력 구성이나 추론 과정을 변경하지 않고, 실패 
테스트 실행 과정에서 관측되는 크래시 스택 트레이스로부터 추출한 실행 컨텍스트를 사후적으로 활용하
는 정합성 보정 기법을 제안한다. 제안 기법은 LLM이 생성한 초기 Top-k 후보 순위를 유지한 상태에서, 
각 후보 메서드와 실제 실행 경로 간의 구조적 정합성을 경량 실행 신호로 평가하고, 최소 변경 원칙과 
게이팅 규칙에 따라 Top-1 및 Top-5 경계에서만 제한적인 순위 조정을 수행한다. Defects4J 벤치마크의 
835개 결함 인스턴스를 대상으로 두 가지 오픈소스 LLM 환경에서 수행한 실험 결과, 제안 기법은 Top-1 
정확도에서 0.5-1.1%p, Top-5 정확도에서 0.8-1.3%p의 개선을 보였으며, MAP는 0.009-0.011, MRR은 
0.007-0.013 증가하였다. 또한 반복 실행 간 Top-1 불일치율 감소와 Top-5 후보 집합 유사도 증가를 통해 
출력 일관성 측면에서도 개선 효과가 확인되었다. 이러한 결과는 제안 기법이 기존 LLM 기반 결함 위치 
추정 파이프라인의 구조적 변경 없이도 실행 경로 정합성을 보조 기준으로 활용하여 순위 품질과 출력 
안정성을 함께 개선할 수 있음을 보여준다. 

1. 서론12 
오픈소스 소프트웨어(Open-Source Software, OSS) 

프로젝트는 지속적인 기능 확장과 협업 개발로 인해 
코드베이스의 규모와 구조적 복잡성이 증가하고 있다. 이러한 
환경에서 소프트웨어 결함이 발생했을 때 결함이 포함된 코드 
위치를 신속하고 정확하게 식별하는 결함 위치 추정(Fault 
Localization, FL)은 디버깅 효율성과 유지보수 비용에 
직접적인 영향을 미치는 핵심 단계이다. 기존 연구에 따르면 
디버깅 과정에서 상당한 시간이 결함 위치 탐색에 소요되며, 
부정확한 결함 위치 추정은 불필요한 코드 탐색과 반복적인 
검증을 유발할 수 있다 [1]-[3]. 

 
*  이 논문은 한경국립대학교 국립대학육성사업(2025)지원을 받아 작

성되었음 
† 교신저자(Corresponding Author) 

이를 해결하기 위해 스펙트럼 기반 결함 위치 
추정(SBFL), 정보 검색 기반 결함 위치 추정(IRFL), 그리고 
하이브리드 기법 등 다양한 자동화 기법이 제안되어 왔다 [4], 
[5]. 이러한 기법들은 테스트 실행 결과, 코드 커버리지, 또는 
텍스트 유사도와 같은 정적·동적 신호를 활용하여 일정 
수준의 성능을 보여왔다. 그러나 실패 테스트가 충분하지 
않거나 테스트 인프라가 제한된 환경에서는 성능 저하가 
발생하며, 대규모 코드베이스를 대상으로 적용할 경우 탐색 
공간이 과도하게 확장되는 한계가 보고되어 왔다 [6]. 

최근에는 대규모 언어 모델(Large Language Models, 
LLMs)의 코드 이해 및 의미적 추론 능력을 활용한 결함 위치 
추정 기법이 주목받고 있다 [7]. LLM 기반 접근은 버그 리포트, 
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테스트 정보, 소스 코드 간의 의미적 연관성을 직접 추론할 
수 있으며, 사전 학습된 모델을 활용함으로써 별도의 도메인 
특화 학습 없이도 적용 가능하다는 장점을 가진다 [8]. 이에 
따라 함수 단위 결함 위치 추정 문제에서 기존 통계적 기법을 
보완하는 실용적인 대안으로 평가되고 있다 [9]. 

그러나 기존 연구들에 따르면 LLM 기반 결함 위치 
추정 기법은 동일한 입력과 추론 설정을 사용하더라도 반복 
실행 시 출력 순위가 변동하는 현상이 관찰된다. 이로 인해 
Top-K 후보 순위의 안정성과 결과 일관성이 충분히 확보되지 
않으며, 동일한 결함 인스턴스에 대해 Top-1 선택이 
달라지거나 상위 후보 간 순서가 재배열되는 문제가 발생할 
수 있다 [10], [11]. 이러한 출력 불안정성은 실험 재현성을 
저해할 뿐만 아니라, 실제 디버깅 과정에서 결과를 신뢰하고 
반복적으로 활용하는 데 장애 요소로 작용한다. 

기존 연구들은 입력 문맥 보강, 후보 축소, 다중 추론 
결과 집계, 또는 다단계 파이프라인 및 에이전트 기반 추론 
구조를 통해 이러한 문제를 완화하고자 하였다 [12], [13]. 
그러나 이러한 접근들은 주로 LLM의 입력 구성이나 추론 
과정에 직접 개입하는 방식에 집중되어 있으며, 이미 생성된 
LLM 출력 결과를 대상으로 한 사후적(post-hoc) 안정화 
기법에 대한 논의는 상대적으로 제한적이다. 또한 재학습이나 
입력 재구성을 요구하는 기법들은 기존 디버깅 파이프라인에 
통합하는 데 추가적인 비용과 복잡성을 수반한다. 

본 연구는 이러한 한계를 보완하기 위해 실행 컨텍스트 
기반 정합성 보정을 통한 LLM 결함 위치 추정 안정화 기법을 
제안한다. 본 논문에서 실행 컨텍스트(execution context)는 
실패 테스트 실행 과정에서 관측되는 호출 스택 프레임과 
패키지 경로 등 프로그램의 실제 실행 흐름을 반영하는 관측 
가능한 정보를 의미한다. 실행 컨텍스트는 결함 위치의 
정답을 직접 판별하는 오라클이 아니라, LLM이 생성한 후보 
순위가 실제 실행 경로와 구조적으로 얼마나 일관되는지를 
평가하기 위한 정합성 기준으로 활용된다. 

제안 기법은 LLM의 입력 구성이나 추론 과정에 
개입하지 않고, LLM이 생성한 최종 Top-K 후보 순위에 대해 
사후적으로 적용된다. 실행 컨텍스트와 후보 함수 간의 
정합성을 경량 실행 신호로 평가한 뒤, 최소 변경(minimal-
change) 원칙에 따라 Top-K 범위 내에서만 제한적인 순위 
보정을 수행한다. 또한 Top-1 및 Top-5 경계에서만 
선택적으로 개입하는 게이트 기반 전략을 적용하여, 불필요한 
순위 재정렬과 성능 회귀를 억제하도록 설계하였다. 

Defects4J 데이터셋에 포함된 835개의 결함 인스턴스를 
대상으로 한 실험 결과, 제안 기법은 두 가지 오픈소스 LLM 
환경에서 MAP 및 MRR을 포함한 순위 기반 평가 지표에서 
기존 LLM 기반 결함 위치 추정 결과 대비 일관된 개선 
경향을 보였다. 동시에 정답 결함 함수의 급격한 순위 
하락이나 Top-K 범위 이탈과 같은 회귀 사례는 제한적으로 
관찰되었다 [14]. 

 
본 연구의 주요 기여도는 다음과 같다. 
⚫ LLM 기반 결함 위치 추정에서 반복 실행 시 

발생하는 Top-K 순위 변동 및 Top-1 선택 불일치를 
중심으로 출력 순위 불안정성 문제를 명시적으로 
정의하고, 이를 사후 보정의 대상으로 정식화하였다. 

⚫ LLM의 입력 문맥이나 추론 구조를 변경하지 않고, 
최종 출력 결과에 대해 최소 변경 원칙을 만족하는 
실행 컨텍스트 기반 정합성 보정 기법을 
제안하였다. 

⚫ Top-1 및 Top-5 순위 경계에 한정된 게이트 기반 
보정 전략을 도입하여, 출력 안정성을 
향상시키면서도 순위 왜곡과 회귀를 구조적으로 
억제하였다. 

⚫ Defects4J 벤치마크를 활용한 실험을 통해 제안 
기법이 기존 LLM 기반 결함 위치 추정 결과 대비 
순위 기반 지표에서의 개선과 출력 안정성 향상을 
제공함을 실증적으로 확인하였다 [14]. 

 
2. 배경지식 

전통적 결함 위치 추정(Fault Localization, FL)은 테스트 
실행 결과와 프로그램 실행 정보를 활용하여 코드 요소(라인, 
블록, 메서드 등)의 결함 가능성을 정량적으로 산출하고 이를 
랭킹 형태로 제시하는 기법이다 [1]. 이러한 접근은 디버깅 
과정에서 개발자가 확인해야 할 코드 범위를 축소하는 것을 
목표로 하며, 활용하는 정보의 유형에 따라 실행 기반 신호와 
텍스트 기반 신호를 중심으로 발전해 왔다. 대표적인 실행 
기반 접근인 스펙트럼 기반 결함 위치 추정(Spectrum-Based 
Fault Localization, SBFL)은 테스트 케이스의 성공·실패 여부와 
코드 요소의 실행 빈도를 결합하여 의심도(suspiciousness) 
점수를 계산한다 [4]. Tarantula [15], Ochiai 계열 [16], DStar [17] 
등 다양한 의심도 공식이 제안되었으며, SBFL은 동일한 
테스트 집합과 커버리지 정보가 주어질 경우 항상 동일한 
랭킹을 산출하는 결정적 특성을 가져 비교 연구의 기준선으로 
널리 활용되어 왔다 [6], [18], [19]. 그러나 SBFL은 테스트 및 
커버리지 품질에 강하게 의존하며, 실패 테스트가 충분하지 
않거나 다중 결함 환경에서는 개별 결함을 명확히 구분하기 
어렵다는 한계를 가진다 [2], [3], [20]. 

이러한 실행 기반 접근의 한계를 보완하기 위해 
정보검색(Information Retrieval, IR) 기반 버그 로컬라이제이션 
기법이 제안되었다. IR 기반 접근은 버그 리포트를 자연어 
질의로 처리하고, 소스 코드 요소를 문서 집합으로 
모델링하여 텍스트 유사도를 계산함으로써 결함 후보를 
식별한다 [5], [21]. 코드 주석, 식별자, 문자열 리터럴과 같은 
정적 텍스트 정보를 활용함으로써 테스트 실행 정보가 
제한적인 환경에서도 적용 가능하다는 장점을 가지며, 
최근에는 실제 디버깅 효율을 고려하여 메서드 수준 결함 
위치 추정으로 연구 범위가 확장되고 있다 [16], [18]. 그러나 
IR 기반 기법 역시 코드의 실제 실행 여부나 실패 시점의 
실행 경로와 같은 동적 정보를 직접 반영하지 못하며, 버그 
리포트가 불완전한 경우 실제 결함과 무관한 코드 요소가 
상위에 랭크될 수 있다는 한계를 가진다 [22]. 

대규모 언어 모델(LLM)의 발전은 결함 위치 추정 문제를 
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의미 기반 관점에서 재해석할 수 있는 계기를 제공하였다 [7]. 
LLM은 코드와 자연어를 동시에 학습함으로써 버그 리포트와 
소스 코드 간의 의미적 연관성을 직접 추론할 수 있으며, 
제로샷 또는 소수샷 환경에서도 활용 가능하다 [23]. 최근 
연구들은 이러한 특성을 활용하여, 기존 IR 기반 기법을 
보완하거나 테스트 실행 정보가 제한된 환경에서도 결함 
위치를 추정하는 LLM 기반 파이프라인을 제안하고 있다 [8], 
[9], [12], [13]. 일반적으로 이러한 파이프라인은 후보 생성 
단계를 통해 검색 공간을 축소한 뒤, LLM이 버그 리포트와 
후보 코드 조각을 입력으로 받아 각 코드 요소의 결함 
가능성을 판단하는 구조를 가진다 [24]. 이와 같은 접근은 
코드와 자연어 간의 의미적 관계를 보다 직접적으로 반영할 
수 있다는 장점을 제공한다. 
그러나 LLM 기반 결함 위치 추정은 의미적 추론 

능력과는 별도로, 결과의 신뢰성과 일관성 측면에서 구조적 
한계를 가진다. 선행 연구들에 따르면, LLM은 실제 코드 
구조나 실행 맥락과 일치하지 않는 결론을 문맥적으로 타당해 
보이도록 생성하는 환각(hallucination) 현상을 보일 수 있으며 
[10], [28], 이는 결함과 무관한 코드 요소를 상위 후보로 
제시하는 형태로 나타날 수 있다 [25], [29]. 또한 LLM은 입력 
컨텍스트의 길이와 구성 방식에 민감하게 반응하여, 장문 
컨텍스트 환경에서는 중요한 단서가 충분히 반영되지 못하는 
문제가 보고되어 왔다 [11], [25]. 아울러 동일한 후보 집합과 
입력 정보가 주어지더라도 프롬프트 표현이나 디코딩 설정에 
따라 출력 랭킹이 달라지는 비결정적 특성을 가지며, 이러한 
변동성은 반복 실행 시 결과의 안정성과 활용 가능성을 
저해한다 [30]. 
한편, IR 기반 및 LLM 기반 결함 위치 추정 기법은 

공통적으로 코드가 실제로 실행되었는지 여부나 실패 시점의 
호출 관계와 같은 실행 관점의 객관적 단서를 직접적으로 
반영하지 못한다는 구조적 제약을 가진다 [22], [31], [32]. 특히 
LLM 기반 접근에서는 의미적으로는 타당해 보이지만 실제 
실패 테스트의 실행 경로와는 불일치하는 코드 요소가 상위에 
제시되는 사례가 보고되어 왔다 [28], [29]. 실행 
컨텍스트(execution context)는 실패 테스트 실행 과정에서 
관측되는 스택 트레이스, 호출 프레임, 예외 발생 지점과 같은 
경량 동적 정보를 의미하며 [1], 실패 시점의 실제 실행 
경로를 직접적으로 반영하는 최소한의 동적 근거를 제공한다. 
이러한 실행 컨텍스트는 기존 결함 위치 추정 결과를 
대체하기보다는, 이미 생성된 후보 랭킹에 사후적으로(post-
hoc) 적용되어 실행 경로와의 구조적 정합성을 평가하고 
결과의 신뢰성과 안정성을 보완하는 보정 신호로 활용될 수 
있다 [31]-[33]. 
 
3. 연구방법 
본 연구는 LLM 기반 결함 위치 추정 결과의 출력 

안정성을 향상시키기 위해, 실행 컨텍스트를 활용한 정합성 
기반 사후 보정(post-hoc calibration) 기법을 제안한다. 제안 
기법의 전체 파이프라인은 그림 1에 도식적으로 제시되어 
있으며, 기존 LLM 기반 결함 위치 추정 파이프라인의 구조를 

변경하거나 LLM의 입력 구성, 프롬프트 설계, 추론 전략을 
수정하지 않고, LLM이 생성한 최종 Top-k 후보 순위에 
독립적으로 적용되는 경량 후처리 모듈로 설계되었다. 이를 
통해 추가적인 재학습이나 모델 수정 없이 기존 시스템에 
바로 적용 가능하다. 

  
그림1. 제안한 방법 도식도 

 
그림 1의 상단에 해당하는 기존 LLM 기반 결함 위치 

추정 파이프라인은 버그 리포트와 소스 코드를 입력으로 받아 
의심 메서드의 초기 Top-k 후보 순위를 생성하며, 본 
연구에서는 이 결과를 기준 순위(baseline ranking)로 사용한다. 
그림 1의 하단에 해당하는 실행 컨텍스트 기반 보정 
파이프라인은 실패 테스트 실행 과정에서 관측된 스택 
트레이스로부터 실행 컨텍스트를 추출하고, 이를 후보 
메서드와의 구조적 정합성을 평가하기 위한 보조 신호로 
활용한다. 실행 컨텍스트는 결함 위치의 정답을 직접 
지시하는 오라클 정보가 아니며, LLM의 입력이나 추론 
과정에는 전달되지 않는다. 이후 최소 변경(minimal-change) 
원칙과 게이팅 규칙에 따라, 실행 컨텍스트 관점에서 기존 
순위의 타당성을 합리적으로 의심할 수 있는 경우에 한해 
제한적인 순위 조정을 수행하고, 그 외의 경우에는 LLM이 
생성한 원래의 출력 순위를 그대로 유지한다. 이를 통해 제안 
기법은 LLM의 의미적 추론 결과를 최대한 보존하면서도 반복 
실행 환경에서의 출력 순위 변동과 결과 일관성을 보수적으로 
완화한다. 
 
3.1 실행 컨텍스트 정의 및 경량 신호 추출 

본 연구에서 실행 컨텍스트(execution context)는 결함을 
유발한 실패 테스트(failing test) 가 수행되는 과정에서 
관측되는 호출 스택(call stack) 정보를 의미한다. 실행 
컨텍스트는 프로그램의 실제 실행 경로를 반영하는 동적 
정보이지만, 본 연구에서는 추가적인 계측이나 고비용의 동적 
분석을 수행하지 않는다. 대신 실패 테스트 실행 시 자동으로 
생성되는 스택 트레이스 로그만을 활용하여, 최소한의 실행 
정보를 기반으로 사후 분석을 수행하는 경량 설계 원칙을 
따른다. 

각 결함 인스턴스에 대해 실패 테스트 실행 과정에서 
생성된 스택 트레이스 파일을 입력으로 사용하며, 호출 
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프레임으로부터 클래스 및 패키지 경로를 추출한다. 이후 
실행 컨텍스트는 호출 순서를 유지하는 시퀀스 형태가 아니라, 
패키지 경로 단위의 집합(set) 형태로 구성된다. 구체적으로, 
테스트 코드 프레임으로부터 생성된 테스트 패키지 집합과, 
비테스트 코드 프레임으로부터 생성된 실행 패키지 집합을 
각각 유지한다. 이러한 집합 기반 표현은 호출 순서나 반복 
호출에 민감하지 않으면서도, 후보 메서드가 실패 테스트 
실행 경로와 구조적으로 일관되는지를 평가하기 위한 
최소한의 실행 정보를 제공한다. 
본 연구는 위와 같이 구성된 실행 컨텍스트로부터 경량 

실행 신호(lightweight execution signals) 를 생성하여, LLM이 
생성한 후보 메서드와 관측된 실행 경로 간의 구조적 
일관성을 평가한다. 각 후보 메서드에 대해, 해당 메서드가 
속한 패키지 경로와 실행 컨텍스트에 포함된 패키지 경로 
간의 공통 접두(prefix) 길이를 계산하며, 이 값은 후보 
메서드가 실패 시점의 실행 경로와 구조적으로 얼마나 
근접한지를 근사적으로 나타내는 지표로 사용된다. 실행 
패키지 기반 신호는 주요 정합성 기준으로 활용되며, 테스트 
패키지 기반 신호는 보조적인 구조 정보로 사용된다. 
생성된 실행 컨텍스트 및 경량 실행 신호는 LLM의 

입력으로 직접 사용되지 않는다. 실행 컨텍스트는 LLM의 추론 
과정을 변경하거나 보강하기 위한 정보가 아니라, LLM이 이미 
생성한 후보 순위가 실제 실행 경로와 구조적으로 
일관되는지를 사후적으로 평가하기 위한 참조 정보로만 
활용된다. 또한 실행 컨텍스트가 충분한 정보를 제공하지 
못한다고 판단되는 경우에는 보정 단계를 적용하지 않으며, 
해당 결함 인스턴스에 대해서는 LLM이 생성한 원래의 출력 
순위를 그대로 유지한다. 이러한 조건부 적용 방식은 
불완전한 실행 정보로 인한 과도한 순위 변경을 방지하고, 
보수적이고 안정성 중심의 사후 보정 원칙을 유지하기 위한 
설계 선택이다. 

3.2 실행 컨텍스트-메서드 정합성 점수 계산 
본 절에서는 3.1절에서 정의한 실행 컨텍스트로부터 

추출된 경량 실행 신호를 이용하여, 각 후보 메서드가 실패 
테스트 실행 경로와 구조적으로 얼마나 일관되는지를 
정량적으로 평가하는 정합성 점수(consistency score) 를 
정의한다. 제안하는 정합성 점수는 추가적인 학습 과정이나 
동적 호출 그래프 구성과 같은 고비용 분석을 요구하지 
않으며, 실패 테스트 실행 시 관측된 호출 스택 정보와 후보 
메서드의 패키지 경로 간의 구조적 관계를 규칙 기반 
방식으로 근사하도록 설계되었다. 
정합성 점수 계산을 위해 각 후보 메서드는 완전한 

메서드 식별자(fully qualified method name) 를 기준으로 
처리된다. 구체적으로, 메서드 시그니처에서 인자 목록을 
제거한 후 클래스명과 메서드명을 제외하고 패키지 수준의 
경로만을 추출한다. 그 결과, 각 후보 메서드는 점(.)으로 
구분되는 패키지 토큰 시퀀스로 표현되며, 이는 실행 
컨텍스트와의 구조적 비교를 수행하기 위한 최소 단위로 
사용된다. 

실행 컨텍스트는 실패 테스트 실행 과정에서 관측된 호출 
스택을 기반으로 구성되며, 테스트 실행 맥락을 반영하는 
테스트 패키지 집합과 실패 시점의 실제 실행 경로를 
반영하는 비테스트 실행 패키지 집합으로 구분된다. 두 
집합은 테스트 코드와 결함 코드가 결함 위치 추정 과정에서 
서로 다른 역할을 가질 수 있다는 점을 고려하여 독립적으로 
유지된다. 

후보 메서드와 실행 컨텍스트 간의 기본 정합성은 패키지 
계층 구조 상에서 공유하는 상위 모듈의 깊이를 기준으로 
평가된다. 이를 위해 후보 메서드의 패키지 경로와 실행 
컨텍스트에 포함된 각 패키지 경로 간의 공통 접두(prefix) 
길이를 계산한다. 공통 접두 길이는 두 경로가 앞에서부터 
연속적으로 일치하는 패키지 토큰의 최대 개수를 의미하며, 
값이 클수록 후보 메서드가 실패 테스트 실행 경로와 
구조적으로 가까운 위치에 있음을 나타낸다. 

실행 패키지 집합에 포함된 모든 경로에 대해 공통 접두 
길이를 계산한 뒤, 그중 가장 큰 값을 후보 메서드의 기본 
정합성 신호로 사용한다. 이는 실행 컨텍스트 중 하나의 
경로라도 후보 메서드와 구조적으로 강한 일관성을 보이는 
경우를 보존하기 위한 보수적인 설계 선택이다. 후보 메서드 
𝑚과 실행 패키지 집합 𝑃간의 기본 정합성 점수는 다음과 
같이 정의된다. 

s(pkg(m), P) = 𝑚𝑎𝑥𝑝∈𝑃 cpl(pkg(m), p) 

⚫ pkg(m)은 메서드 m이 속한 패키지 식별자를
의미한다.

⚫ P는 실패 테스트 실행 과정에서 크래시 스택을
통해 관측된 실행 패키지 집합을 의미한다.

⚫ cpl(⋅)은 두 패키지 경로가 앞에서부터 공유하는
공통 접두 토큰의 길이를 계산하는 함수이다.

본 연구에서는 동일 프로젝트 내에서 후보 메서드 간의 
상대적 비교에만 해당 값을 사용하므로, 추가적인 정규화는 
적용하지 않는다. 이러한 공통 접두 기반 계산 방식은 호출 
그래프 분석이나 동적 호출 관계 추적과 같은 고비용 절차 
없이도 실행 컨텍스트와 후보 메서드 간의 구조적 근접도를 
안정적으로 근사할 수 있으며, 반복 실행 환경에서도 일관된 
값을 제공한다. 

본 연구에서는 테스트 패키지 집합과 비테스트 실행 
패키지 집합에 대해 각각 독립적인 정합성 점수를 계산한다. 
비테스트 실행 패키지 기반 정합성 점수는 실패가 발생한 
실제 실행 경로와의 구조적 일관성을 반영하는 주요 신호로 
사용되며, 테스트 패키지 기반 정합성 점수는 테스트 실행 
맥락에서의 구조적 안정성을 보조적으로 반영하는 신호로 
활용된다. 또한 패키지 경로 기반 구조 정보만으로 구분하기 
어려운 후보 간의 미세한 차이를 반영하기 위해, 실행 
컨텍스트에 포함된 패키지 토큰과 후보 메서드 식별자 간의 
어휘적 중첩 정도를 측정한 어휘적 정합성 점수(lexical 
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consistency score)를 추가적인 보조 신호로 사용한다. 
최종적으로, 후보 메서드 𝑚에 대한 정합성 점수 𝑆(𝑚)는 

다음과 같이 정의된다. 
 

𝑆(𝑚) = 𝑠𝑡𝑒𝑠𝑡(𝑚) + 𝑠𝑐𝑟𝑎𝑠ℎ(𝑚) +  𝑠𝑙𝑒𝑥(𝑚) 
 

⚫ 𝑠𝑡𝑒𝑠𝑡(𝑚) 은 테스트 패키지 기반 정합성 점수를 
의미한다. 

⚫ 𝑠𝑐𝑟𝑎𝑠ℎ(𝑚) 은 크래시 패키지 기반 정합성 점수를 
의미한다. 

⚫ 𝑠𝑙𝑒𝑥(𝑚)은 어휘적 정합성 점수를 의미한다. 
 
본 절에서 정의한 정합성 점수는 후보 메서드 간의 

상대적 비교를 위한 보조 신뢰도 지표로만 사용되며, LLM이 
생성한 원래의 순위를 직접 대체하지 않는다. 실제 순위 조정 
여부와 조정 범위는 다음 절에서 설명하는 최소 변경(minimal-
change) 원칙 기반의 게이팅 규칙에 의해 제한적으로 
결정된다. 
 
3.3 최소 변경 원칙 기반 최종 결함 위치 추정 결과 산출  
본 연구에서 제안하는 실행 컨텍스트 기반 보정 단계는 

LLM 기반 결함 위치 추정기가 생성한 초기 Top-𝑘 순위를 
전면적으로 재구성하거나, 새로운 랭킹 기준에 따라 후보 
메서드를 재정렬하는 것을 목표로 하지 않는다. 대신, LLM이 
생성한 출력 결과를 최대한 유지한 상태에서 실행 컨텍스트 
관점에서 명확한 구조적 불일치가 관찰되는 경우에 한해 
제한적인 순위 조정을 수행하는 것을 기본 설계 원칙으로 
한다. 본 연구에서는 이러한 설계 철학을 최소 변경(minimal-
change) 원칙이라 정의한다. 
최소 변경 원칙에 따라, 실행 컨텍스트-메서드 정합성 

점수는 후보 메서드의 실행 경로 적합성을 평가하기 위한 
보조 신뢰도 신호로만 사용되며, 모든 후보 메서드에 대해 
새로운 순위를 일괄적으로 산출하는 기준으로 사용되지 
않는다. 즉, 정합성 점수는 LLM이 생성한 원래 순위를 직접 
대체하지 않으며, 순위 조정이 정당화될 수 있는지를 
판단하기 위한 조건 신호로만 활용된다. 이를 통해 LLM의 
의미적 판단 결과는 가능한 한 유지되며, 보정 단계는 구조적 
불일치가 충분히 명확한 경우에만 국소적으로 개입한다. 
보정은 LLM이 생성한 초기 Top-𝑘 후보 범위 내에서만 

수행되며, 후보 메서드를 해당 범위를 벗어나도록 이동시키는 
공격적인 재정렬은 허용되지 않는다. 이러한 제한은 보정 
과정에서 새로운 오류가 도입되거나 기존 순위 구조가 
과도하게 왜곡되는 것을 방지하기 위한 것이다. 결과적으로 
보정 단계의 목적은 순위 구조 전체를 변경하는 것이 아니라, 
기존 결과 내에서 제한적인 위치 조정을 통해 상위 순위에서 
발생하는 불안정성을 완화하는 데 있다. 
이러한 최소 변경 원칙에 따른 순위 보정 절차는 

Algorithm 1에 요약되어 있다. 
 
 

4. 실험 
4.1 데이터셋 

본 연구는 LLM 기반 결함 위치 추정 기법의 성능을 
평가하기 위해 Defects4J v2.0.0 벤치마크를 사용하였다 [14]. 
Defects4J는 Java 기반 오픈소스 프로젝트로 구성된 표준 
결함 데이터셋으로, 각 결함 인스턴스에 대해 실패 테스트 
케이스와 정답 결함 위치 정보를 함께 제공한다. 본 연구는 
Defects4J에 포함된 총 835개의 모든 결함 인스턴스를 샘플링 
없이 사용하였다. 

제안하는 실행 컨텍스트 기반 보정 기법은 각 결함 
인스턴스의 실패 테스트 실행 과정에서 관측되는 호출 
스택(call stack) 정보를 실행 컨텍스트로 활용한다. 해당 실행 
정보는 Defects4J에서 제공하는 공식 테스트 스위트를 통해 
수집되었으며, 추가적인 코드 계측이나 고비용의 동적 분석은 
수행하지 않았다. 
LLM 기반 결함 위치 추정기의 입력으로는 버그 리포트, 실패 
테스트 정보, 그리고 소스 코드가 사용되었다. 본 연구의 
기법은 기존 LLM 기반 결함 위치 추정기의 출력 결과를 
사후적으로 보정하는 방식이므로, 데이터셋 구성과 입력 
정보는 선행 연구와 동일하게 유지하였다. 

실험에서는 Llama3-8B와 Qwen2.5-7B 두 가지 오픈소스 
LLM을 사용하였다. Llama3-8B는 FlexFL 연구에서 사용된 

Algorithm 1 Execution-Context Consistency Calibration 
Input: The bug identifier bug_id; The initial Top-5 ranking 
from LLM llm_rank; The candidate methods from input 
candidates; The directory of stack traces trace_dir; 
Calibration parameters params={λ,α, 𝑑1,
,enable_top5_gate,top5_pos,max_insert,…}. 
Output: The stabilized Top-5 ranking stabilized_rank. 
1: pool = [] 
2: for method in llm_rank do 
3:  pool.add(method) 
4: for method in candidates do 
5:  if method not in pool then pool.add(method) 
6: ctx = extract_context(trace_dir, bug_id) 
7: if is_insufficient(ctx) then return llm_rank 
8: for method in pool do 
9:  score = calc_consistency_score(method, ctx, 
params) 
10:  scores.put(method, score) 
11: base = llm_rank[0]   ▷ original Top-1 from LLM 
12: best = argmax(scores, pool) 
13: if (scores[best] - scores[base]) ≥ params.d1 then 
14:   promote_to_first(pool, best) 
15: if params.enable_top5_gate is True then 
16:   idx = params.top5_pos 
17:   cnt = 0 
18:   while cnt < params.max_insert do 
19:     gate_sc = scores[pool[idx]] 
20:     cand = find_cand(pool, idx, gate_sc, params) 
21:     if cand is None then break 
22:     remove_and_insert(pool, cand, idx) 
23:     cnt = cnt + 1 
24: stabilized_rank = pool[:5] 
25: return stabilized_rank  
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설정을 그대로 적용하였으며 [13], [34], Qwen2.5-7B는 모델 
일반화 가능성을 확인하기 위한 보조 모델로 활용하였다 [35]. 
모든 모델에 대해 추론 하이퍼파라미터는 선행 연구와의 
공정한 비교를 위해 동일하게 유지하였다. 모든 실험은 결함 
인스턴스 단위로 독립적으로 수행되었다. 
 
4.2 평가 지표 및 베이스라인 
제안하는 실행 컨텍스트 기반 정합성 보정 기법의 효과를 

평가하기 위해, 본 연구에서는 결함 위치 추정 연구에서 널리 
사용되는 정확도 및 순위 기반 지표와 함께, 출력 안정성을 
반영하는 보조 지표를 사용하였다. 모든 평가는 결함 
인스턴스 단위로 수행되었으며, 각 지표는 전체 결함 
인스턴스에 대해 집계된 결과를 기준으로 산출하였다. 
결함 위치 추정의 정확도를 평가하기 위해 Top-1, Top-3, 

Top-5 정확도를 사용하였다. Top-k 정확도는 정답 결함 
메서드가 상위 k개의 후보 목록에 포함되는지를 기준으로 
하며, 실제 디버깅 과정에서 개발자가 우선적으로 검토하는 
코드 범위를 직접적으로 반영한다. 
상위 후보들의 순위 품질을 보다 정밀하게 평가하기 위해 

Mean Average Precision (MAP)과 Mean Reciprocal Rank 
(MRR)를 함께 사용하였다. MAP는 각 결함 인스턴스에 대해 
계산된 Average Precision을 평균한 값으로, 정답 결함 
메서드가 순위 전반에서 얼마나 일관되게 상위에 
위치하는지를 반영한다. MRR은 각 결함 인스턴스에서 정답 
결함 메서드가 처음 등장하는 순위의 역수(1/rank)를 평균한 
지표로, 정답이 상위에 위치할수록 높은 값을 가진다. 
본 연구는 단일 실행에서의 정확도 향상뿐만 아니라, LLM 

기반 결함 위치 추정 결과의 출력 안정성과 결과 일관성을 
핵심 평가 관점으로 설정하였다. 이를 위해, 실행 컨텍스트 
기반 보정 적용 이후 정답 결함 메서드의 순위가 기존 LLM 
출력 대비 하락하거나 Top-k 범위를 벗어나는 경우를 
회귀(regression)로 정의하고, 해당 사례의 발생 빈도를 함께 
분석하였다. 이 지표는 보정 단계가 기존 출력 결과를 
과도하게 변경하지 않으면서도 안정적인 개선을 제공하는지를 
평가하기 위한 보조 기준으로 사용된다. 
베이스라인으로는 실행 컨텍스트 기반 보정을 적용하지 

않은 LLM 기반 결함 위치 추정 결과를 사용하였다. Llama3-
8B의 경우, 기존 FlexFL 연구에서 공개된 구현과 동일한 추론 
구조 및 설정을 적용한 결과를 베이스라인으로 사용하였다 
[13], [34]. Qwen2.5-7B의 경우 공식 출력이 공개되어 있지 
않으므로, FlexFL 논문에 기술된 절차를 기반으로 동일한 입력 
구성과 설정 하에서 추론 파이프라인을 재구성하여 
베이스라인 결과를 생성하였다 [13], [35]. 
모든 비교 실험은 동일한 데이터셋, 입력 정보, 평가 

지표를 기준으로 수행되었으며, 실험 조건 간의 차이는 실행 
컨텍스트 기반 보정 단계의 적용 여부에 한정된다. 이를 통해 
관찰된 성능 변화가 입력 구성이나 추론 설정이 아닌, 
제안하는 보정 기법의 효과에 기인함을 분리하여 분석하였다. 
 
 

4.3 실험 결과 
제안하는 실행 컨텍스트 기반 정합성 보정 기법의 정량적 

효과는 표 1에 요약되어 있다. 표 1은 Qwen2-7B와 Llama3-
8B를 기반으로 한 베이스라인 결과와, 실행 컨텍스트 및 어휘 
정합성 기반 보정을 적용한 결과를 Top-𝑘 정확도와 순위 기반 
지표 관점에서 비교한 것이다. 

 
표1.  베이스라인 모델 및 제안 기법의 결함 위치 추정 성능 

비교 

Base 
Model 

Top-1 Top-3 Top-5 MAP MRR 

Qwen2-7B 
316 
(37.8%) 

453 
(54.2%) 

504 
(60.3%) 

0.405 0.467 

Qwen2-
7B(Ours) 

325 
(38.9%) 

463 
(55.5%) 

517 
(61.1%) 

0.416 0.480 

Llama3-8B 
350 
(41.9%) 

478 
(57.3%) 

529 
(63.4%) 

0.439 0.501 

Llama3-
8B(Ours) 

354 
(42.4%) 

485 
(58.1%) 

540 
(64.7%) 

0.448 0.508 

두 모델 모두에서 보정 적용 이후 Top-1, Top-3, Top-5 
정확도가 일관되게 증가하였다. Qwen2-7B의 경우 Top-1 
정확도는 37.8%에서 38.9%로, Top-5 정확도는 60.3%에서 
61.1%로 개선되었으며, Llama3-8B에서도 Top-1 정확도는 
41.9%에서 42.4%, Top-5 정확도는 63.4%에서 64.7%로 
증가하였다. 이는 제안 기법이 서로 다른 LLM 환경에서도 
동일한 방향의 성능 변화를 유도함을 보여준다. 

순위 품질을 반영하는 MAP와 MRR 역시 두 모델 
모두에서 향상되었다. Qwen2-7B에서는 MAP가 0.405에서 
0.416으로, MRR은 0.467에서 0.480으로 증가하였으며, 
Llama3-8B에서도 MAP는 0.439에서 0.448, MRR은 0.501에서 
0.508로 각각 개선되었다. 이러한 결과는 제안 기법이 정답 
결함 메서드를 상위 후보 집합 내에서 평균적으로 더 앞선 
위치로 이동시키는 경향을 보였음을 의미한다. 

다만 성능 향상 폭은 절대적인 수치 기준으로는 제한적인 
수준에 머문다. 이는 본 기법이 LLM의 출력 순위를 
전면적으로 재구성하지 않고, Top-𝑘 범위 내에서만 제한적인 
순위 조정을 허용하도록 설계되었기 때문이다. 즉, 제안 
기법은 새로운 후보를 생성하거나 대규모 재정렬을 
수행하기보다는, 상위 후보 집합 내부에서 국소적인 위치 
조정을 수행하는 보수적인 사후 보정 기법으로 작동한다. 

정합성 가중치 𝜆에 대한 민감도 분석 결과는 그림 2에 
제시되어 있다. 어휘 정합성 가중치 𝛼를 0.5로 고정한 
상태에서 𝜆 값을 변화시킨 결과, 𝜆=0에서 0.5로 증가할 때 
MAP@5는 일관되게 향상되었으며, 이후 값 증가에 따른 성능 
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변화는 제한적으로 유지되었다. 이에 따라 본 연구에서는 
성능 변화와 순위 안정성 간의 균형을 고려하여 𝜆=0.5를 모든 
실험의 기본 설정으로 사용하였다. 

 
그림 2. 어휘 정합성 가중치(α=0.5)를 고정한 상태에서 정합성 
가중치 λ 변화에 따른 MAP@5 민감도 분석(Qwen2-7B) 

 
  정확도 및 순위 품질 분석과 더불어, 보정 기법이 출력 

결과의 안정성에 미치는 영향도 함께 분석하였다. 동일한 
Qwen2-7B 모델과 동일한 입력 설정 하에서 서로 다른 시점에 
독립적으로 수행된 두 번의 추론 결과를 비교한 출력 일관성 
분석 결과는 표 2에 요약되어 있다. 보정 적용 이후 Top-1 
불일치율(Disagreement@1)은 35.93%에서 34.49%로 
감소하였으며, Top-5 후보 집합 간 Jaccard 유사도는 
0.5315에서 0.5581로 증가하였다. 또한 Top-5 후보 집합의 
완전 일치율(Exact Match@5) 역시 12.81%에서 14.13%로 
향상되었다. 

 
표2.  반복 실행 간 출력 일관성 비교 (Qwen2-7B) 

 
이러한 결과는 실행 컨텍스트 기반 보정이 개별 실행 

결과를 임의로 변경하는 방식이 아니라, 실패 테스트 실행 
경로에서 관측되는 비교적 안정적인 구조적 신호를 기준으로 
반복 실행 간 출력 결과를 보다 유사한 방향으로 수렴시키는 
역할을 수행했음을 보여준다. 종합하면, 제안 기법은 단일 
실행 기준에서의 대규모 성능 향상을 목표로 하기보다는, 
반복 실행 환경에서 LLM 기반 결함 위치 추정 결과의 순위 
변동과 회귀 현상을 완화하는 데 초점을 둔 안정화 기법으로 
해석할 수 있다. 이러한 실험 결과는 실행 컨텍스트 기반 
정합성 보정이 LLM의 기존 의미적 판단을 최대한 

유지하면서도, 출력 결과의 신뢰성과 일관성을 보조적으로 
향상시키는 실용적인 후처리 기법임을 보여준다. 
 
4.4 Case Study 

본 절에서는 실행 컨텍스트 기반 정합성 보정 기법이 
개별 결함 인스턴스에서 실제로 어떠한 조건 하에서 순위 
변화를 유도하는지를 사례 기반으로 분석한다. 평균 성능 
지표만으로는 확인하기 어려운 보정 단계의 실제 동작 특성을 
명확히 하기 위해, 본 분석은 보정이 적용되어 순위가 개선된 
사례, 제한적인 순위 하락이 발생한 사례, 그리고 보정이 
적용되지 않아 순위 변화가 발생하지 않은 사례를 함께 
포함한다. 이를 통해 제안 기법이 언제 개입하고, 언제 
개입하지 않으며, 순위 변화가 어느 범위로 제한되는지를 
구체적으로 설명하고자 한다. 분석에 사용된 결함 인스턴스와 
보정 전후의 순위 변화는 표 3에 요약되어 있다. 

 
표3. 실행 컨텍스트 기반 정합성 보정의 사례 분석 결과 

Model Bug ID Rank Change Outcome 

Llama3 Jackson-28 2 → 1 Improved 

Llama3 Math-14 4 → 1 Improved 

Qwen2 Math-57 3 → 1 Improved 

Llama3 Chart-18 1 → 2 Regression 

Qwen2 Lang-6 - No-change 

표 3에 제시된 순위 개선 사례는 Llama3 기반의 
Jackson-28, Math-14와 Qwen2 기반의 Math-57이다. 이들 
결함 인스턴스에서는 보정 적용 이후 정답 결함 메서드의 
순위가 각각 2위에서 1위로, 4위에서 1위로, 그리고 3위에서 
1위로 이동하였다. 세 사례 모두에서 공통적으로 관찰된 점은, 
정답 결함 메서드가 실패 테스트 실행 과정에서 관측된 스택 
트레이스에 포함된 패키지 경로와 비교적 긴 공통 
접두(prefix)를 공유하고 있었다는 것이다. 이는 정답 메서드가 
실제 실행 경로와 구조적으로 근접해 있음을 의미한다. 
그러나 이러한 구조적 근접성은 초기 LLM 출력 순위에 
명시적으로 반영되지 않았고, 결과적으로 정답 메서드는 
최상위 후보로 선택되지 않았다. 보정 단계에서는 실행 
컨텍스트-메서드 정합성 점수가 계산되었으며, 정답 메서드와 
기존 Top-1 후보 간의 정합성 점수 차이가 사전에 정의된 
게이팅 임계값을 초과한 경우에 한해, 최소 변경 원칙에 따라 
Top-1 위치에서의 국소적인 순위 교체가 수행되었다. 이 
과정에서 Top-5 후보 집합은 유지되었으며, 순위 변화는 
최상위 위치로 제한되었다. 

반면, Llama3 기반의 Chart-18 사례에서는 보정 적용 이후 
정답 결함 메서드의 순위가 1위에서 2위로 하락하는 제한적인 
순위 변화가 관찰되었다. 이 사례에서도 정답 메서드는 Top-5 
범위 내에 유지되었으며, 순위 변화는 인접한 후보 간의 단일 

Metric Raw LLM Output After 
Calibration 

Disagreement@1 ↓ 35.93% 34.49% 

Jaccard@5 ↑ 0.5315 0.5581 

Exact Match@5 ↑ 12.81% 14.13% 
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교환으로 제한되었다. 실행 컨텍스트 기반 정합성 점수 계산 
결과, 정답 메서드보다 더 높은 정합성 점수를 갖는 다른 
후보 메서드가 식별되었고, 두 후보 간 점수 차이가 게이팅 
임계값을 초과함에 따라 Top-1 위치에서만 제한적인 순위 
조정이 수행되었다. 이는 제안 기법이 정답 메서드에 대해 
항상 단조적인 순위 개선을 보장하지 않으며, 실행 경로 
관점에서 구조적 정합성이 더 높은 후보가 존재하는 경우에는 
제한적인 순위 하락도 허용함을 보여준다. 
한편, Qwen2 기반의 Lang-6 사례에서는 보정 전후의 

순위 변화가 관찰되지 않았다. 해당 결함 인스턴스에서는 
실패 테스트 실행 과정에서 수집된 스택 트레이스의 호출 
프레임 수가 제한적이거나, 후보 메서드 간 실행 컨텍스트 
기반 정합성 점수 차이가 게이팅 임계값을 초과하지 않았다. 
그 결과 보정 단계는 적용되지 않았으며, LLM이 생성한 
원래의 순위 결과가 그대로 유지되었다. 이는 제안 기법이 
실행 컨텍스트 정보가 불충분하거나 정합성 차이가 명확하지 
않은 경우에는 개입을 수행하지 않도록 설계되었음을 
보여준다. 
이러한 사례 분석을 통해, 실행 컨텍스트 기반 정합성 

보정 기법은 모든 결함 인스턴스에 대해 일괄적으로 순위를 
재조정하는 방식이 아니라, 실행 경로 정보가 충분하고 
구조적 정합성 차이가 명확하게 관찰되는 경우에만 
제한적으로 개입함을 확인할 수 있다. 또한 순위 변화가 
발생하더라도, 그 범위는 Top-1 또는 Top-5 경계 내의 
국소적인 위치 교환으로 제한되며, 기존 후보 집합이나 순위 
구조 전체를 재구성하지 않는다. 이는 제안 기법이 LLM의 
기존 출력 결과를 최대한 유지하면서도, 실행 컨텍스트 
관점에서 명백한 불일치가 발생하는 경우에만 선택적으로 
순위를 조정하는 안정화 중심의 후처리 기법임을 사례 
수준에서 뒷받침한다. 

 
5. 토의 
5.1 실험 결과 분석 
본 절에서는 4장에서 보고한 실험 결과를 바탕으로, 실행 

컨텍스트 기반 정합성 보정 기법이 LLM 기반 결함 위치 추정 
결과에 미친 영향을 분석한다. 본 연구의 목적은 절대적인 
정확도 향상이 아니라, 동일한 입력과 추론 설정 하에서 반복 
실행 시 발생하는 출력 순위 변동성을 완화하고, 상위 후보 
순위의 신뢰도를 제한적으로 조정하는 사후 보정 기법의 
효과를 검증하는 데 있다. 

Top-k 정확도 기준에서, 제안 기법은 Qwen2-7B와 
Llama3-8B 두 모델 모두에서 Top-1, Top-3, Top-5 정확도가 
일관되게 증가하는 경향을 보였다. Top-1 정확도는 약 0.5-
1.1%p, Top-5 정확도는 약 0.8-1.3%p 범위에서 개선되었으며, 
이는 후보 집합을 변경하지 않고 Top-k 범위 내에서 순위를 
제한적으로 조정하는 설계 특성과 일관된 결과로 해석할 수 
있다. 
순위 품질 지표인 MAP와 MRR 역시 두 모델 모두에서 

증가하였다. MAP는 약 0.009-0.011, MRR은 약 0.007-0.013 
수준으로 개선되었으며, 이는 정답 결함 메서드의 평균 

순위가 상위 구간 전반에서 완만하게 조정되었음을 의미한다. 
이러한 결과는 실행 컨텍스트 기반 정합성 점수가 특정 
후보를 강하게 선택하는 결정 신호라기보다는, 상위 후보 
집합 내부에서 구조적 일관성을 반영하는 보조 신호로 
작동했음을 보여준다. 

모델별로는 성능 개선의 양상이 다소 상이하게 나타났다. 
Qwen2-7B에서는 Top-1 정확도의 개선이 상대적으로 
두드러졌고, Llama3-8B에서는 Top-3 및 Top-5 정확도의 증가 
폭이 더 크게 관찰되었다. 이는 제안 기법이 특정 순위 
지표를 직접 최적화하기보다는, 각 모델이 생성하는 초기 
순위 분포의 특성에 따라 작동 범위가 달라지는 보정 
계층임을 보여준다. 

보정 이후의 순위 변화는 대부분 상위 후보 간의 
국소적인 위치 교환 형태로 나타났으며, 새로운 후보의 
추가나 기존 후보의 제거는 발생하지 않았다. 이로 인해 정답 
결함 메서드가 급격히 하락하거나 Top-k 범위를 이탈하는 
회귀 사례는 제한적으로 관찰되었다. 

또한 반복 실행 간 출력 비교 결과, 보정 적용 이후 Top-
1 불일치율이 감소하고 Top-5 후보 집합 간 유사도가 
증가하였다. 이는 실행 컨텍스트 기반 보정이 개별 실행 
결과를 임의로 변경하는 것이 아니라, 실패 테스트 실행 
경로라는 비교적 안정적인 기준을 통해 서로 다른 추론 
결과를 유사한 방향으로 수렴시키는 역할을 수행했음을 
의미한다. 종합하면, 제안 기법은 출력 결과의 절대적 
정확도를 크게 변화시키기보다는, 반복 실행 환경에서의 출력 
안정성과 상위 후보 순위의 신뢰도를 보조적으로 향상시키는 
데 기여한 것으로 해석할 수 있다. 
 
5.2 위협요소 

본 연구의 실험 결과는 제안하는 실행 컨텍스트 기반 
정합성 보정 기법의 설계 선택과 실험 범위로부터 기인하는 
몇 가지 타당성 위협을 내포한다. 본 절에서는 이러한 위협이 
결과 해석에 부여하는 제약 조건을 중심으로 논의한다. 

내적 타당성(internal validity) 측면에서의 주요 위협은 실행 
컨텍스트 정보의 불완전성이다. 본 연구에서 활용한 실행 
컨텍스트는 실패 테스트 실행 시 생성되는 스택 트레이스에 
기반하므로, 전체 실행 경로나 모든 호출 관계를 포괄하지 
않는다. 이로 인해 일부 결함 인스턴스에서는 정답 결함 
메서드가 호출 스택에 포함되지 않거나, 제한적인 상위 
프레임 정보만 제공될 수 있다. 이러한 경우 실행 컨텍스트 
기반 정합성 점수가 실제 결함 관련성을 충분히 반영하지 
못할 가능성이 존재한다. 본 연구는 이러한 위험을 완화하기 
위해, 실행 컨텍스트가 사전에 정의된 최소 정보 기준을 
충족하지 못하는 경우 보정 단계를 적용하지 않는 조건부 
전략을 채택하였다. 

구성 타당성(construct validity) 측면에서는 출력 안정성을 
완전히 정량화하기 어렵다는 한계가 존재한다. 본 연구에서 
사용한 Top-k 정확도, MAP, MRR은 순위 품질을 평가하는 표준 
지표이지만, 반복 실행 환경에서의 미세한 순위 변동이나 
개발자 관점의 신뢰도를 직접 측정하지는 않는다. 이에 따라 
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본 연구에서는 정답 결함 메서드의 순위 하락 또는 Top-k 
범위 이탈을 회귀(regression)로 정의하여 안정성 분석에 
포함하였다. 해당 정의는 출력 안정성의 모든 측면을 
포착하기보다는, 보정으로 인한 명백한 성능 저하 여부를 
검증하기 위한 보수적인 기준으로 해석되어야 한다. 
외적 타당성(external validity) 측면의 위협은 실험 대상과 

실행 환경의 제한에서 비롯된다. 본 연구는 Defects4J에 
포함된 Java 기반 오픈소스 프로젝트를 대상으로 
수행되었으며, 실제 산업 환경에서는 실패 테스트의 
가용성이나 스택 트레이스 품질이 상이할 수 있다. 이러한 
환경에서는 실행 컨텍스트 기반 보정 단계의 적용 빈도가 
감소할 수 있으며, 그 결과 본 연구에서 관찰된 효과가 
동일하게 재현되지 않을 가능성이 있다. 따라서 본 연구의 
결과는 최소한의 실패 테스트 실행 정보가 확보되는 환경을 
전제로 해석되어야 한다. 
마지막으로, 제안 기법은 LLM이 생성한 초기 후보 순위 

분포에 의존하는 구조를 가지므로, 출력 분포가 지나치게 
평탄하거나 실행 컨텍스트와의 구조적 정합성이 전반적으로 
낮은 모델 환경에서는 보정 효과가 제한될 수 있다. 이는 본 
기법이 모델 독립적인 성능 증폭 기법이라기보다는, 초기 
출력 분포와 실행 컨텍스트 신호 간의 상호작용에 따라 작동 
범위가 결정되는 사후 보정 계층임을 의미한다. 

6. 관련연구
최근 LLM 기반 결함 위치 식별 연구는 코드와 자연어

간의 의미적 관계를 활용하여 기존 통계적·정보 검색 기반 
기법의 한계를 보완하는 방향으로 발전해 왔다. 대표적인 
예로 Xu et al.이 제안한 FlexFL은 LLM을 활용한 이단계 결함 
위치 식별 파이프라인을 제시한다 [13]. FlexFL은 후보 공간 
축소 단계와 최종 순위 정제 단계를 분리함으로써, LLM의 
추론을 제한된 후보 집합에 집중시키는 구조를 채택한다. 
1단계에서는 SBFL, IRFL, HybridFL 등 기존 기법과 LLM 기반 
에이전트를 결합하여 의심 메서드 후보군을 생성하고, 
2단계에서는 LLM이 후보 메서드의 코드 스니펫을 분석하여 
최종 순위를 산출한다. 해당 프레임워크는 Llama3-8B [34], 
Qwen2-7B [35], Mistral-Nemo-12B 등 오픈소스 LLM을 
기반으로 구성되어, 재현성과 실용성 측면에서의 장점을 
제공하며, Defects4J 벤치마크에서 경쟁력 있는 Top-k 성능을 
보고하였다. 
한편 테스트 실행 정보에 의존하지 않는 테스트 

비의존(test-free) LLM 기반 결함 위치 식별 연구도 제안되었다. 
Yang et al.의 LLMAO는 소스 코드 자체만을 입력으로 
사용하여 결함 위치를 추정하는 접근을 제시하며 [23], LLM이 
사전 학습 과정에서 획득한 코드 의미 표현을 활용한다. 
Defects4J, BugsInPy, Devign 등 다양한 벤치마크에서 실험을 
수행하여 테스트 실행이 어려운 환경에서도 적용 가능함을 
보였다. 그러나 이러한 접근은 실패 테스트의 실행 경로, 호출 
관계와 같은 동적 컨텍스트를 명시적으로 반영하지 않으며, 
LLM 출력 결과의 변동성이나 반복 실행 간 순위 일관성 
문제를 직접적으로 다루지는 않는다. 

이와 같이 기존 LLM 기반 결함 위치 식별 연구는 
파이프라인 구조 개선, 후보 공간 축소, 테스트 비의존성 확보 
등 다양한 방향으로 발전해 왔으나, LLM이 생성한 최종 출력 
결과의 신뢰성과 반복 실행 간 일관성 문제는 상대적으로 
독립적인 연구 주제로 충분히 다뤄지지 않았다. 특히 동일한 
입력과 설정 하에서도 출력 순위가 변동하는 현상은 확률적 
언어 모델 구조에 내재된 특성으로 보고되고 있으며 [29], 
순위 기반 의사결정이 요구되는 결함 위치 식별 작업에서 
실질적인 활용상의 문제로 작용할 수 있다. 

전통적인 결함 위치 식별 연구에서는 이러한 불확실성을 
완화하기 위해 실행 기반 신호를 핵심 기준으로 활용해 왔다 
[4]. 실행 정보는 의미 기반 추론 결과를 보정하는 객관적 
기준으로 기능할 수 있으며, 최근 연구들 역시 LLM의 구조적 
한계를 전제로 실행 신호를 활용한 보정의 필요성을 제기하고 
있다 [31]. 본 논문은 이러한 연구 흐름에 기반하여, LLM의 
입력이나 추론 과정을 변경하지 않고 실행 컨텍스트와의 
정합성 관점에서 출력 결과를 사후적으로 보정함으로써, LLM 
기반 결함 위치 식별 결과의 안정성과 일관성을 향상시키는 
접근을 제안한다. 

7. 결론
  본 논문은 LLM 기반 결함 위치 추정 기법이 의미적 코

드 이해 능력 측면에서는 경쟁력 있는 성능을 보이고 있음에
도 불구하고, 동일한 입력과 추론 설정 하에서 반복 실행 시 
출력 순위가 변동하는 현상과 그로 인한 결과 일관성 저하 문
제가 체계적으로 다뤄지지 않았다는 점에 주목하였다. 기존 
연구들이 주로 파이프라인 구조 개선이나 추론 전략 확장을 
통해 정확도 향상에 초점을 두어 온 반면, LLM이 생성한 최종 
출력 결과를 유지한 채 안정성을 사후적으로 조정하는 접근은 
상대적으로 명확히 논의되지 않았다. 

이를 위해 본 논문에서는 실패 테스트 실행 과정에서 
관측되는 호출 스택 정보를 활용한 실행 컨텍스트 기반 
정합성 보정 기법을 제안하였다. 제안 기법은 LLM의 입력 
구성이나 추론 과정을 변경하지 않고, 경량 실행 신호를 
기반으로 후보 메서드 순위와 실제 실행 경로 간의 구조적 
정합성을 평가한 뒤, 최소 변경 원칙과 보수적인 게이팅 
규칙에 따라 Top-k 범위 내에서만 제한적인 순위 조정을 
수행한다. 또한 실행 컨텍스트 정보가 충분하지 않은 
경우에는 보정 단계를 비활성화하여, 불완전한 실행 정보로 
인한 과도한 개입을 방지하도록 설계하였다. 

Defects4J 벤치마크의 835개 결함 인스턴스를 대상으로 
두 가지 오픈소스 LLM 환경에서 수행한 실험 결과, 제안 
기법은 Top-k 정확도, MAP, MRR 등 순위 기반 지표에서 
일관된 개선 경향을 보였다. 절대적인 성능 향상 폭은 
제한적이었으나, 이는 출력 순위를 전면적으로 재구성하지 
않고 상위 후보 간의 상대적 위치만을 조정하는 설계 특성을 
반영한 결과로 해석할 수 있다. 동시에 정답 결함 메서드의 
급격한 순위 하락이나 Top-k 범위 이탈과 같은 회귀 사례는 
제한적으로 관찰되었으며, 반복 실행 환경에서 상위 후보 
집합의 일관성이 완화되는 경향이 확인되었다. 
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이러한 결과는 실행 컨텍스트 기반 사후 보정이 LLM의 
의미적 추론 결과를 대체하지 않더라도, 출력 순위의 
안정성과 신뢰성을 보조적으로 향상시킬 수 있음을 보여준다. 
본 연구는 LLM 기반 결함 위치 추정을 단순한 정확도 최적화 
문제를 넘어, 반복 실행 환경에서의 출력 일관성과 신뢰성 
관점에서 함께 분석할 필요성을 제기한다는 점에서 의의를 
가진다. 향후 연구로는 다양한 실행 신호를 활용한 정합성 
평가 방식의 확장과, 출력 안정성을 보다 정밀하게 포착할 수 
있는 평가 지표 설계가 요구된다. 
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요   약 

대형언어모델(LLM) 기반 자동 테스트 생성은 주로 코드 커버리지로 성능을 평가해 왔으나, 이는 생성

된 테스트의 assertion 품질과 결함 탐지 능력을 충분히 반영하지 못합니다. 본 연구는 단일 LLM 환경에

서 변이 테스팅 피드백을 반복적으로 활용하여 assertion 품질을 강화하는 테스트 생성 프레임워크를 제

안합니다. 제안 방법은 생존 뮤턴트를 타깃으로 한 프롬프트와 변이 점수 및 라인·브랜치 커버리지를 함

께 고려하는 뮤턴트-가드 손실, 그리고 비감소 수용 정책을 결합하여 품질 퇴행을 방지합니다. 

TESTEVAL의 210개 Python 프로그램에서 CodeQwen1.5-7B로 평가한 결과, 평균 변이 점수는 71.8%로 

기본 설정 대비 65.0%p 향상되었고, 커버리지는 라인/브랜치 89.0%/88.9% 수준을 유지했습니다. 또한 

Mutation@1은 54.4%, Mutation@5는 69.2%로, 단일 LLM 기반 테스트의 assertion 품질과 결함 탐지 능

력을 효과적으로 개선함을 보였습니다. 

1. 서  론 

대형언어모델(LLM)은 단위 테스트 코드의 구문적 완성도

는 높게 생성할 수 있으나, 실행 결과의 의미 차이를 판별하

는 강한 assertion을 자동으로 구성하는 데는 여전히 어려움

이 있다. 그 결과, 커버리지가 높더라도 결함 탐지 능력이 

낮게 측정되는 사례가 발생한다. 

본 연구는 단일 LLM 설정에서 변이 테스팅(mutation 

testing) 결과를 반복적으로 활용하여 assertion 품질을 강화

하는 프레임워크를 제안한다. 제안 기법은 생존 뮤턴트를 목

표로 하는 프롬프트 구성과, 커버리지 및 변이 점수의 퇴행

을 허용하지 않는 수용 정책을 결합하여 비용 증가를 제한

하면서 결함 구분력을 높인다. 

TESTEVAL 210개 Python 프로그램 실험에서 제안 방법은 

평균 변이 점수 71.8%를 달성했고, 라인/브랜치 커버리지는 

89.0%/88.9%로 유지하였다. 

TESTEVAL 210개 Python 프로그램에서 평가한 결과, 제안 

방법은 평균 변이 점수 71.8%를 달성하면서 라인/브랜치 커

버리지도 89.0%/88.9%로 유지하였다. 

2. 제안 기법 

  제안 프레임워크는 단일 LLM을 반복 호출하며, 각 이터레

이션에서 (i) pytest-cov로 미커버 브랜치를 수집하고 (ii) 

mutmut으로 생존 뮤턴트를 요약한 뒤, 이를 프롬프트에 반

영해 다음 테스트를 생성한다. 새 테스트는 라인/브랜치 커

버리지와 변이 점수가 모두 감소하지 않을 때만 누적하여 

품질 퇴행을 방지한다. 

  프롬프트 구성은 이터레이션 상태에 따라 동적으로 전환

한다. 첫 이터레이션에서는 기본 및 경계값 입력을 포함한 

Initial 프롬프트로 탐색을 시작하고, 이후에는 생존 뮤턴트가 

존재하면 Assertion-Mutant 프롬프트를 우선 적용하여 특정 

뮤턴트를 kill하도록 유도한다. 생존 뮤턴트가 없고 미커버 

브랜치가 남아 있는 경우에는 Branch-Target 프롬프트로 분

기 조건을 만족하는 입력을 설계하게 하며, 두 조건이 모두 

충족되지 않으면 Diversity 프롬프트로 입력 분포를 확장해 

정체 구간을 완화한다. 

  Assertion-Mutant 프롬프트에는 변이 위치, 원본/변이 코

드 조각, 변이 연산자 유형(AOR/ROR/COR/COI)을 요약해 

포함한다. 특히 ROR의 경우 경계값에서 비교 결과가 뒤집

히는 입력을, AOR의 경우 연산 결과 차이가 크게 드러나는 

입력을 우선 제안하도록 지시하여 약한 검증(assert result is 

not None 등)을 기대값 비교나 불변식 검증으로 전환한다. 

  품질 균형을 위해 변이 점수(M), 라인 커버리지(L), 브랜

치 커버리지(B)의 가중합으로 뮤턴트-가드 손실을 정의하고, 

로그로 추적한다. 또한 수용 정책은 B, L, M이 모두 감소하

지 않아야 하며(비감소 제약), 세 지표 중 하나 이상이 반드

시 개선되어야 한다(엄격한 개선). 연속 무개선이 일정 횟수 

발생하면 조기 종료하여 변이 테스팅 비용을 제한한다.

 

그림1. 제안한 방법의 전반적인 흐름도 
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3. 실험 및 결과 요약 

표 2. 제안 방법과 베이스라인 성능 비교 

† TESTEVAL 벤치마크 [1]에서 보고된 결과. 변이 점수는 

본 연구에서 CodeQwen1.5-7B에 대해 측정함. 

‡ Kim et al. [5]의 CodeQwen1.5-7B 기반 커버리지 최적화 

방법. 변이 점수는 본 연구에서 측정함. 

3.1 실험 설정 

TESTEVAL 벤치마크의 210개 Python 프로그램을 대상으로 

CodeQwen1.5-7B [4]를 사용하였다. 각 태스크는 최대 20회 

이터레이션을 수행하되, 연속 3회 무개선 시 조기 종료한다. 

커버리지는 pytest-cov, 변이 점수는 mutmut으로 측정하였다. 

벤치마크는 단일 함수 형태로 제공되며, 다양한 제어 흐름

과 예외 경로를 포함한다. 각 태스크에 대해 생성된 테스트 

스위트는 누적 방식으로 관리하고, 이터레이션마다 새로 생성

된 테스트를 기존 스위트에 합쳐 실행한다. 

모델 생성 조건은 재현성을 위해 고정하였다(temperature 

0.4, max_tokens 2048). 변이 테스팅 비용을 제한하기 위해 

함수당 생성 뮤턴트 수를 상한으로 두고, 뮤턴트별 타임아웃

을 적용하였다. 실행 실패 테스트는 즉시 누적에서 제외하며, 

동일 태스크에서 연속 무개선이 발생하면 종료한다.  

3.2 평가지표 및 비교 방법 

표 2에서 제안 방법은 단순 생성(CodeQwen1.5-7B) 및 커

버리지 최적화 기반 방법(Kim et al. [5]) 대비 변이 점수를 크

게 향상시키면서도 커버리지를 유지한다. 이는 생존 뮤턴트 

기반 타겟 프롬프팅이 약한 assertion을 강한 검증으로 전환

하는 데 효과적임을 보여준다. 

Line/Branch 커버리지는 테스트가 경로를 얼마나 폭넓게 탐

색했는지를 나타내며, Mutation score는 생성된 assertion이 의

미 차이를 구분하도록 작성되었는지를 실행 기반으로 근사한

다. 본 연구는 세 지표를 함께 보고하여 ‘경로 탐색’과 ‘결함 

구분력’을 분리해 해석한다. 

비교는 (i) 단순 생성(CodeQwen1.5-7B), (ii) 커버리지 최적

화 기반(Kim et al. [5])과 수행하며, 제안 방법은 동일한 이터

레이션 예산과 생성 하이퍼파라미터를 적용한다. 또한 변이 

점수는 동일 도구 체인으로 재측정하여 설정 차이에 따른 편

향을 최소화한다.  

3.3 실험 결과 및 분석 

커버리지 유지(라인 89.0%, 브랜치 88.9%)는 변이 점수 최

적화가 경로 탐색을 억제하지 않음을 보여준다. 평균 7.2회의 

이터레이션으로 수렴했으나, mutmut 실행 비용과 동치 뮤턴트

의 영향은 한계로 남는다. 

Avg. Mutation은 71.8%로 단순 생성(CodeQwen1.5-

7B)(6.8%) 대비 65.0%p, 커버리지 최적화(26.3%) 대비 

45.5%p 개선되었다. 

개선은 생존 뮤턴트 기반 타겟 프롬프팅의 효과에 기인한다. 

예를 들어 관계 연산자 변이(ROR)에서는 경계값 입력을 유도

해 비교 결과가 뒤집히는 케이스를 만들고, 산술 연산자 변이

(AOR)에서는 기대값 비교 또는 불변식 검증을 요구해 ‘not 

None’ 형태의 약한 검증을 제거한다. 이 과정에서 비감소 수

용 정책이 품질 퇴행을 차단하여, 탐색 단계에서 확보한 커버

리지를 유지한 채 assertion만 강화되는 방향으로 누적이 진

행된다. 

효율 측면에서 평균 7.2회의 이터레이션으로 수렴했으며, 

조기 종료는 비용을 제한하는 데 기여한다. 다만 mutmut 실

행 자체가 비용이 큰 편이며, 동치 뮤턴트 존재로 인해 변이 

점수가 과소 추정될 수 있다는 한계가 남는다.  

4. 결론 

변이 테스팅 피드백과 비감소 수용 정책을 결합한 단일 

LLM 테스트 생성 프레임워크를 제안하였다. 

향후에는 (i) 생존 뮤턴트의 우선순위화 및 선택적 변이 테

스팅으로 비용을 줄이고, (ii) 연산자 유형별로 효과가 큰 프롬

프트 템플릿을 자동 선택하며, (iii) 언어/프레임워크 확장 및 

더 다양한 오라클 패턴(예외 규약, 메타모픽 관계)을 통합하는 

방향으로 확장할 수 있다.  
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평가 지표 CodeQwen1.5-7B† Kim et al. ‡ 제안 방법 

Syntax Correct 100% 100% 96.19% 

Exec. Correct 84.26% 99.63% 96.19% 

Avg. Line Cov. 90.7% 91.1% 89.0% 

Avg. Branch Cov. 86.9% 86.2% 88.9% 

Mutation@1 12.5% 43.6% 54.4% 

Mutation@2 8.4% 37.2% 65.6% 

Mutation@5 7.9% 30.4% 69.2% 

Avg. Mutation 6.8% 26.3% 71.8% 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

52



질의-응답 프롬프트 기반 실용적인 테스트 오라클 생성 
 

 정지나 1*, 김윤호 2 

한양대학교 컴퓨터∙소프트웨어학과(미래자동차-SW 융합전공)1, 한양대학교 컴퓨터∙소프트웨어학과 2 

snowgina00@hanyang.ac.kr, yunhokim@hanyang.ac.kr 

 

ANTLION: Practical Test Oracle Generation via Multi-turn LLM 

Compact Prompting 

Gina Jung1*, Yunho Kim2 

Dept. of Computer and Software (Automotive–Computer Convergence), Hanyang University1 

Dept. of Computer and Software, Hanyang University2 

 

요   약 

 본 연구는 단위 테스트에서 버그 탐지의 핵심인 테스트 오라클을 대형 언어 모델(LLM)로 자동 생성하

는 문제를 다룬다. 기존 기법에도 오라클 생성은 여전히 어렵고, 미세조정 기반 접근은 비용이 크며 

MUT 포함 방식은 결함을 의도된 동작으로 오인할 위험이 있다. 이에 스무고개에서 착안한 대화형 추론 

방식 ANTLION을 제안하며, 다중 회차 질의-응답으로 필요한 정보만 선택적으로 보강해 간결한 프롬프

트를 유지한다. Defects4J에서 ANTLION은 기존 기법 대비 4%~36% 더 많은 버그를 재현했고, 질의 패

턴 분석을 통해 LLM이 오라클 생성에 요구하는 정보도 확인했다. 

 

Abstract 

 This paper investigates automatic unit-test oracle generation with large language models (LLMs). 

Oracle generation remains challenging, while fine-tuning is costly and including the method under test 

(MUT) can misinterpret defects as intended behavior. We propose ANTLION, a “Twenty Questions”-

inspired multi-turn dialogue framework that keeps prompts concise by selectively acquiring only 

necessary information without fine-tuning. On Defects4J, ANTLION reproduces 4%–36% more bugs 

than prior methods, and our query-pattern analysis reveals what auxiliary information LLMs tend to 

request. 

 

1. 서론 

21세기에 소프트웨어는 현대인의 삶의 없어서는 안 

될 존재가 되었다. 이런 소프트웨어에서 아주 사소한 

버그일지라도, 대규모 시스템 장애, 보안 침해를 유발할 

수 있다[1-3]. 따라서 소프트웨어 테스팅을 통한 버그 

탐지를 통해 소프트웨어 신뢰성을 확보하는 것은 매우 

중요하다[4-7]. 소프트웨어 테스팅에서 ‘테스트 

오라클’은 소프트웨어 버그를 조기 탐지하는 핵심적 

역할을 한다. 

일반적으로 단위테스트에서는 각 프로그램의 특정 

단위를 실행하는 ‘테스트 접두사’와 실행되는 동작이 

올바른 동작과 일치하는지 검증하는 ‘테스트 오라클’로 

구성되어 있다[8]. 테스트를 수동으로 작성하는 과정은 

프로그램 규모가 커질수록 시간과 비용이 급격히 

증가하며, 개발자의 도메인 지식과 경험에 크게 

의존하여 테스트 품질이 불안정 할 수 있다[9]. 테스트 

접두사에 대한 자동화 문제는 기존 연구자들의 

노력[13-14]을 통해서 크게 발전하였으며 실제 실무에 

효율적으로 반영되었다. 하지만, 효과적인 버그 탐지를 

위해서는 테스트 오라클이 정확하고 강력해야 한다[15]. 

테스트 오라클을 자동화로 생성하는 문제는 많은 기존 

연구자들의 노력[10-11, 16-17, 19-20, 27]에도 

오래된 난제로 남아 있다. 

연구자들은 코드 주석과 자연어 문서를 활용하여 

자연어 처리(NLP) 및 패턴 매칭 기법을 적용하는 

연구를 해왔다[16-17]. 인공지능(AI)의 발전으로 

테스트 오라클 생성 문제를 해결하기 위한 다양한 

자동화 기법이 제안된 바 있다. 테스트 대상 

메서드(MUT)를 머신 러닝(ML)의 입력에 포함하여 

테스트 오라클을 생성한다. 하지만, 이 방식은 테스트 

오라클 품질에 부정 적인 영향을 미칠 수 있다[18]. 

예를 들어, 테스트 대상 메서드 구현에 버그가 있는 

경우 버그 동작을 의도된 올바른 구현으로 해석하여 

통과하면 안 되는 테스트가 부적절하게 통과되는 

결과를 초래할 수 있다. 이러한 접근 방식은 주로 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

53

mailto:snowgina00@hanyang.ac.kr
mailto:yunhokim@hanyang.ac.kr


회귀(regression) 테스트에서 유용한 오라클을 생성한다. 

딥러닝(DL) 기반 기법으로는 테스트 대상 

메서드(MUT)와 개발자가 작성한 테스트 케이스로부터 

학습하는 트랜스포머 기반 모델이 활용되었다[10-11]. 

최근에는 대형 언어 모델(LLM)의 등장으로 미세조정을 

통해 코드와 테스트 문맥을 집중적으로 이해하면서 

테스트 오라클 생성을 보다 일반적인 생성 문제로 

다루는 연구가 활발 해지고 있다[19-20].  

테스트 오라클 자동화 생성에 초점을 맞춘 

연구임에도, 정확하고 강력한 테스트 오라클 자동 

생성은 여전히 어려운 과제로 남아있다. 기존 연구는 

미세조정의 과정에서 시간과 노력이 소모되며, 이 

학습에서 사용된 데이터 품질이 생성 기법자체의 

품질을 결정해 제한적인 적용범위를 가진다. 적절한 

형식의 테스트 오라클 구문이 생성되더라도 높은 

오탐율을 가지고 있어 일반화가 어렵다. 

대형 언어 모델(LLM)은 방대한 분야에서 충분히 

일반적인 지식으로 사전학습 되어있기 때문에, 범용적인 

생성 능력을 이미 확보하였으므로, 응용 과정에서는 

별도의 미세조정 없이 실용 적인 성능을 확보한다. 

미세조정 없이 대형 언어 모델을 이용한다면, 데이터 셋 

준비와 미세조정을 위한 시간과 노력이 절약되며, 

다양한 범위에서 일반적인 성능으로 적용 가능성이 

우수 하다는 장점을 가지고 있다. 프롬프트 문맥 길이가 

늘어나 더 많은 정보를 한 번에 수용할 수 있지만, 한 

번에 많은 정보가 담긴 프롬프트는 대형 언어 

모델(LLM)의 집중을 흐려서 환각(hallucination)이 

발생되어 나쁜 품질의 결과를 가져온다[22]. 

대형 언어 모델(LLM)의 장점을 테스트 오라클 생성 

문제에 적용하면서도, 대형 언어 모델의 단점인 환각 

현상을 줄이기 위한 프롬프트 방식으로 대화형 추론 

방식인 스무고개에서 착안한 ANTLION을 제안한다. 

간결한 프롬프트를 유지하며 언어 모델과 대화를 

이어가면서 언어 모델이 테스트 오라클 추론에 

필요하다고 요청되는 정보만 추가로 제공하여 프롬프트 

엔지니어링을 했다. 기존에는 테스트 오라클 생성 

문제를 ‘검색(Search)’, ‘번역(Transform)’의 문제로 

해결을 했지만 여기서는 ‘질의-응답(Q&A)’로 해결했다. 

본 연구는 관련연구와 공정한 비교를 위해 Java의 

실제 버그가 담긴 대규모 데이터 셋인 Defects4j 

[21]를 사용했다. 테스트 오라클 생성 기존 

연구[11,19-20]보다 최소 4% 최대 36% 더 많은 

버그를 재현을 이루었다. 대형 언어 모델(LLM)과 비교 

실험을 통해서 프롬프트 엔지니어링이 효과적이 였음을 

확인하였으며, 스무고개 방식의 회차별 질문 요청 대한 

분석을 통해서 효과적인 프롬프트 엔지니어링이었음을 

입증했다. 

2. 배경지식 및 선행연구

2.1. 대형 언어 모델 

대형 언어 모델(Large Language Model, LLM)은 

대규모 말뭉치(자연어 텍스트, 코드, 수식 등)로부터 

토큰(token) 단위의 확률 분포 학습하여, 주어진 

입력(프롬프트) 뒤에 이어질 다음 토큰을 예측하는 

방식으로 동작한다. 최근 주류 LLM은 

트랜스포머(Transformer) 계열로 구현되며, 입력 

시퀀스에 대한 자기-어텐션(self-attention)을 이용해 

장거리 의존성을 모델링 한다. 대형 언어 모델은 

일반적으로 사전 학습(pre-training)단계에서 대규모 

데이터에 대해 자기지도학습을 수행하고, 미세 조정 

(fine-tuning)단계에서 특정 도메인/작업에 대한 추가 

학습을 수행한다.  

이러한 언어 모델을 ‘학습 가능한 파라미터 수’로 

규모를 대표할 수 있다. 

 소형(small): ~0.3B(3억 미만 파라미터)

예) CodeGPT(110M), CodeParrot(110M)

 중형(Mid): 0.3B~7B(3억 ~70억 파라미터)

예) Phi-1(1.3B), PolyCoder, CodeGemma-2B

 대형(Large): 7B~(70억 이상 파라미터)

예) Code Llama, CodeGemma-7B

오픈 소스 기반의 대형 언어 모델은 파라미터가 

명확하여 규모를 구분할 수 있지만, 상업용 대형 언어 

모델(API)은 파라미터가 비공개인 경우가 많아 

직접적인 비교에는 한계가 있다. 보조적인 비교 

지표로 컨텍스트 윈도우의 크기와 최대 출력 토큰 

등으로 스펙을 비교할 수 있다. 예를 들어, 오픈소스 

언어모델 중 대형으로 분류되는 Code Llama는 기본 

16K 토큰 길이로 학습되었고 최대 100K 토큰 

컨텍스트까지 안정적 생성이 가능하다고 

보고되었다[23]. 하지만 상업용 대형 언어 모델에서 

Open Ai의 GPT 계열 중 GPT-5.1의 경우 컨텍스트 

윈도우의 크기는 400K이며, 128K 최대 출력을 

지원한다[24]. 

상업용 언어 모델은 일반적으로 모델 가중치에 

대한 직접 접근이 제한되어 오픈 소스 언어 모델처럼 

사용자가 임의로 자유롭게 재학습하거나 커스텀 

미세조정을 수행하기는 한계가 있다. 대신 검색 기반 

생성(RAG), 도구 호출 및 컨텍스트 구성 전략(예: 

few-shot, CoT)을 통해 특정 작업에 대한 적합성을 

향상시키는 방식이 실무적으로 널리 활용된다. 

2.2. 테스트 오라클 생성 

테스트 오라클은 테스트의 기대 결과를 정의하는 

핵심 요소이지만, 실제 개발에서는 사람이 수동으로 

작성해야 하는 경우가 많아 비용이 크고 누락이 

발생하기 쉽다. 이에 따라 최근 소프트웨어 테스트 
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연구에서는 자연어·코드·문서 등 개발 산출물을 

활용하여 오라클 또는 오라클에 준하는 명세를 자동 

생성하려는 시도가 활발히 이루어지고 있다.  

오라클 생성 자체를 직접 목표로 한 신경망 기반 

연구로는 TOGA[11]가 대표적이다. 테스트 대상 

메서드의 코드 문맥을 이용하여 오라클을 추론하는 

트랜스 포머(Transfomer) 기반 방법을 제안하였고, 

자동 테스트 생성[13]과 결합했을 때 추가 결함 탐지 

성과를 보고하였다. 다만 TOGA[11]를 포함한 기존 

학습 기반 방식은 생성된 오라클의 강도(strength) 

부족, 구현 결함을 그대로 따라가 잘못된 오라클을 

생성할 가능성, 그리고 미지의 코드에 대한 일반화 

등에서 한계가 지적되어 왔다. 

이러한 흐름은 최근 코드 특화 대형언어모델(Code 

LLM)의 등장으로 새로운 전환점을 맞이하였다. 여러 

코드 LLM을 대상으로 미세조정 및 프롬프팅 변형을 

결합해 테스트 오라클을 생성하는 TOGLL[20]을 

제시하고, 기존 방법(EvoSuite[13], TOGA[11]) 대비 

더 정확하고 강한 오라클을 생성하며 실제 버그 

탐지에서도 추가적인 성과를 낼 수 있음을 대규모 

실험으로 보였다. 특히 LLM 기반 오라클 생성은 입력 

컨텍스트의 구성 방식에 따라 결과가 크게 달라질 수 

있는데, Doc2OracLL[19]은 Javadoc과 같은 문서가 

메서드의 기대 동작과 예외 조건을 구조적으로 

포함한다는 점에 주목하여, 코드만 기반으로 할 때 

모델이 결함이 있는 구현을 모사하며 잘못된 

오라클을 생성할 수 있는 반면 문서 기반 입력은 

의도된 동작을 반영한 오라클 생성을 유도할 수 

있음을 논의하고, 문서의 존재 여부가 성능 평가 

결과에 미치는 영향을 체계적으로 제시한다. 한편 

오라클의 핵심 구성 요소인 단언문 생성의 품질을 

높이기 위해, LLM 기반 자동 단언문 생성 가능성을 

체계적으로 탐구하며 EASE[27]를 활용한 성능 향상 

구성을 제안하였다. 공개된 재현 자료에 따르면 

EASE[27]는 유사 테스트–단언문 쌍을 정보검색(IR) 

방식으로 찾아 모델 입력으로 제공하는 방식을 통해 

LLM이 보다 적절한 단언문을 생성하도록 돕는다. 

 

3. 연구 방법론 

3.1절에서는 스무고개 방식의 질의-응답 프롬프트 

기법의 동기를 설명한다. 그림 1은 본 기법의 접근 

방식의 개요를 보여 준다. 좌측의 입력 컨텍스트 정보가 

담긴 사용자의 문제 프롬프트를 통해서 스무고개식 

ANTLION의 프롬프트의 시작을 보여준다. 3.2 절에서는 

ANTLION이 테스트 오라클을 생성하는 방식을 설명한다. 

3.3 절에서는 테스트 오라클 생성 과정에서 사용된 

질문목록을 구체적으로 설명한다. 

3.1. 동기 

대화형 추론 게임인 스무고개는 전세계적으로 

오래전부터 남녀노소 즐겨온 놀이로 알려져 있다. 

참가자 한 명이 어떤 대상을 마음속으로 정하면, 다른 

참가자가 최대 질문 횟수가 정해져 있는 질의-응답 

과정을 통해서 그 대상을 추론하는 구술 놀이이다[29]. 

 
1 본 그림과 3.3절의 질문 구성의 예시는 설명의 편의를 위해 

한글로 재구성했으며, 실험은 영어 프롬프트로 수행하였다. 

 

그림 1. ANTLION 질의-응답 개요1 
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질문자는 제한된 횟수 안에서 정보량이 큰 질문을 

선택해 후보를 단계적으로 좁히며, 답변자는 질문에 

따라서 단서를 제공한다. 이 과정은 ‘질문 설계 – 정보 

획득 – 가설 갱신 – 탐색 공간 축소’라는 반복적 추론 

절차를 직관적으로 보여준다.  

일반적 대화 성능이 훌륭한 대형 언어 모델(LLM)을 

테스트 오라클 생성 기법에 적용하면서 추론의 

불안정성을 완화하기 위한 프롬프트 엔지니어링 

관점에서 스무고개 방식 질의 전략을 채택했다. 

스무고개 방식은 최소한의 문맥으로도 후보 공간을 

체계적으로 축소하도록 유도하므로, 간결한 프롬프트를 

유지하면서도 일관된 추론을 도울 수 있다. 또한 

불필요한 서술 확장을 억제함으로써 LLM의 

환각(hallucination)으로 인한 오류 가능성을 낮추는 데 

기여한다. 

3.2. ANTLION 

그림 1은 본 연구에서 제안하는 ANTLION에서 테스트 

오라클 생성 과정의 개요를 보여준다. ANTLION은 

테스트 대상 메서드와 테스트 접두 코드를 입력으로 

받아, 다중 회차[28] 질의-응답을 통한 단계적 추론을 

통해 테스트 오라클을 생성하는 프레임 워크이다.  

구체적으로 ANTLION은 (1) 입력 컨텍스트로 테스트 

대상 코드, 오라클 위치를 표시하는 

플레이스홀더“<AssertPlaceHolder>”를 포함한 테스트 

접두 코드, 그리고 사전에 정의된 질문 목록을 구성하여 

언어 모델에게 제공함으로써 테스트 오라클 생성 

과정을 시작한다. 이후 (2) ANTLION은 스무고개 방식의 

질의 전략을 적용하여, 질문에 포함된 질의를 필요에 

따라 선택적으로 사용하면서 추가정보를 획득한다. 본 

연구에서는 총 5개의 질문(대상 메서드 의도, 테스트 

접두 코드 의도, 제어 흐름 정보, 오라클 후보, 문서화 

정보)을 제공한다. 5가지 질문은 테스트 생성, 테스트 

오라클 생성 연구 분야에서 오라클 생성에 유용하다고 

알려진 정보를 포괄하도록 설계했다. 각 질문에 대해서 

구현상 사용자(User)가 사전에 정의된 자연어 답변을 

제공하며, 이는 최종 정답으로 도출할 오라클 생성을 

위한 근거 정보로 활용한다. 마지막으로 (3) 모델은 

주어진 대화 문맥과 질의-응답으로 획득한 정보를 

종합적으로 추론하여 플레이스 홀더를 치환할 구체적인 

테스트 오라클 구문을 출력한다. 이때 모델은 질문 

목록의 모든 항목을 반드시 사용해야 하는 것은 아니며, 

문제의 난이도나 맥락의 충분성에 따라서 일부 질문만 

사용하거나, 질문을 사용하지 않을 수 있다. 이를 통해 

ANTLION은 대화의 초점을 잃지 않고 불필요한 질의를 

줄여 추론 비용을 완화하면서도, 필요한 경우에 질문 

목록을 선택적으로 사용을 통해 오라클 생성에 필요한 

정보를 보강하여 정확한 오라클을 도출하는 것을 

목표로 한다. 

3.3. 질문 구성 

ANTLION은 다중 회차 질의–응답 과정에서 사용할 수 

있는 사전 정의 질문 목록을 제공한다. 본 절에서는 

해당 질문들의 목적과 포함 정보의 범위를 설명한다. 각 

질문은 선행연구에서 오라클 생성에 유용하다고 알려진 

보조 정보를 체계적으로 활용하기 위해 설계되었다. 

ANTLION은 각 문제에 대해 모든 질문을 강제하지 않고, 

입력 맥락의 충분성 및 불확실성에 따라 질문을 

선택적으로 사용함으로써 정보 획득과 추론 비용 간 

균형을 달성한다.  

3.3.1. 테스트 대상 메서드의 의도 

제공 정보. 테스트 대상 메서드(MUT)의 동작을 

자연어로 요약한 설명을 제공한다. 구체적으로 

메서드의 상위 책임(무엇을 하는지), 반환값 또는 

부작용의 의미, 결과에 영향을 주는 주요 조건(분기, 

예외 발생 조건 등)을 행동 수준에서 정리한다. 

유용한 경우. 메서드가 길거나 도메인 특화 로직을 

포함해 코드만으로 의도를 빠르게 파악하기 어려운 

경우 유용하다. 특히 다수의 분기/조기 반환/예외 

처리가 포함된 메서드에서 “어떤 조건에서 어떤 

결과가 나오는지”를 빠르게 정리하는 데 효과적이다. 

제공하지 않는 정보/한계. 정답 오라클을 직접 

제시하지 않으며, 코드에 존재하지 않는 새로운 

가정을 추가하지 않는다. 또한 모든 엣지 케이스를 

완전하게 열거하는 것을 보장하지 않는다. 

장점. 오라클 생성에서 필요한 “검증 대상의 

의미”를 명확히 하여, 반환값/예외/부작용 중 무엇을 

목표로 삼아야 하는지 결정하는 데 기여한다. 

결과적으로 잘못된 검증 유형 선택을 줄인다. 

예시. 

- 테스트 대상 메서드:

public int add(int a, int b) { 

 return a + b; 

} 

- 테스트 대상 메서드의 의도:

이 메서드는 두 정수의 합을 계산하도록 

설계되었습니다. 두 정수를 입력 매개변수로 받아 산술 

덧셈 결과를 반환합니다. 이 메서드는 부작용이 없으며 

입력 값에만 기반하여 항상 확정적인 결과를 

반환합니다. 조건 분기나 예외 처리가 없습니다. 

3.3.2. 테스트 접두 코드의 의도 

제공 정보. 테스트 접두 코드가 구성하는 

시나리오를 자연어로 설명한다. 즉, 입력 데이터의 

형태, 객체 초기화/설정, 선행 호출, 모의 객체 적용 

여부 등 테스트가 어떤 전제 조건을 만들고 무엇을 

검증하려는 지(값/예외/상태 변화)를 요약한다. 

유용한 경우. 테스트 접두 코드에 복잡한 설정(예: 
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상태 변경, 입력 전처리)이 포함되어 기대 결과가 

코드 설정에 강하게 의존하는 경우 유용하다. 또한 

접두 코드가 단순 호출 이상으로 “의도된 테스트 

목적(what-to-test)”을 암시하는 경우, 이를 분명히 

하는 데 도움이 된다. 

제공하지 않는 정보/한계. 테스트를 실행하여 실제 

결과를 알려주지 않으며, 오라클의 정답 값을 직접 

제공하지 않는다. 접두 코드가 기대 값을 충분히 

규정하지 못하는 경우, 이 정보만으로 오라클이 

단일하게 결정되지 않을 수 있다. 

장점. ‘테스트 접두 코드의 의도’를 명시화 함으로써, 

테스트 대상 메서드의 일반 동작과 테스트가 

요구하는 특정 맥락을 연결한다. 이를 통해 모델이 

불필요한 가정으로 확장하지 않고, 테스트가 겨냥한 

조건과 결과에 집중하도록 유도한다. 

예시. 

- 테스트 대상 메서드: 

public int add(int a, int b) { 

    return a + b; 

} 

- 테스트 접두 코드: 

int result = add(2, 3);  

- 테스트 대상 메서드의 의도: 

이 테스트 접두사는 add 메서드가 두 개의 구체적인 

정수 인수 2와 3으로 호출되는 간단한 시나리오를 

설정합니다. 이 접두사의 목적은 메서드가 이러한 

입력의 합을 올바르게 계산하는지 확인하는 것입니다. 

이 테스트는 작고 고정된 값을 사용하여 메서드의 기본 

산술 동작을 검증하고 반환 결과가 예상되는 덧셈 

결과를 반영하는지 확인하는 것을 목표로 합니다. 

 

3.3.3. 테스트 대상 메서드의 제어 흐름 정보 

제공 정보. 테스트 대상 메서드(MUT)의 제어 흐름 

그래프(CFG)를 제공한다. 일반적으로 정규화된 

메서드 표현과 함께, 분기/루프/예외 처리, 조기 반환 

등 가능한 실행 경로를 그래프 구조로 나타낸다. 

유용한 경우. 오라클이 특정 분기 경로에 종속되는 

경우, 혹은 예외 처리/조기 반환이 많아 ‘실제로 어떤 

경로가 실행되는지’를 확인해야 하는 경우 유용하다. 

또한 테스트 접두 코드가 유도하는 경로를 추론해야 

하는 상황에서, 경로 누락으로 인한 오라클 오류를 

줄인다. 

제공하지 않는 정보/한계. CFG는 경로 구조를 

제공하지만, 각 경로가 어떤 의미를 갖는지에 대한 

해석을 자동으로 제공하지 않는다. 또한 경로의 도달 

가능성은 입력 조건과 상태에 따라 달라지므로, 

CFG만으로 특정 경로가 반드시 실행된다고 결론 

내릴 수는 없다. 

장점. 가능한 실행 경로를 체계적으로 열거하고, 

테스트 접두 코드가 어떤 경로를 유도하는지 

판단하도록 돕는다. 이를 통해 “잘못된 경로를 가정해 

생성한 오라클”을 줄이고, 분기 기반 로직에서의 

정확도를 높인다. 

 

예시. 

- 테스트 대상 메서드: 

public int add(int a, int b) { 

    return a + b; 

} 

- 제어 흐름 그래프: 

digraph CFG { 

  n0 [label=＂진입"]; 

  n1 [label=＂종료"]; 

  n2 [label="return a + b"]; 

  n0 -> n2; 

  n2 -> n1; 

} 

 

3.3.4. 오라클 후보(top-k) 

제공 정보. 현재 문맥에서 가능성이 높다고 

판단되는 JUnit 4 오라클 assertion 후보(top-k)를 

순위 형태로 제시한다. 후보는 단일 assertion 또는 

소수의 assertion 조합으로 제공되며, 정적 import 

환경을 가정한 표준 JUnit 4 형식을 따른다. 

유용한 경우. 오라클 공간이 넓거나 형식이 

까다로운 경우(예: 부동 소수 오차 허용치, 예외 검증 

패턴, 문자열/컬렉션 비교 등) 유용하다. 또한 모델이 

여러 가능성 중 하나를 선택해야 하는 상황에서 후보 

비교를 통해 최종 출력을 안정화하는 데 도움이 된다. 

제공하지 않는 정보/한계. 후보는 제안일 뿐 정답을 

보장하지 않으며, 정답이 후보 집합에 포함되지 않을 

수 있다. 따라서 후보는 “검토 대상”으로 사용되어야 

하며, 맥락에 비추어 비판적으로 선택해야 한다. 

장점. 오라클의 표현 형식에서 발생하는 실수를 

줄이고, 모델이 최종 결정을 내릴 때 탐색 비용을 

줄이는 역할을 한다. 

예시. 

- 테스트 대상 메서드: 

public int add(int a, int b) { 

    return a + b; 

} 

- 테스트 접두 코드: 

int result = add(2, 3);  

- 테스트 오라클 후보(top-k): 

assertEquals(5, result); 

assertEquals(4, result); 

assertEquals(6, result); 
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3.3.5. 테스트 대상 메서드의 문서화 정보 

제공 정보. 테스트 대상 메서드(MUT)의 문서화 

정보(예: Javadoc 스타일 docstring)를 제공한다. 

메서드의 책임, 파라미터 의미, 반환값 의미(또는 

부작용), 코드로부터 명확히 유도되는 제약/조건(예: 

예외, null 처리, 경계 조건)을 “계약(contract)”에 

가까운 형태로 요약한다. 

유용한 경우. 코드가 복잡하거나 구현이 의도를 

드러내지 않는 경우, 또는 메서드가 

라이브러리/프레임워크의 규약을 따르는 경우 

유용하다. 문서에 명시된 규약(예: 특정 입력에서의 

예외, 반환의 의미)이 오라클 결정에 직접적인 단서를 

제공할 수 있다. 

제공하지 않는 정보/한계. 코드에 근거하지 않은 

가정을 추가하지 않으며, 문서가 실제 구현과 

불일치할 가능성은 존재한다. 또한 문서 역시 정답 

오라클을 직접 제공하지 않는다. 

장점. 메서드의 ‘의도된 계약’을 명시 화하여 

오라클이 무엇을 검증해야 하는지를 정리하는 데 

도움을 준다.  

예시. 

- 테스트 대상 메서드: 

public int add(int a, int b) { 

    return a + b; 

} 

- 테스트 대상 메서드의 문서화 정보(Javadoc): 

/** 

* 두 정수의 합을 계산합니다. 

* <p>이 메서드는 두 정수를 입력 받아 산술 덧셈 

결과를 반환합니다. 

* 부작용이 없으며 결과는 입력된 인수에만 

의존합니다.</p> 

* 

* @param a 첫 번째 정수 덧셈 수 

* @param b 두 번째 정수 덧셈 수 

* @return {@code a}와 {@code b}의 합 

*/ 

 

4. 실험 설정 

4.1. 연구 질문 

RQ1. 본 기법 ANTLION은 얼마나 정확한 테스트 

오라클을 생성할 수 있는가? 

RQ2. 본 기법 ANTLION은 GPT와 비교했을 때 

프롬프트 엔지니어링의 효과가 있는가? 

RQ3. 본 기법 ANTLION은 질의-응답 과정에서 

얼마나, 어떤 질문을 선호하며, 질문이 정확도에 어떤 

영향을 미치는가? 

RQ4. 본 기법 ANTLION은 얼마나 다양한 오라클 

구문을 생성할 수 있는가? 

RQ5. 본 기법 ANTLION은 테스트 오라클을 

생성하는데 비용(토큰) 소모량은 어떠 한가? 

4.2. 벤치 마크 

본 연구 ANTLION를 수행하기 위해, 실제 854개의 

Java 버그로 구성된 벤치마크 데이터셋인 

Defects4J[21]를 활용한다. 비교 기준과 공정한 

비교를 위해 TOGA 저장소[25]에 공개된 동일한 

입력 샘플을 사용한다. 374개의 입력 샘플로 

구성되며, 각 샘플은 테스트 대상 메서드(MUT), 

테스트 접두 코드, Javadoc 문서 쌍으로 구성 

되어있다. 이 374개의 입력샘플은 Defects4J의 11개 

프로젝트와 120개의 고유 버그를 포함한다. 

입력 샘플은 테스트 오라클 구문을 포함하며, 해당 

테스트 오라클 구문을 플레이스홀더 

“<AssertionPlaceHolder>”로 치환하여 ANTLION의 

실험을 진행했다. 

4.3. 비교 기준 

Defects4J[21]의 374개 입력 샘플을 이용한 최신 

연구를 비교 기준 선으로 삼았다. 

 TOGA[11]: 트랜스포머 기반의 신경만 테스트 

오라클 생성 기법으로, 가능한 오라클 후보 

집합을 생성하고 각 후보의 점수를 순위와 

하여 가장 높은 점수를 최종 오라클로 

출력하는 연구이다. 

 TOGLL[20]: 대형 언어 모델을 활용해 

정확하고 강한 테스트 오라클을 생성하는 

방법으로, 미세조정 및 프롬프트 설계를 통해 

TOGA 대비 성능을 비교 보고한 최신 

연구이다. 

 Doc2OracLL[19]: 테스트 오라클 생성에서 

문서(Javadoc)이 미치는 영향을 분석하고, 

문서 정보를 포함해 오라클을 생성하는 접근을 

다룬 최신 연구이다. 프롬프트 조합 중 가장 

많은 버그를 탐색한 프롬프트(P6)와 

모델(CodeLlama-7B)을 기준선으로 삼았다. 

 GPT-5.1[24]: 상업용(폐쇠형) 대형 언어 

모델이 다중회차 질의-응답 프롬프트 없이 

직접 오라클 생성을 진행한다. 

4.4. 평가 지표 

Defects4J[26] 저장소에는 각 고유 버그 마다 

Buggy 버전과 Fixed 버전을 쌍으로 제공한다. 

실험에서는 Buggy 버전에서 실패(Fail) 하고 Fixed 

버전에서 성공(Pass)한 테스트 오라클을 정확하다 

정의하며, 버그를 재현했다고 평가한다. 이는 비교 

기준 선과 동일한 판정 기준을 따른다. 
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4.5. 구현 

ANTLION의 실험 파이프라인은 Python 3.12.10 

기반으로 구현하였으며, 전체 구현 규모는 1,312 

LOC(lines of code)이다. 실험에는 OpenAI의 최신 

배포 모델인 GPT-5.1[24]을 사용하였고, 생성 

설정은 maximum output tokens 512, temperature 0.5, 

top_p 1 로 고정하였다. 이 외에는 open ai API 기본 

값으로 수행하였다. 테스트 실행 및 결함 검증은 

Defects4J[21] 벤치마크를 통해 수행하였으며, 

테스트 프레임워크로는 JUnit 4를 사용하였다. 

질의-응답 과정에서 사용자 답변은 질문 1,2,4의 

경우 gpt-5.1 모델에서 temperature 0.0 설정으로 

사전에 생성해 두었으며, 질문 3의 경우 

라이브러리를 이용하여 그래프 생성 함수를 

이용하였다. 

  

4.6. 타당성 위협 요소 

LLM 생성 과정의 무작위성(temperature 등)이 결과 

변동을 유발할 수 있으므로, 선행연구(TOGLL[20], 

Doc2OracLL[19])를 참고하되 이를 더 엄밀히 

통제하기 위해 동일 설정에서 총 5회 반복 실험을 

수행했다. Defects4J[21]의 Buggy/Fixed 쌍에서 

‘Buggy에서 fail, Fixed에서 pass’를 정확한 오라클로 

정의했지만, 이 기준이 결함의 본질을 정확히 

기술하는 오라클과 완전히 일치하지는 않아 우연히 

결함을 자극하는 취약 오라클이 포함되거나 전제 

조건 차이로 패턴이 달라질 가능성이 있다. JUnit4 

환경에 한정되어 다른 언어/프레임워크나 산업 

코드로의 일반화에 제약이 있을 수 있고, 다중 회차 

질의-응답 기반 생성은 프로젝트 관행(테스트 오라클 

패턴), 코드/문서 구조, 도메인 특성에 따라 확보 

정보의 질이 달라져 성능 편차가 생길 수 있으며, 

상업용 API LLM의 모델 업데이트로 시점에 따라 

결과가 달라질 수 있어 모델명과 디코딩 설정을 

명시하고 당시 배포 모델을 고정해 재현성을 

확보했다. 

 

5. 실험 결과 

5.1. 정확한 테스트 오라클 생성 평가 

RQ1은 “ANTLION이 얼마나 정확한 테스트 

오라클을 생성할 수 있는가?”를 평가하는 것이다. 

이를 위해 널리 수용되는 현실 세계 Java 결함 

벤치마크인 Defects4J를 사용하였다. Defects4J는 각 

결함에 대해 buggy 버전과 fixed 버전을 제공하며, 

본 연구에서는 Defects4J 관련 세부 구성과 실험 

조건을 4.2절에서 제시하였다. 본 절에서는 

ANTLION이 생성한 오라클이 실제 결함을 재현할 수 

있는지 관점에서 성능을 비교한다. 

표 1는 Defects4J 벤치마크에서 버그 재현 수(고유 

버그 수)를 기준으로, ANTLION과 기존 방법들을 

비교한 결과를 보여준다. 비교 대상은 테스트 오라클 

생성 분야의 대표적 기존 연구인 TOGA[11], 

TOGLL[20], Doc2OracLL[19]이며, 각 방법의 수치는 

해당 논문에서 보고된 결과를 기반으로 정리하였다. 

표 1에서 확인할 수 있듯이 ANTLION은 

Defects4J에서 총 76개의 고유 버그를 재현하였다. 

이는 TOGA(56), TOGLL(65), Doc2OracLL(73)보다 

높은 수치로, 동일한 벤치마크에서 더 많은 실제 

결함을 재현할 수 있음을 시사한다. 또한 

buggy/fixed 쌍의 동작 차이로 버그가 재현되었다는 

점은, 생성된 오라클이 형식적 생성에 그치지 않고 

결함을 드러내는 방향으로 작동했음을 보여준다. 

 

5.2. 요소 제거 실험 

RQ2는 “ANTLION이 GPT 단독 사용 대비 프롬프트 

엔지니어링의 효과를 제공하는가?”를 검증하는 

것이다. 이를 위해 ANTLION의 핵심 설계 요소(다중 

회차 질의 전략 및 단계적 정보 보강)를 제거하고, 

동일한 상용 LLM(GPT-5.1)을 프롬프트 엔지니어링을 

제거한 기본 프롬프트로만 호출하는 비교 기준을 

구성하였다. 비교의 공정성을 위해 기본 프롬프트 

조건에서도 few-shot 예제와 JUnit 4 assertion 작성 

지침은 동일하게 제공하고, 질의-응답 기반 정보 

보강만 제거해 프롬프트 설계의 기여를 분리해 

평가하였다. 

표 2은 Defects4J에서의 고유 버그 수를 기준으로 

GPT-5.1 기반 비교 기준과 ANTLION의 결과를 

제시한다. GPT-5.1을 기본 프롬프트로 적용한 경우 

58개의 고유 버그를 재현한 반면, ANTLION은 76개를 

재현하였다. 이는 동일한 모델을 사용하더라도 

ANTLION의 구조화된 입력 구성과 다중 회차 

상호작용이 버그 재현 성과를 개선하며, 성능 향상이 

표 1. Defects4J 벤치마크에서 버그 재현 수 

방법론 고유 버그 수 

TOGA[11] 57 

TOGLL[20] 65 

Doc2OracLL[19] 73 

ANTLION (Ours) 76 

 

표 2. 프롬프트 엔지니어링을 제거한 GPT와 비교 

방법론 고유 버그 수 

ChatGPT-5.1[24] 58 

ANTLION (Ours) 76 
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모델 사용만으로 설명되기 어렵다는 점을 뒷받침한다. 

5.3. 질의 분석 

표 3는 ANTLION의 다중 회차 질의가 얼마나 자주 

사용되는지 보여준다. 전체 입력 중 1회 이상 질문을 

사용한 경우가 59.8%로 과반을 차지해, 초기 

컨텍스트만으로 해결하기보다 질의-응답을 통해 

필요한 단서를 보강한 뒤 오라클을 생성하는 사례가 

많음을 확인할 수 있다. 질문 횟수 분포는 

1회(31.7%)가 가장 크고, 2회(14.8%), 3회(9.6%), 

4회(3.3%), 5회(0.1%)로 갈수록 급격히 줄어든다. 즉, 

필요할 때는 질문을 활용하지만 대부분은 적은 

회차로 정보를 효율적으로 확보한다. 

표 4는 멀티 턴 과정에서 요청된 보조 정보의 

종류를 요약한다. 가장 많이 호출된 것은 테스트 접두 

코드 의도에 대한 자연어 요약(45.8%)이며, 이는 

오라클 생성에서 빈번한 불확실성이 메서드 자체의 

의미보다 현재 테스트가 구성한 시나리오의 검증 

목표에 있음을 시사한다. 접두 코드는 입력 구성, 

객체 초기화, 상태 설정 등으로 상황을 만들어내는데, 

이 구성이 복잡할수록 코드만으로 무엇을 검증해야 

하는지 불명확해질 수 있어 모델이 목표를 먼저 

명료화하려는 경향이 나타난다. 그 다음으로는 JUnit 

4 오라클 후보 제시(18.5%), 제어 흐름 

정보(CFG)(16.7%), 테스트 대상 메서드 의도 

요약(13.5%) 순으로 나타나, 목표를 파악한 뒤에도 

assertion 형태 선택, 분기·예외로 인한 경로 

불확실성, 기능적 요약이 추가로 필요한 경우가 적지 

않음을 보여준다. 반면 Javadoc 기반 문서화 정보는 

5.4%로 가장 낮아, 다른 단서들이 오라클 결정에 더 

직접적으로 사용되었음을 시사한다. 

표 5은 최대 5회 질문 허용 조건에서 실제로 N회 

질문이 발생한 샘플을 모아, 질문 횟수별로 어떤 

유형이 선택되는지 나타낸다. 이는 질문 횟수를 

N으로 고정한 실험이 아니라, 생성 과정에서 추가 

정보가 필요해 결과적으로 N회 질의가 수행된 경우의 

패턴을 보여준다. 1회 질문에서는 테스트 접두 코드 

의도가 67.8%로 가장 높아, 단 한 번의 보강으로 

해결되는 사례의 핵심 요구가 검증 목표의 

명시화임을 재확인한다. 2회에서는 접두 코드 의도가 

높은 수준으로 유지되는 가운데 top-k가 늘어나, 

목적을 정한 뒤 구체적인 assertion 형태를 정리하는 

단계가 병목이 되는 경우를 보여준다. 3회로 늘어나면 

CFG와 top-k 비중이 크게 높아져, 어떤 실행 경로를 

전제로 오라클을 작성할지와 그에 맞는 표현을 함께 

확정하려는 경향이 강화된다. 4회에서는 메서드 의도 

요약의 비중이 크게 증가하고 접두 코드 의도, CFG, 

top-k도 모두 높은 수준을 보이며, 복잡한 

입력에서는 메서드 행동 요약, 테스트 목표, 경로 

구조, assertion 표현이 결합돼야 안정적으로 결론에 

도달함을 시사한다. 문서화 정보는 질문이 많아질수록 

비율이 다소 상승하지만 여전히 낮아, 특정 

상황에서만 제한적으로 활용되는 보조 근거로 남는다. 

종합하면 ANTLION의 질의 선택은 임의가 아니라, 

오라클 생성 과정에서 발생하는 불확실성의 성격에 

따라 달라진다. 기본 축은 테스트 시나리오의 검증 

목표를 분명히 하는 것이며, 질의가 늘어날수록 경로 

구조 확인과 assertion 후보 비교가 결합되어 경로 

기반 의미와 표현 형식을 동시에 안정화하는 

방향으로 확장된다. 

 

5.4. 생성된 오라클의 다양성 분포 

표 6은 ANTLION이 생성한 JUnit 4 테스트 오라클을 

assertion 유형별로 분류한 결과를 보여준다. 가장 높은 

비중은 assertEquals(30.4%)로, 반환값이나 계산 

결과처럼 정확한 값 비교가 오라클 생성에서 핵심 

형태임을 확인할 수 있다. 다음으로 assertFalse(16.1%), 

Fail(13.6%), assertTrue(12.7%)가 높은 비율을 차지해, 

조건식 기반 검증과 기대한 예외가 발생하지 않을 때 

실패를 명시하는 방식도 자주 사용되었다. 또한 

assertNotNull(8.1%), assertNull(7.4%) 등 null 관련 

검증이 일정 비중을 보였고, assertSame(2.1%), 

assertArrayEquals(2.0%), assertNotSame(0.5%)는 

상대적으로 낮게 나타났다. 

이 분포는 ANTLION이 값 비교에만 집중하지 않고, 

조건 검증, null 검증, 명시적 실패, 참조 동일성 및 

배열 비교까지 입력 맥락에 맞춰 다양한 assertion을 

활용해 실행 가능한 JUnit 4 오라클을 폭넓게 구성하는 

경향이 있음을 시사한다. 

표 3. ANTLION의 질의 전략의 질문 호출빈도 

 0회 1회 2회 3회 4회 5회 

평균(회) 150.4 118.4 55.4 36.0 12.4 0.4 

비율(%) 40.2 31.7 14.8 9.6 3.3 0.1 

 

표 4. ANTLION의 질문 유형별 사용빈도 

 질문A 질문B 질문C 질문D 질문E 

평균(회) 52.6 177.8 65.2 72.0 21.2 

비율(%) 13.5 45.8 16.7 18.5 5.4 

 

 

표 5. 질문 사용 개수(N)별 질문 유형 사용비율(%) 

 질문A 질문B 질문C 질문D 질문E 

1회 10.6 67.8 12.0 9.5 0.0 

2회 26.8 91.2 20.6 46.4 15.0 

3회 35.1 96.1 79.5 68.0 21.4 

4회 96.7 93.4 88.2 84.0 37.7 
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5.5. 비용(토큰) 소모량 

표 7은 Defects4J[21] 374개 입력 샘플에 대해 

ANTLION이 오라클을 생성할 때 사용한 토큰과 

비용의 평균을 제시한다. 전체적으로 입력 2,310,079 

토큰과 출력 28,014 토큰을 사용해 총 2,338,093 

토큰이 소모되었고, 비용은 입력 $2.89, 출력 

$0.28로 합계 $3.17이다. 이를 샘플당으로 환산하면 

평균 약 $0.0085로, 대규모 벤치마크 실험에서도 

비용 부담이 크지 않으며 입력 토큰이 비용의 

대부분을 차지하는 구조에서도 전반적으로 합리적인 

비용으로 오라클 생성이 가능함을 보여준다. 

 

6. 결론 및 향후 연구 계획 

본 연구는 단위 테스트에서 핵심 요소인 테스트 

오라클을 대형 언어 모델로 자동 생성하는 문제를 

다루며, 다중 회차 질의–응답 프롬프트 기법인 

ANTLION을 제안하였다. ANTLION은 테스트 대상 

메서드, 테스트 접두 코드, 질문 목록을 기반으로 최소 

문맥에서 시작한 뒤, 오라클 추론에 필요한 정보만 

선택적으로 추가 제공하여 긴 프롬프트로 인한 환각을 

완화하고 생성 성능을 높이고자 한다. Defects4J[21] 

실험에서 ANTLION은 최신 비교 기준 기법[11, 19, 

20]들보다 더 많은 고유 버그를 재현하였고, 동일 

모델(GPT-5.1[24]) 프롬프트 엔지니어링이 제거된 

기본 프롬프트 기준과의 프롬프트 엔지니어링 요소 

제거 실험에서도 프롬프트 엔지니어링의 효과를 

확인하였다. 또한 질의 사용 패턴과 생성된 assertion 

분포 분석을 통해, ANTLION이 입력 난이도에 따라 

필요한 정보를 단계적으로 보강하며 다양한 형태의 

JUnit 4 오라클을 생성함을 확인하였다. 

향후 연구에서는 고정된 질문 목록을 넘어, 모델의 

불확실성을 자동으로 감지해 필요한 질문을 

선택·생성하는 동적 질의 전략을 구현하고자 한다. 또한 

질문 응답을 구조화된 형태로 반환하도록 개선하여 

오라클 결정을 더 안정화하고, JUnit 5 및 타 

언어·테스트 프레임워크로 확장 평가함으로써 일반화 

가능성을 높이는 것을 목표로 한다. 
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X-RAD Engineering Recipe: 하이브리드 그래프와 2단

계 책임 분리를 통한 설명가능한 이상 탐지
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X-RAD Engineering Recipe: Explainable Anomaly Detection via 

Hybrid Graphs and 2-Stage Responsibility Decoupling 
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요   약 

 산업제어시스템(ICS) 및 항공 엔진과 같은 복합 공학 시스템에서 이상 탐지는 단순한 성능 지표를 넘

어, 조기 경보 능력과 결과에 대한 진단적 근거 제시가 필수적이다. 본 논문에서는 선행 연구된 X-RAD

의 핵심 메커니즘을 소프트웨어 공학적 관점에서 재정식화하여, 하이브리드 그래프 구축과 2-Stage 모

듈 책임 분리를 핵심 설계 원칙으로 채택한 재현 가능한 개발 및 검증 절차(Engineering Recipe)를 제안

한다. 제안된 파이프라인은 (1) 운용 모드별 정상 패턴을 학습하는 조건부 Transformer 기반 전역 탐지

기(Stage 1), (2) 물리적 지식과 데이터 근거를 결합한 하이브리드 그래프 위에서 관계 붕괴를 포착하는 

진단기(Stage 2), (3) 두 모듈의 출력을 Z-score로 정규화하여 통합하는 Score Fusion 레이어로 구성된

다. 특히 Two-Stage Responsibility Decoupling 구조를 통해 탐지(What)와 진단(Why)을 구조적으로 격리

함으로써 독립 검증 환경을 구축하고, 반사실적 기여도(ΔCF)를 통해 엣지 수준 설명의 타당성을 정량적

으로 검증한다. C-MAPSS 및 SWaT 데이터셋을 이용한 비지도 학습 평가 결과, 평균 AUPRC 0.5295와 

NAB-score 92.57을 기록하여 설정된 목표치(AUPRC>0.5, NAB>70)를 상회하였으며, 실제 고장 시점 대

비 유의미한 선행 경보(평균 -18.7 step)를 제공함을 입증하였다. 또한 SWaT 환경에서 지목된 상위 엣

지가 실제 공정 구조(P&ID)와 높은 정합성을 보임을 확인하여 현장 적용 가능한 진단 체계로서의 유효성

을 실증하였다. 

1. 서론 (Introduction) 

산업제어시스템(ICS), 항공기 엔진, 발전 설비와 같은 

복잡 공학 시스템은 수십–수백 개의 센서로부터 고주파 

다변량 시계열 데이터를 수집한다. 이러한 시스템에서 

발생하는 이상은 단순한 단일 센서의 임계치 초과를 

넘어, 운용 조건의 변화(부하, 모드), 센서 간 

상호작용의 붕괴, 장시간의 누적 열화 등 복합적인 

형태로 표출된다. 따라서 실제 현장에 적용 가능한 

이상탐지기는 (i) 조기 경보 능력, (ii) 관계 붕괴에 대한 

민감도, (iii) 진단적 설명가능성, 그리고 (iv) 운영 및 

검증 관점에서의 소프트웨어 구조적 타당성을 동시에 

만족해야 한다. 

특히 조기성은 단순히 '이상 발생 후의 빠른 감지'가 

아니라, '실제 고장이나 공격 이전에 경보를 제공하여 

대응 시간을 선제적으로 확보하는 것'을 의미한다. 

기존의 전역 점수(Global score) 중심 방식은 이상 

징후의 존재를 신속히 포착하는 데 유리하지만, 변수 간 

상호작용이 붕괴되는 유형의 이상에서는 구체적인 원인 

관계를 제시하지 못해 분석 시간이 지연되는 한계가 

있다. 반면 관계 수준 진단은 원인 후보(센서쌍 및 

연결)를 제공하여 해석력을 높여주지만, 전역적 열화 

패턴에 대한 민감도가 부족할 경우 조기 경보에 실패할 

수 있다. 따라서 조기성과 원인 규명을 동시에 달성하기 

위해서는 ‘전역 탐지’와 ‘관계 진단’의 유기적인 상보 

결합이 필수적이다. 

인공지능을 위한 소프트웨어 공학(Software 

Engineering for AI, 이하 SE4AI) 관점에서는, 단순한 

모델 성능 지표의 나열을 넘어 시스템의 실질적인 

이식성과 유지보수성을 강조한다. 연구 결과가 실제 

공학 시스템에 효과적으로 통합되기 위해서는 데이터 

전처리, 그래프 구성 근거, 모듈 간 인터페이스(입·출력 

및 책임 범위), 그리고 체계적인 검증 절차가 재현 

가능한 형태로 명시되어야 하며, 각 단계는 문서화된 

산출물로서 관리되어야 한다. 특히 모듈별 

책임(Responsibility)의 명확화는 성능 저하 발생 시 

원인을 신속하게 국소화(Localization)하고 대응하기 

위한 필수적인 공학적 요건이다. 

이러한 문제의식 하에, 본 논문은 선행 연구인 X-

RAD의 핵심 메커니즘을 유지하면서도[1], 이를 도메인 

확장성(CBM+ ↔ ICS)과 검증 엄밀성을 갖춘 ‘확장판 
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엔지니어링 레시피(Engineering Recipe)’로 정식화하여 

제시한다. 특정 운영 환경이나 정책에 종속적인 설계를 

배제하고, 표준화된 산출물(Artifact)과 검증 

체크포인트(Checkpoint)를 중심으로 전체 파이프라인을 

재구성함으로써 실무적 범용성과 재현성을 확보하고자 

하였다. 

본 논문의 주요 기여는 다음과 같다. 

(1) 모듈별 책임 분리와 독립 검증: 조건부 전역 

탐지(Stage 1)와 하이브리드 그래프 기반 관계 

진단(Stage 2)의 2-Stage 구조를 통해 탐지(What)와 

진단(Why)의 책임을 명확히 격리하고, 각 모듈에 대한 

독립적인 성능 검증(Independent Verification)을 

가능하게 한다. 

(2) 하이브리드 그래프 레시피 명세: 물리적 도메인 

지식과 데이터 기반 근거를 체계적으로 결합하는 

Hybrid Graph Recipe를 제시하여, 설명 후보 공간을 

설계 단계에서 통제하고 타당성을 확보한다. 

(3) 재현 가능한 설계 선택 근거 제시: Score Fusion 

가중치 𝛼  및 그래프 구성요소의 효과를 정밀한 민감도 

분석으로 제시함으로써, 다양한 산업 도메인으로의 확장 

시 근거 있는 설계 선택 지침을 제공한다. 

 

2. 관련 연구 (Related Research) 

다변량 시계열 이상탐지(TSAD) 연구는 크게 

예측·재구성 기반, 그래프 기반, 그리고 생성 모델 기반 

접근으로 분류할 수 있다[2,3]. TranAD[4]와 같은 

Transformer 기반 모델은 시계열의 장기 의존성을 

포착하여 전역 이상을 탐지하는 데 탁월한 성능을 

보이나, 관계 붕괴의 구체적인 원인인 

센서쌍(Relation)을 식별하여 설명하는 데에는 한계가 

있다. 한편, GDN[5]이나 GAT[6] 기반의 그래프 

접근법은 변수 간 구조적 의존성을 명시적으로 

반영하지만, 실무 환경에서 그래프를 정의하는 

기준(물리적 지식 vs 데이터 통계)과 이를 설명가능성 

평가로 연결하는 구체적인 절차적 지침은 여전히 

부족한 실정이다. 

최근 마스크드 잠재 생성 모델과[7] 같이 

설명가능성을 지향하는 TSAD 방법론들이 제안되고 

있으나[8], 실제 산업 현장의 요구사항을 충족하기 

위해서는 (i) 그래프 구성의 객관적 근거, (ii) 도출된 

설명의 타당성 검증, (iii) 구성요소별 명확한 책임 

분리가 병행되어야 한다. 특히 기존 연구들이 주로 특정 

벤치마크 데이터셋에서의 단순 성능 비교에 집중해 온 

결과, 상이한 공학 도메인 간 이동 시 개발자가 

준수해야 할 표준화된 개발 및 검증 절차(Engineering 

Recipe)의 부재는 실무적 확산의 큰 걸림돌이 되고 

있다. 

본 연구는 이러한 간극을 메우기 위해 선행 연구된 

X-RAD의 핵심 개념을 표준화된 '레시피' 형태로 

재정식화하고, 성능·조기성·설명력이라는 다각도의 

지표를 통합 검증 프레임워크 내에서 제시한다. 

산업제어시스템(ICS)과 상태기반정비(CBM+) 도메인은 

데이터 생성 메커니즘이 상이함에도 불구하고, 정상 

데이터만으로 학습하고 이상 구간에서 성능을 

평가한다는 비지도 학습의 공통 구조를 공유한다. 

따라서 본 논문에서 제안하는 조건부 입력 처리, 

하이브리드 그래프 구성, 모듈별 책임 분리와 같은 재현 

가능한 설계 지침은 개발자가 새로운 도메인에 

이상탐지 시스템을 구축할 때 겪는 불확실성을 

최소화하고 효율적인 도메인 전이를 가능케 할 것이다. 

 

3. 문제 정의 및 연구 질문 (Problem Definition & RQ) 

본 연구에서 정의하는 이상탐지 시스템의 입력은 

길이 𝐿의 다변량 시계열 윈도우 𝑋𝑡−𝐿+1:𝑡  ∈  ℛ𝐿 ×𝑛와 시점 

𝑡에서의 운용 모드 및 환경 상태를 나타내는 조건 벡터 

𝐶𝑡  ∈  ℛ𝑐 로 구성된다. 시스템의 변수 간 상호작용은 

그래프 𝐺 = (𝑉, 𝐸∗) 로 정의하며, 여기서 각 엣지 (𝑖, 𝑗) ∈
 𝐸∗는 변수 𝑖가 𝑗에 미치는 인과적 혹은 물리적 영향을 

나타내는 방향성 엣지이다. 

시스템의 최종 출력물은 다음 세 가지 요소로 

구성된다: 

① 시점 𝑡의 최종 이상 점수 𝐴𝑡  : 전역 패턴의 이탈을 

포착하는 전역 점수 𝑠1(𝑡) 와 관계 붕괴의 정도를 

나타내는 집계된 엣지 점수 𝑠2(𝑡) 를 Score Fusion 

레이어에서 결합하여 산출한다. 

② 경보 레이블 𝑎𝑙𝑎𝑟𝑚(𝑡)  : 최종 점수 𝐴𝑡 가 사전에 

결정된 운영 임계값 𝜏 를 초과할 때 발생하는 이진 

판정 결과이다 (𝑦𝑡 =  I(𝐴𝑡 >  𝜏)).  
③ 원인 후보 엣지 집합 𝐸𝑡(𝐾)  : 이상 경보 발생 시, 

각 엣지별 이상 점수를 기준으로 가장 높은 

기여도를 보이는 상위 K개의 관계 부분 집합이다 

(𝐸𝑡(𝐾) ⊆  𝐸∗, |𝐸𝑡(𝐾)| = 𝐾). 

모델의 학습은 실제 산업 현장의 특성을 반영하여 

정상 데이터만을 활용하는 비지도(Unsupervised) 

설정을 따른다. C-MAPSS 데이터셋에서는 각 유닛의 

초기·중반 정상 구간만을 학습에 사용하며, SWaT 

데이터셋은 공격 시나리오가 포함되지 않은 정상 운전 

구간을 학습 세트로 활용한다. 

본 연구는 제안하는 프레임워크의 공학적 타당성을 

검증하기 위해 다음과 같은 세 가지 연구 질문(RQ)을 

설정한다: 

 RQ1 (탐지 성능 및 조기성) : 제안된 2-Stage 

구조는 CBM+와 ICS(수처리 플랜트)라는 서로 다른 

특성의 도메인에서 실용적인 수준의 탐지 성능과 

조기 경보 능력을 동시에 달성할 수 있는가? 

 RQ2 (설명가능성) : Stage 2의 진단 모듈이 제시하는 

엣지 수준 설명은 실제 시스템의 물리적 

구조(P&ID)와 얼마나 정렬되어, 최종 이상 점수의 

변동에 실질적으로 기여하는가? 

 RQ3 (구성요소 효과성 및 설계 근거) : Score 
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Fusion 가중치 𝛼  및 하이브리드 그래프 구성 

방식은 탐지 성능과 설명력에 어떠한 영향을 

미치며, 실제 시스템 구축 시 엔지니어링 설계 

선택의 근거를 어떻게 제공하는가? 

 

4. X-RAD Engineering Recipe 

본 절에서는 X-RAD를 ‘단순 AI 모델’이 아닌, 산업 

현장에서 재현 가능한 개발·검증 절차(Engineering 

Recipe)로 정식화한다. 핵심 설계 원칙은 (i) Stage 1과 

Stage 2의 책임 분리(Responsibility Decoupling), (ii) 

하이브르드 그래프( 𝐸∗ )의 체계적 버전 관리, (iii) 

산출물(Artifact)과 회귀 방지 게이트(Regression 

Gate)의 표준화에 있다. 그림 1은 본 논문에서 

제안하는 전체 파이프라인의 흐름을 요약한다. 

 

그림 1. X-RAD Overall Architecture. Stage 1(조건부 전역 탐지)은 전역 패턴 이탈(What)을 포착하고, Hybrid 

Graph Recipe로 정의된 𝐸∗위에서 Stage 2(엣지별 관계 진단)가 원인 후보(Why)를 국소화한다. 
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4.1. Recipe Summary 및 공학적 원칙 

본 레시피의 최상위 원칙인 책임 분리(Responsibility 

Decoupling)는 시스템의 유지보수성과 신뢰성을 

극대화한다. Stage 1은 전역적 이상 징후 포착에만 

전념하여 조기 경보 능력을 극대화하고, Stage 2는 

구체적인 관계 붕괴를 규명함으로써 진단적 깊이를 

더한다. 특히 이러한 책임 분리를 실질적인 검증 

가능성으로 전환하기 위해, 본 레시피는 각 모듈이 

독립적으로 통과해야 하는 '회귀 게이트(Regression 

Gates)'를 표준 공정 내에 정의한다. 표 1에 명시된 

바와 같이, Stage 1의 탐지 신뢰성은 Stage 2의 진단 

모듈 상태와 무관하게 S1-CP1~3 게이트를 통해 

독자적으로 보증되며, 이는 모듈 간 의존성을 배제한 

'독립 검증(Independent Verification)'을 실현하는 

핵심적인 공학적 메커니즘으로 작용한다.  

Algorithm 1은 시스템 구현자가 개발 및 운영 

단계에서 준수해야 할 표준 운영 절차(Standard 

Operating Procedure)를 정의한다. 

Algorithm: X-RAD Engineering Recipe (Standard 

Procedure) 

 Data : 윈도우 길이 𝐿  선정 및 정상 데이터 

𝐷𝑛𝑜𝑟𝑚𝑎𝑙 기반 정규화 수행 

 Graph : 물리지식(𝐸𝑝ℎ𝑦)과 통계(𝐸𝑑𝑎𝑡𝑎)를 결합하여 

버전 관리된 𝐸∗ 생성 

 Stage 1 : 조건부 전역 탐지기 학습 및 전역 점수 

𝑆1(𝑡) 산출 

 Stage 2 : 𝐸∗ 상의 각 엣지별 경량 모델 학습 및 

엣지 점수 𝑆2,𝑖𝑗(𝑡) 산출 

 Fuse : Z-score 정규화 후 가중치 𝑎로 결합하여 

최종 점수 𝐴𝑡 생성 

 Calib : 검증 세트에서 임계값 𝜏  결정 및 알람 

정책 수립 

 Explain : 알람 시 상위 𝐾개 엣지 출력 및 설명 

일관성 평가 

 

표 1. Engineering Artifacts and Regression Gates (Verification Contract) 

Component Versioned artifacts (A) Regression gates (CP, must-pass) 

Stage 1 (What) S1-A1: 학습 파라미터/seed 

S1-A2: 정상 잔차 통계(Σ 또는 대각 근사) 

S1-A3: s1(t) 기준선(분포/분위수) 

S1-A4: 조건별 요약 리포트 

S1-CP1: 정상 안정성(분산/스파이크) 

S1-CP2: 조건 불변성(모드별 편향) 

S1-CP3: 민감도(이상 신호 주입 시 반응) 

Hybrid  

Graph 𝐸∗ 

G-A1: E_phy 근거(규칙/도면 출처) 

G-A2: E_data 근거(통계량/윈도우) 

G-A3: 결합·희소화 규칙 

G-A4: graph version ID 

G-CP1: 희소성/계산량 제약 

G-CP2: 근거 비율(물리 vs 데이터) 점검 

G-CP3: 정상 설명 안정성(Top-K 변동) 

G-CP4: 버전 변경 회귀 

Stage 2 (Why) S2-A1: 엣지 모델 설정(특성/지연) 

S2-A2: s2_ij(t) 기준선 

S2-A3: Top-K 로그 스키마(시간·엣지·점수) 

S2-CP1: 정상 구간에서 과민 반응 억제 

S2-CP2: 엣지 점수의 일관성(동일 조건 반복 

S2-CP3: Top-K 재현성(버전/seed) 

Fusion / Alarm F-A1: α, z-normalization 범위 

F-A2: τ 선택 절차(검증 기준) 

F-A3: alarm 이벤트 로그 

F-CP1: α/τ 변경 시 성능 회귀 점검 

F-CP2: 알람 빈도·지속성의 비정상 증가 감지(운영 안

전장치) 

Explain / 

Release 

X-A1: 설명 산출물(Top-K, 근거) 

X-A2: 반사실 평가 설정(대체/마스킹) 

X-A3: 릴리스 체크리스트 

X-CP1: 설명 정합성(도메인 규칙과 모순 여부) 

X-CP2: 감사지표 재현성(동일 입력 동일 설명) 

X-CP3: 운영 적용 전 테스트 케이스 통과 

 

4.2. Stage 1: 조건부 전역 탐지 (Detection of 'What') 

Stage 1은 윈도우 시계열 𝑋𝑡−𝐿+1∶𝑡 와 운용 조건을 

나타내는 벡터 𝐶𝑡 를 입력 받아 전역 이탈 점수 𝑆1(𝑡)를 

산출한다. 본 단계에서는 FiLM 모듈을 통해 모드 

변화를 흡수하며, 재구성 오차 𝑒𝑡 =  𝑥̂𝑡 − 𝑥𝑡 에 대한 

마할라노비스 거리(Mahalanobis Distance)를 다음과 

같이 계산한다: 

𝑠1(𝑡) =  √(𝑥𝑡 − 𝑥𝑡)𝑇 ∑−1(𝑥̂𝑡  − 𝑥𝑡) 

전역 탐지를 분리함으로써 센서 교체나 환경 

변화에도 안정적인 기준서를 유지할 수 있으며, 이는 

S1-CP(검증 체크포인트)를 통해 성능 회귀 여부를 

관리한다. 

 

4.3. Hybrid Graph Recipe: 𝑬∗ 구축 및 버전 관리 

Stage 2의 진단 후보 공간은 하이브리드 그래프 𝐸∗로 

정의된다. 이는 물리 기반 그래프 𝐸𝑝ℎ𝑦 와 데이터 기반 

상관 그래프 𝐸𝑑𝑎𝑡𝑎 의 합집합으로 구성되며, 

희소화(Sparsification) 규칙을 적용하여 설명의 

집중도를 높인다: 

𝐸∗ =   𝐸𝑝ℎ𝑦  ∪  𝑇𝑜𝑝 − 𝐾(𝐸𝑑𝑎𝑡𝑎) 
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하이브리드 구성은 물리적 구조의 안정성과 

실데이터의 유연한 적응력을 유기적으로 결합하여 공정 

내 미세한 관계 변화를 정밀하게 포착한다. 이때 도메인 

전문가의 주관에 따른 지식 편향을 최소화하기 위해, 본 

레시피는 물리적 인접성 자동 추출 가이드라인을 

준수한다. 즉, 전문가가 임의로 엣지를 정의하는 대신 

P&ID(공정 계통도) 상의 물리적 연결 경로를 인접 

행렬(Adjacency Matrix)로 자동 변환하여 그래프의 

골격(Skeleton)인 𝐸𝑝ℎ𝑦를 우선적으로 형성한다.  

이후 전이 엔트로피(Transfer Entropy) 등을 통해 

산출된 데이터 기반 상관성( 𝐸𝑑𝑎𝑡𝑎 ) 중 상위 𝐾 개를 

결합함으로써, 전문가 지식의 안정성과 데이터의 실증적 

근거가 균형을 이루는 진단 공간을 확보한다. 구축된 

𝐸∗ 는 버전 ID(G-A4)와 함께 산출물로 관리되며, 물리 

지식과 데이터 근거의 비율을 점검하는 근거 비율 

게이트( 𝐺 − 𝐶𝑃2 )를 통과함으로써 최종적인 공학적 

신뢰도를 확보한다. 

그림 2. Hybrid Graph Recipe. 물리적 연결과 통계적 

인과성을 결합하여 설명 후보 공간을 설계한다. 

 

4.4. Stage 2: 엣지별 관계 진단 (Diagnosis of 'Why') 

Stage 2는 𝐸∗ 의 각 엣지 (𝑖, 𝑗) 에 대해 관계 잔차 

𝑟𝑖𝑗,𝑡 를 계산하고, CUDUM 통계를 통해 지속적인 관계 

붕괴를 포착한다. 

𝑆(𝑖𝑗,𝑡) = max (0, 𝑆𝑖𝑗,𝑡−1 +  |𝑟(𝑖𝑗,𝑡)| − 𝑘) 

최종 관계 점수 𝑠2(𝑡)는 모든 엣지 점수의 최대값으로 

정의되며, 이는 S2-CP를 통해 원인 규명의 신뢰도를 

보장한다. 

 

4.5. Score Fusion 및 알람 결정 정책 

두 단계의 점수를 공통 스케일로 정규화한 뒤 가중 

결합하여 최종 점수 를 산출한다: 

𝐴𝑡 = 𝑎𝑧1(𝑡) + (1 − 𝑎)𝑧2(𝑡) 

가중치 𝑎 는 탐지(Stage 1)와 진단(Stage 2)간의 

우선순위를 결정하는 공학적 설계 번수이며, 실험 결과 

최적값은 𝑎 =  0.7로 확인되었다. 

 

4.6. 설명 산출물 및 릴리스 게이트 (Release Gate) 

경보 발생 시 상위 𝐾 개 엣지의 원인으로 지시하며, 

반사실적 감소량( ∆𝐶𝐹 )을 통해 설명의 타당성을 

검증한다. 모든 산출물은 입력 데이터 및 그래프 버전과 

함께 로깅되어, 운영 환경에서의 추적성(Traceability)을 

확보한다. 

 

5. 실험 설정(Experimental Setup) 

본 절에서는 제안한 X-RAD 레시피의 유효성을 

검증하기 위한 실험 환경과 평가 프로토콜을 기술한다. 

본 연구는 복합 공학 시스템의 다중 도메인 적응성을 

입증하기 위해 항공 엔진과 수처리 플랜트라는 서로 

다른 특성의 데이터셋을 활용한다. 

 

5.1. 데이터셋 구성 및 프로파일링 

실험에는 항공 엔진의 수명 종료(run-to-failure) 

시뮬레이션 데이터인 C-MAPSS와 실제 산업제어시스템 

데이터인 SWaT를 사용한다. C-MAPSS는 운용 조건과 

고장 모드가 복합적으로 구성된 FD002, FD003, FD004 

서브셋을 선택하여 조기 경보 능력을 평가하며,[9,10] 

SWaT는 51개의 센서와 P&ID 기반의 24개 물리 엣지를 

포함하고 있어 엣지 수준 설명가능성 검증에 

최적화되어 있다[11]. 

표 2. 데이터셋 상세 명세 및 실험 환경 

Ddataset Type Sensors Samples Train/Val/Test 
Operating 
Conditions 

Physical 
Edges 

C-MAPSS, FD001 Turbofan 14 20,631 80/20/100 units 1 - 

C-MAPSS, FD002 Turbofan 14 53,759 208/52/259 units 6 - 

C-MAPSS, FD003 Turbofan 14 24,720 80/20/100 units 1 - 

C-MAPSS, FD004 Turbofan 14 61,249 200/49/248 units 6 - 

SWaT Water Treatment 51 449,919 360K/90K/- 24 24 
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5.2. 전처리 및 학습 프로토콜 

모든 실험은 정상 데이터만을 활용하는 비지도 

이상탐지(Unsupervised AD) 설정으로 통일한다.  

 입력 처리 : 모든 입력 시계열은 길이 𝐿 = 100 의 

슬라이딩 윈도우로 분할되며, 데이터셋별로 계산 

효율을 고려한 Stride를 적용한다. 

 정규화 : 학습 데이터의 통계량을 기준으로 한 

Min-Max 정규화를 수행하여 모든 센서 값을 

[0, 1]구간으로 스케일링한다. 

 산출물 기록 : 재현성을 위해 전처리 파이프라인 

버전, 그래프 버전(𝐸∗), 학습 설정(Seed, Epoch, LR) 

등을 '실험 ID'와 함께 패키징하여 관리한다. 

 

5.3. 평가 지표: 조기성, 정확도, 설명가능성 

본 연구는 단순 정확도를 넘어 실무적 유용성을 

평가하기 위해 다음과 같은 지표를 선정한다. 

 NAB-score: 조기 경보에 가중치를 부여하는 시간 

가중 점수로, 목표치는 70 이상으로 설정한다. 

 AUPRC: 데이터 불균형이 심한 환경에서 임계값 

변화에 따른 정밀도-재현율 균형을 평가하며, 

목표치는 0.5 이상이다. 

 Lead Time: 실제 고장 시점 대비 선행 경보 제공 

시간을 step 단위로 측정한다. 

 

5.4. 계산 복잡도 및 적용 고려사항 

레시피의 실무 적용을 위해 모델의 계산 비용을 

분석한다. 

 Stage 1 : Transformer 구조에 따라 𝑂(𝐿2𝑑) 의 

복잡도를 가지며, 𝑑 = 256  설정을 통해 전역 

패턴을 안정적으로 학습한다. 

 Stage 2 : 엣지 수 |𝐸∗|에 비례하여 𝑂(|𝐸∗| ∙ 𝐿 ∙ ℎ)로 

증가하므로, 하이브리드 그래프의 희소화(Top-

K%)를 통해 연산량을 제어한다. 이러한 모듈 책임 

분리는 운영 대시보드에서 Stage 1을 ‘시스템 

건강도’ 지표로, Stage 2의 𝑇𝑜𝑝 − 𝐾를 ‘트러블슈팅 

가이드’로 이원화하여 제공할 수 있는 공학적 

이점을 제공한다. 

 

6. 결과 (Results) 

본 절에서는 5절에서 설정한 실험 환경을 바탕으로 

연구 질문 RQ1~RQ3에 대한 정량적·정성적 검증 

결과를 제시한다. 모든 실험 수치는 비지도 학습 설정 

하에 도출되었으며, 제안한 'Engineering Recipe'의 

구성 요소들이 탐지 성능과 설명력에 미치는 효과를 

분석한다.  

 

6.1. RQ1: 탐지 성능 및 조기성 (Detection & Early 

Warning) 

X-RAD의 전체 탐지 성능 요약은 표 3와 같다.  

 정량적 성능 및 목표 달성 검토 : 분석 결과, X-

RAD는 모든 평가 데이터셋에서 NAB-score 91.64 

이상을 기록하여 목표치(70)를 최대 32% 상회하는 

우수한 탐지 능력을 입증하였다. 특히 불균형 

데이터 환경에서도 평균 AUPRC 0.5295를 달성하여 

탐지 결과의 신뢰성을 확보하였으며, 이는 제안된 

레시피가 복합 공학 시스템의 비지도 학습 환경에서 

실용적인 탐지 기준을 만족함을 시사한다. 

 설계 의도 기반 조기 경보 효과 분석 : 본 연구의 

핵심 지표인 조기 경보 능력(Early Warning) 

측면에서, C-MAPSS 데이터셋 전체에서 평균 -18.7 

step의 유의미한 Lead Time을 확보하였다. 특히 

FD002에서 나타난 -29.73 step의 독보적인 선행 

경보 성과는 본 논문의 Stage 1이 센서 간 

공분산( ∑ )을 반영함으로써 전역적 이탈을 포착한 

결과이다. 이는 4절에서 상술한 '조기성 확보를 

위한 전역 패턴 학습' 설계 의도가 실제 물리적 

이상 징후의 초기 확산 과정을 마할라노비스 거리 

기반의 잔차 분석으로 정확히 포착했음을 방증한다. 

 성능 한계 및 후속 과제 (FD003) : 반면, FD003 

서브셋에서 관찰된 상대적으로 낮은 

AUPRC(0.3687)는 본 모델이 가진 기술적 한계점을 

명확히 시사한다. 이는 복수 고장 모드와 복잡한 

열화 패턴이 단일 이상 점수 축 상에서 중첩될 때 

발생하는 분별력 저하에 기인하며, 이러한 결과는 

7절에서 논의할 '고장 유형별 서브모델 설계' 및 

'조건 벡터의 정교화' 연구의 필요성을 뒷받침하는 

핵심적인 공학적 근거로 기능한다. 

 

표 3. Overall Detection Performance (RQ1) 

Dataset NAB-

score 

Range-

F1 

AUPRC Lead 

Time 

C-MAPSS 

FD002 

94.65 0.7025 0.6619 -29.73 

C-MAPSS 

FD003 

91.64 0.6023 0.3687 -20.55 

C-MAPSS 

FD004 

94.20 0.6589 0.5974 -5.82 

SWaT 99.76 0.6800 0.7400 - 

Average 92.57 0.6240 0.5295 13.20 

Target > 70 - > 0.5 - 

Achieveme

nt 

+ 32% - +6% +70% 

improved 

 

6.2. RQ2: 설명가능성 검증 (Explainability) 

Stage 2가 산출한 엣지 수준의 진단 결과가 실제 

시스템의 물리적 인과 관계를 얼마나 충실히 

반영하는지 검증한다. SWaT 데이터셋을 대상으로 물리 

그래프 정합성과 반사실적 기여도를 평가한 결과는 표 

4와 같다. 
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표 4. Explainability Results on SWaT (RQ2) 

Metric Value Target Interpretation 

Edge-

Precision@5 
0.45 Measure 45% of top-5 match GT 

Edge-

Precision@10 
0.42 Measure Consistent accuracy 

Fidelity (ΔCF) 0.68 Measure High impact on score 

GT Coverage 24/24 100% All physical edges used 

 

 정합성 및 기여도: Edge-Precision@5 기준 0.45를 

기록하여 모델이 지목한 이상 관계가 실제 공정 

구조(P&ID)와 높은 수준으로 일치함을 확인하였다. 

특히 Fidelity( ∆𝐶𝐹 )가 0.68로 나타난 것은, Stage 

2가 지목한 이상 엣지의 잔차를 정상화할 경우 

최종 이상 점수가 유의미하게 감소함을 의미하며, 

이는 도출된 설명이 경보의 근거로서 실질적인 

신뢰도를 확보했음을 방증한다.  

 책임 분리의 이점: 실험적으로 탐지 모델(Stage 

1)은 고정한 채 하이브리드 그래프 레시피(𝐸∗ )만을 

교체하여 설명 품질(RQ2)을 독립적으로 

개선함으로써 구조적 격리 검증의 유효성을 

확인하였다. 이를 통해 탐지 지표와 설명 지표를 

독립적으로 모니터링하고, 탐지 성능의 저하 없이 

진단 품질만을 단계적으로 최적화할 수 있는 

공학적 유연성을 확보하였다. 

 

6.3. RQ3: 구성요소 효과성 분석 (Ablation Study) 

점수 융합 가중치 𝑎 와 하이브리드 그래프 구조가 

시스템에 미치는 영향을 분석한다. 

 민감도 분석: 표 5에서 보듯 𝑎 = 0.7 일 때 탐지 

성능(NAB-score)과 불균형 견고성(AUPRC)이 

최적의 균형을 이룬다. 특히 Stage 2를 완전히 

배제한 𝑎 = 1.0  설정과 비교했을 때, 최종 결합 

모델은 NAB-score를 유지하면서도 AUPRC를 

유의미하게 개선하였다. 이는 Stage 2의 관계 진단 

모듈이 양성 구간의 구분력을 강화하여 경보의 

신뢰도를 높이는 핵심 요소임을 입증한다.

 

표 5. Alpha Sensitivity Analysis for Score Fusion (RQ3) 

Alpha Stage Ratio 
NAB-

score 
Range-F1 AUPRC Lead Time Interpretation 

0.3 70% S1 + 30% S2 88.84 0.4706 0.5139 +8.23 Low, but positive lead 

0.4 60% S1 + 40% S2 90.53 0.5231 0.5999 -1.17 Improving 

0.5 50% S1 + 50% S2 91.89 0.6107 0.6225 -13.23 Baseline 

0.6 40% S1 + 60% S2 92.69 0.6397 0.5573 -25.48 Better 

0.7 30% S1 + 70% S2 94.65 0.7025 0.6619 -29.73 Optimal 

0.8 20% S1 + 80% S2 93.88 0.6525 0.5202 -25.52 Slight decrease 

1.0 100% S1 (No S2) 94.68 0.6991 0.5120 -29.37 No Stage 

 

 그래프 구조 효과: SWaT 실험 결과, 

하이브리드(Hybrid) 그래프를 적용했을 때 물리 

전용(Physical-only) 구성 대비 Range-F1이 36% 

향상되었다. 이는 도메인 지식이 제공하는 구조적 

안정성과 데이터 기반 패턴이 포착하는 유연한 

적응성이 상보적으로 작용하여 복합적인 이상 

유형에 효과적으로 대응했음을 의미한다. 

 

6.4. 성공 및 실패 사례 심층 분석 (Case Study) 

X-RAD 레시피가 실제 공정 시나리오에서 갖는 

실무적 거동을 분석한다.  

 성공 사례 (FD004 및 SWaT): 복합적인 운용 조건 

변화가 포함된 FD004 사례에서, Stage 1은 전역적 

패턴 이탈을 조기에 감지하여 -5.82 step의 

유의미한 선행 경보를 제공하였다. 또한, Stage 2는 

미세한 관계 붕괴를 포착하여 경보의 신뢰도를 

높였으며, 특히 SWaT 환경에서는 P&ID(공정 

계통도) 상의 물리적 연결과 정렬된 엣지 설명이 

도출되어(Edge-Precision@5=0.45) 운영자가 

즉각적인 트러블슈팅을 수행할 수 있는 객관적 

근거를 제공함을 확인하였다. 

 한계 사례 (FD003의 고장 모드 중첩): FD003 

서브셋에서 AUPRC가 상대적으로 낮게 나타난 

현상을 분석한 결과, 서로 다른 고장 모드가 전역 

이상 점수 상에서 유사한 분포를 보여 모델의 

구분력이 저하됨을 확인하였다. 이는 본 레시피의 

Stage 1이 가진 기술적 해상도의 한계인 동시에, 

7절에서 논의할 '고장 유형별 서브모듈 설계'의 

필요성을 강력히 뒷받침하는 공학적 근거가 된다. 

 운영 전환을 위한 검증: 각 경보 시점에 생성된 

Top-K 엣지 로그는 단순한 결과 보고를 넘어, 

시간이 지남에 따라 축적되어 시스템의 '취약 관계 

데이터베이스'로 자산화될 수 있음을 확인하였다. 

이는 4절에서 제안한 회귀 게이트(Regression 

Gate)가 실무적으로 필수적인 설계 요소임을 

입증한다. 특히 SWaT 실험에서 달성한 GT 
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Coverage 24/24(100%)는 운영자가 수십 개의 

센서를 전수 조사하는 대신 모델이 지목한 상위 

엣지를 즉각 점검하게 함으로써, 실제 현장의 평균 

수리 시간(MTTR)을 획기적으로 단축하고 운영자의 

인지 부하를 경감시킬 수 있는 핵심적인 실무적 

효익을 제공한다. 

 

7. 논의 및 위협요인 (Discussion & Threats to Validity) 

본 연구를 통해 도출된 실험 결과는 복합 공학 

시스템에서 X-RAD 레시피의 유효성을 입증함과 동시에 

모델의 기술적 해상도에 대한 중요한 시사점을 

제공한다. 우선 FD003 데이터셋에서 관찰된 

상대적으로 낮은 AUPRC 성능은 다중 고장 모드와 

복잡한 열화 패턴이 동일한 전역 잔차 분포 내에서 

중첩될 때 발생하는 단일 점수 축 모델링의 근본적인 

한계를 드러낸다 . 이는 향후 고장 유형별 mixture 

모델이나 계층적 인코딩 구조를 도입하여 이상 징후의 

구분력을 강화해야 할 필요성을 뒷받침하는 핵심적인 

공학적 근거가 된다. 

실무 적용 관점에서는 데이터 전처리 단계에서의 

윈도우 Stride 선정이 시스템의 조기성과 계산 복잡도 

사이의 전형적인 트레이드오프 관계를 형성함을 

인지해야 한다. Stride를 작게 설정할수록 탐지 해상도가 

향상되어 Lead Time을 극대화할 수 있으나, Stage 1의 

𝑂(𝐿2𝑑)  및 Stage 2의 𝑂(|𝐸∗|  ∙  𝐿 ∙  ℎ)  연산 부하가 

증가하여 실시간 운영 인프라에 부담을 줄 수 있기 

때문이다. 

또한 하이브리드 그래프( 𝐸∗ ) 구축 과정에서 도메인 

전문가의 지식 편향이 개입될 경우 진단 결과의 

객관성에 영향을 미칠 수 있는 내부 타당성의 위협이 

존재하며, 이는 실제 운영 환경에서 설명에 대한 해석의 

주관성 문제로 이어질 수 있다. 이를 완화하기 위해 본 

레시피는 표 1의 G-CP2(근거 비율 점검) 게이트를 

통해 물리 지식과 데이터 근거의 균형을 정량적으로 

검증하는 체크리스트를 포함한다. 마지막으로 오경보에 

따른 운영 피로도와 미탐지로 인한 사고 기회비용 

사이의 절충은 단순한 수치 이상의 공학적 판단을 

요구하므로, 본 레시피의 알람 정책은 운영자의 안전 

보수성을 최우선으로 고려하여 교정되어야 함을 

강조한다. 

 

8. 결론 (Conclusion) 

본 논문은 산업제어시스템 및 항공 엔진과 같은 복합 

공학 시스템의 이상탐지를 위해 하이브리드 그래프 

구축과 Two-Stage Responsibility Decoupling을 골자로 

하는 'X-RAD Engineering Recipe'를 제안하였다 . 

비지도 학습 환경에서 C-MAPSS 및 SWaT 데이터셋에 

대해 평가한 결과, 평균 NAB-score 92.57과 AUPRC 

0.5295를 달성하여 탐지 성능과 조기 경보 능력을 

동시에 입증하였으며, 실제 고장 시점 대비 평균 -18.7 

step의 선행 경보를 제공하는 실무적 유효성을 

확인하였다. 

이러한 수치적 성과를 넘어, 본 연구는 AI 모델의 

단순 성능 개선을 탈피하여 산출물과 검증 게이트를 

표준화함으로써 산업 현장에서 재현 가능한 개발 및 

운영 절차를 정식화했다는 점에서 독보적인 공학적 

가치를 지닌다. 특히 본 레시피의 산출물은 운영자의 

인지 부하를 줄이고 트러블슈팅의 표준 가이드로 

활용될 수 있어, AI 모델의 현장 운영 

전환(Deployment)을 가속화한다. 향후에는 본 논문에서 

제안된 정적 그래프 구조를 온라인 학습 환경으로 

확장하여 환경 변화에 동적으로 적응하는 하이브리드 

그래프 업데이트 메커니즘을 개발함으로써 시스템의 

장기적인 신뢰성을 더욱 강화할 계획이다. 
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요   약 
  버그 리포트는 소프트웨어 결함을 이해하고 재현하기 위한 핵심 산출물이지만, 실제 개발 환경에서는 
작성자의 숙련도와 서술 방식 차이로 인해 품질 편차가 크게 발생한다. 최근 대규모 언어 모델(LLM)을 활용한 
버그 리포트 자동 생성 기법이 제안되고 있으나, 단일 버그 설명에 의존하는 생성 방식은 입력 문맥의 제약으로 
인해 구조적 완성도와 내용 정합성 측면에서 한계를 보인다. 본 논문은 검색 기반 문맥 
보강(Retrieval-Augmented Generation, RAG) 환경에서 검색 전략의 선택과 구성 방식이 LLM 기반 버그 
리포트 자동 생성 성능에 미치는 영향을 체계적으로 분석한다. 키워드 기반 검색(BM25), 의미 기반 
검색(SBERT), 하이브리드 검색 전략을 동일한 생성 조건 하에서 비교하고, 재정렬 기법을 포함한 확장 설정을 
함께 평가하였다. Bugzilla 기반 데이터셋(3,966쌍)과 세 가지 공개 LLM(Qwen2.5-7B, LLaMA-3.2-3B, 
Mistral-7B)을 대상으로 수행한 실험 결과, 검색 기반 문맥 보강은 베이스라인 대비 CTQRS(구조적 완성도)를 
약 14-16%p, ROUGE-1 Recall(어휘적 정보 포괄성)을 약 19-21%p 향상시키는 경향을 보였다. SBERT 
유사도(의미적 정합성) 역시 약 4-6%p 개선되었으며, 하이브리드 검색은 다양한 설정에서 비교적 일관된 성능 
특성을 나타냈다. 반면 예시 수 증가에 따라 ROUGE-1 F1(어휘적 균형)이 저하되는 상충 관계가 관찰되었고, 
재정렬 기법의 추가 효과는 어휘적 균형 측면에 한정되었다. 이러한 결과는 검색 전략이 LLM 기반 버그 리포트 
자동 생성에서 품질 균형을 결정하는 중요한 설계 요소임을 보인다. 

 
1. 서론 
버그 리포트는 소프트웨어 개발 및 유지보수 과정에서 결함을 
식별하고 추적하기 위한 핵심 산출물이다. 재현 절차, 실행 환경, 
기대 결과와 같은 정보가 명확히 제공될 경우 개발자는 결함의 
원인을 보다 신속하게 파악할 수 있으나, 실제 환경에서는 비전문 
사용자가 작성하는 경우가 많아 핵심 정보 누락이나 비구조적 
서술이 빈번히 발생한다 [1]. 이로 인해 결함의 재현과 분석에 
추가적인 노력이 요구되며, 이는 수정 지연과 유지보수 비용 
증가로 이어질 수 있다. 
  이러한 문제는 Bugzilla [2]와 같은 오픈 소스 이슈 추적 
시스템뿐만 아니라 Jira [3]와 같은 상용 플랫폼에서도 관찰되며, 
저품질 버그 리포트가 결함 분석 시간 증가와 반복적인 
커뮤니케이션을 유발하여 유지보수 효율성을 저해한다는 점이 
기존 연구들에서도 반복적으로 보고되었다 [1,4]. 이러한 배경에서 
비정형 버그 리포트를 자동으로 구조화하고 누락된 정보를 
보완하는 기술은 소프트웨어 공학 분야의 중요한 연구 과제로 
인식되어 왔다. 
  최근 대규모 언어 모델(Large Language Model, LLM)의 발전은 
저품질 버그 리포트로 인한 유지보수 문제를 완화할 수 있는 
가능성을 제시하고 있다. LLM은 높은 문맥 이해와 자연어 생성 
능력을 바탕으로, 지시형 프롬프트를 통해 요약, 재현 절차, 기대 
결과와 같은 핵심 요소를 포함하는 구조화된 버그 리포트를 
자동으로 생성할 수 있다 [5], [6]. 
  기존 LLM 기반 자동 생성 연구들은 주로 지시형 프롬프트와 
LoRA 기반 미세조정을 결합한 파이프라인을 제안하였다 [5]. 
이러한 접근은 단일 버그 요약만으로도 형식적으로 완전한 
리포트를 생성할 수 있음을 보였으나, 입력 문맥이 단일 보고서에 
한정되어 실제 환경에서 나타나는 정보 불완전성과 다양한 실행 
맥락을 충분히 반영하지 못할 가능성이 있다 [7]. 그 결과, 구조는 
완전하지만 결함의 맥락이나 변형된 재현 조건을 충분히 포착하지 
못한 리포트가 생성될 수 있다. 
  이러한 한계를 보완하기 위해, 최근 자연어 처리 분야에서는 검색 
기반 문맥 보강(Retrieval-Augmented Generation, RAG) 전략이 
널리 활용되고 있다 [8]. RAG는 입력 텍스트와 유사한 외부 문서나 
사례를 검색하여 생성 모델의 입력 문맥으로 제공함으로써, 단일 

입력에 의존하는 생성 방식의 한계를 완화한다. 특히 버그 리포트 
도메인은 과거 유사 결함 사례가 풍부하게 축적되어 있어 RAG가 
효과적으로 적용될 수 있는 특성을 가진다. 
  그러나 기존 연구들은 RAG를 주로 성능 향상을 위한 보조 
기법으로 취급하며, 검색 전략의 선택과 구성 방식이 구조적 
완성도, 어휘적 정보 포괄성, 어휘적 균형, 의미적 정합성 간의 
trade-off에 어떠한 영향을 미치는지는 충분히 분석하지 않았다. 
즉, RAG의 적용 여부뿐 아니라 검색 전략의 설계 방식 자체가 
생성 품질의 특성과 균형에 영향을 줄 수 있음에도, 이에 대한 
체계적인 실증 분석은 아직 제한적이다. 
  본 연구는 검색 기반 문맥 보강 환경에서 검색 전략을 단순한 
보조 기법이 아니라 생성 품질의 특성과 그 균형에 영향을 미치는 
설계 요소로 보고, 서로 다른 검색 전략과 구성 선택이 LLM 기반 
버그 리포트 자동 생성에서 구조적 완성도, 어휘적 정보 포괄성, 
어휘적 균형, 의미적 정합성 간의 trade-off를 어떻게 형성하는지를 
분석한다. 구체적으로 BM25, SBERT, 하이브리드 검색 전략과 
재정렬 기법을 동일한 생성 조건 하에서 비교하여, 각 선택이 생성 
품질에 미치는 영향을 체계적으로 평가한다. 
  실험은 LoRA 기반으로 미세조정된 대규모 언어 모델을 사용하여 
수행되었으며 [9], few-shot 문맥 보강 설정을 통해 예시 수 변화가 
생성 품질에 미치는 영향을 분석하였다. 생성된 버그 리포트의 
품질은 구조적 완성도를 평가하는 CTQRS [10], 어휘적 포괄성과 
어휘적 균형을 각각 반영하는 ROUGE-1 Recall 및 ROUGE-1 F1 
[11], 그리고 의미적 정합성을 측정하는 SBERT 유사도를 통해 
다각도로 평가하였다 [12]. 
  실험 결과, 검색 기반 문맥 보강은 검색을 사용하지 않는 생성 
방식과 비교하여 구조적 완성도와 어휘적 정보 포괄성을 
전반적으로 향상시키는 경향을 보였다. 하이브리드 검색 전략은 
다양한 설정에서 비교적 안정적인 성능 분포를 나타냈으나, 예시 
수 증가에 따라 어휘적 균형과 의미적 정합성이 저하되는 경향이 
관찰되어 검색 전략 설계에 따른 trade-off가 확인되었다. 한편 
재정렬 기법을 적용한 확장 설정은 의미적 정합성 측면에서는 
제한적인 추가 효과를 보였으나, 전반적인 품질 향상은 일관되지 
않았다. 

_____________________________________ 
* 이 논문은 한경국립대학교 국립대학육성사업(2025)지원을 받아 작성되었음 
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  본 연구는 단일 최적 기법을 제안하기보다는, 검색 기반 문맥 
보강 전략의 설계 선택이 생성 품질의 여러 측면에 어떠한 영향을 
미치는지를 분석하고 각 접근법의 특성과 한계를 비교하는 데 
목적이 있다. 이를 통해 구조적 완성도, 어휘적 정보 포괄성, 
어휘적 균형, 의미적 정합성 간의 상충 관계를 정량적으로 
정리하고, 향후 LLM 기반 버그 리포트 자동 생성 연구에서 실험 
설정과 결과 해석을 위한 참고 기준을 제공하고자 한다. 
  본 연구의 주요 기여는 다음과 같다. 

● 검색 전략 비교 분석: 검색 기반 문맥 보강 환경에서 
키워드 기반 검색(BM25), 의미 기반 검색(SBERT), 
하이브리드 검색 전략을 동일한 생성 조건 하에서 
비교함으로써, 검색 전략 선택이 LLM 기반 버그 리포트 
자동 생성 품질에 미치는 영향을 정량적으로 분석하였다. 
모든 검색 전략은 베이스라인 대비 CTQRS를 약 
14-16%p, ROUGE-1 Recall을 약 19-21%p 향상시켜 
구조적 완성도와 어휘적 정보 포괄성 측면에서 일관된 
개선 효과를 보였다. 

● 검색 전략별 trade-off 규명: 하이브리드 검색 전략은 
다양한 예시 수 설정과 서로 다른 언어 모델 전반에서 
상대적으로 안정적인 성능을 유지하였으나, 예시 수 
증가에 따라 ROUGE-1 F1과 SBERT 유사도가 감소하는 
경향이 관찰되었다. 이를 통해 구조적 완성도와 어휘적 
정보 포괄성, 어휘적 균형, 의미적 정합성 간의 상충 
관계를 실증적으로 확인하였다. 

● 재정렬 기법의 한계 분석: 검색 결과에 재정렬 기법을 
적용한 확장 설정에 대해 paired bootstrap 분석을 수행한 
결과, 어휘적 지표에서는 일관된 성능 향상이 나타나지 
않았으며, 의미적 정합성 측면에서만 제한적인 추가 
효과가 확인되었다. 이는 생성 품질 개선의 핵심 요인이 
재정렬 단계보다는 검색 전략의 선택과 구성에 있음을 
보인다. 

 
2. 배경지식 
2.1 버그 리포트 품질 
  버그 리포트는 소프트웨어 유지보수 과정에서 결함을 
식별·재현·수정하기 위한 핵심 정보 원천이며, 재현 절차, 실행 
환경, 기대 결과 및 실제 결과의 충실도는 결함 분석의 효율성과 
직접적으로 연결된다 [1]. 그러나 실제 개발 환경에서는 보고자의 
경험 수준과 문서화 습관, 사용 도구의 차이로 인해 버그 리포트 
품질에 큰 편차가 발생한다. 
  이러한 문제는 다양한 기여자가 참여하는 오픈 소스 
프로젝트에서 특히 두드러지며, 많은 리포트가 증상 설명에 
치중한 반면 재현 절차나 실행 환경과 같은 핵심 정보는 
누락되거나 모호하게 기술되는 경우가 많다 [1]. 그 결과 개발자는 
동일한 결함에 대해서도 추가 확인과 반복적인 커뮤니케이션을 
수행해야 하며, 이는 분석 시간 증가와 결함 수정 지연으로 
이어진다. 
  기존 실증 연구들은 저품질 버그 리포트가 소프트웨어 유지보수 
효율성에 부정적인 영향을 미친다는 점을 반복적으로 보고해 왔다 
[1]. 구조적으로 충실한 리포트는 명확한 재현 절차와 환경 정보를 
제공하여 결함 재현 가능성을 높이는 반면, 핵심 요소가 누락된 
리포트는 추측에 기반한 분석과 추가 비용을 유발한다. 이는 버그 
리포트 품질이 문서 완성도를 넘어 실제 개발 생산성과 직결된 
문제임을 보인다. 
  이러한 품질 차이를 정량적으로 분석하기 위해 CTQRS는 핵심 
구성 요소의 구조적 포함 정도를 평가하는 지표로 활용되어 
왔으며 [10], ROUGE 계열 지표는 어휘적 정보 포괄성을 [11], 
SBERT 유사도는 의미적 정합성을 평가하는 데 사용되어 왔다 
[12]. 이러한 지표들은 버그 리포트 품질을 구조적·어휘적·의미적 
관점에서 분석하는 도구로 활용되고 있다. 
  그러나 품질 평가 지표만으로는 실제 유지보수 과정에서 
발생하는 문제를 근본적으로 해결하기에는 한계가 있다. 저품질 
리포트를 식별할 수는 있으나, 누락된 정보를 보완하고 리포트를 
재구성하는 과정은 여전히 개발자의 수작업에 의존하는 경우가 
많으며, 대규모 프로젝트 환경에서는 이러한 한계가 더욱 
두드러진다. 

  이러한 맥락에서 최근에는 비정형 버그 리포트를 구조화된 
형태로 자동 변환하거나 보완하려는 자동화된 접근의 필요성이 
지속적으로 제기되고 있다 [5], [6]. 특히 정보 불완전성을 내포한 
입력 리포트를 대상으로 구조적 완성도와 내용 충실성을 동시에 
확보하는 자동 생성 기법은 유지보수 효율성 향상을 위한 중요한 
연구 과제로 인식되고 있다. 
 
2.2 LLM 기반 버그 리포트 자동 생성의 한계: 입력 문맥의 부족 
  최근 자연어 처리 기술의 발전과 함께, 대규모 언어 모델(LLM)을 
활용한 버그 리포트 자동 생성 연구가 활발히 이루어지고 있다 [5], 
[6]. 이러한 접근은 비정형 버그 리포트를 입력으로 받아 요약, 
재현 절차, 기대 결과 및 실제 결과와 같은 핵심 요소를 구조화된 
형태로 변환하는 것을 목표로 한다. 특히 instruction fine-tuning 
[13], [14]과 구조화된 프롬프트 설계를 적용한 연구들은 일정 수준 
이상의 구조적 완성도와 의미적 정합성을 갖춘 리포트를 자동으로 
생성할 수 있음을 실험적으로 보여주었다 [5], [6]. 이는 LLM 기반 
자동 생성이 실질적인 적용 가능 단계에 도달했음을 보인다. 
  그러나 기존의 LLM 기반 자동 생성 접근들은 공통적으로 
입력으로 제공되는 단일 버그 리포트에 강하게 의존하는 특성을 
갖는다 [5], [6]. 즉, 생성 과정에서 활용되는 정보의 범위는 하나의 
비정형 보고서로 제한되며, 해당 보고서에 결함 재현과 분석에 
필요한 핵심 정보가 충분히 포함되어 있다는 가정을 전제로 한다. 
이러한 가정은 정제된 데이터셋이나 숙련된 개발자가 작성한 
리포트에서는 비교적 성립할 수 있으나, 실제 개발 환경에서는 
일반적으로 충족되기 어렵다. 
  현실의 버그 리포트는 다양한 수준의 정보 불완전성을 내포하고 
있다. 다수의 리포트는 결함의 증상이나 결과를 중심으로 
서술되며, 재현 절차가 불완전하거나 실행 환경 정보가 누락되는 
경우가 빈번하다. 또한 기대 결과와 실제 결과가 명확히 구분되지 
않거나 혼재되어 기술되는 사례도 자주 관찰된다 [1], [4]. 이러한 
특성은 특히 오픈 소스 프로젝트와 같이 기여자의 배경과 
숙련도가 다양한 환경에서 더욱 두드러진다. 이로 인해 단일 
리포트만을 입력으로 사용하는 자동 생성 모델은 구조적으로는 
완전한 형식을 갖춘 결과를 생성하더라도, 실제 결함 맥락을 
충분히 반영하지 못한 리포트를 산출할 가능성이 존재한다. 
  이러한 한계는 자동 생성된 버그 리포트의 품질 평가 결과에서도 
확인된다. 구조적 요소의 포함 여부를 중심으로 평가하는 
지표에서는 비교적 높은 점수를 획득할 수 있으나, 생성된 내용이 
참조 리포트의 핵심 맥락을 충분히 반영하지 못하는 경우 의미적 
정합성이나 정보의 정확성 측면에서 성능 저하가 발생할 수 있다 
[7]. 이는 생성 품질이 모델의 표현 능력 자체보다는, 입력으로 
제공되는 정보의 범위와 충실도에 유의미하게 영향을 받음을 
보인다. 
  따라서 LLM 기반 버그 리포트 자동 생성의 성능을 안정적으로 
향상시키기 위해서는, 단일 보고서에 국한된 입력 설정을 넘어 
보다 풍부한 문맥 정보를 활용할 필요가 있다 [8]. 결함과 유사한 
과거 사례나 관련된 버그 리포트에서 공통적으로 나타나는 재현 
패턴, 실행 환경, 결과 기술을 함께 고려할 수 있다면, 자동 생성된 
버그 리포트의 구조적 완성도뿐만 아니라 내용적 충실성과 의미적 
정합성 역시 보다 체계적으로 개선될 수 있을 것으로 기대된다 [7]. 
 
2.3 검색 기반 문맥 보강을 통한 버그 리포트 자동 생성 
  단일 입력에 의존하는 LLM 기반 버그 리포트 자동 생성의 한계를 
보완하기 위한 대안으로, 생성 과정에 외부 문맥을 통합하는 
접근이 주목받고 있다. 그중 검색 기반 문맥 보강은 입력과 관련된 
과거 사례를 선택적으로 활용함으로써, 생성 모델이 참조할 수 
있는 정보 범위를 명시적으로 확장한다는 점에서 특징적이다 [8]. 
  버그 리포트 도메인은 검색 기반 문맥 보강이 효과적으로 적용될 
수 있는 특성을 지닌다. 소프트웨어 결함은 특정 모듈이나 환경 
조건에서 반복적으로 보고되는 경향이 있으며, 이로 인해 
프로젝트 저장소에는 유사한 증상과 재현 조건을 공유하는 다수의 
리포트가 축적된다. 이러한 과거 사례에는 개별 리포트에서 
충분히 기술되지 않은 재현 절차나 환경 정보가 포함될 가능성이 
있으며, 이는 자동 생성 과정에서 유용한 문맥 자원으로 활용될 수 
있다 [7]. 
  검색을 통해 제공된 예시는 생성 모델에게 출력 형식과 서술 
수준에 대한 기준점으로 작용하며, 재현 절차나 환경 정보와 같은 
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구조적 요소의 포함을 유도한다. 또한 의미적으로 유사한 사례를 
활용할 경우, 어휘 표현의 차이가 존재하더라도 생성 결과의 
내용적 충실성과 의미적 정합성을 유지하는 데 기여할 수 있다 [7], 
[8]. 이러한 점에서 검색 기반 문맥 보강은 단순한 정보 추가가 
아니라, 생성 과정의 조건을 조정하는 설계 요소로 해석될 수 있다. 
  한편 검색 기반 문맥 보강의 효과는 검색 전략에 따라 상이하게 
나타날 수 있다. 키워드 기반 검색은 명시적인 기술 용어가 포함된 
경우 관련 사례를 효과적으로 회수할 수 있으나, 표현 차이가 큰 
경우에는 한계를 가질 수 있다 [15]. 반대로 의미 기반 검색은 
의미적 정합성을 반영함으로써 이러한 한계를 완화할 수 있으나, 
검색 정밀도가 낮아질 가능성이 존재한다 [12]. 또한 검색 전략의 
결합이나 확장 방식은 생성 품질뿐만 아니라 계산 비용에도 
영향을 미친다. 
  이러한 특성은 검색 기반 문맥 보강을 단일한 기법으로 
다루기보다, 검색 전략을 하나의 설계 변수로 분석할 필요성을 
제기한다. 즉, 검색 적용 여부 자체보다, 검색 전략의 선택과 구성 
방식이 구조적 완성도, 어휘적 정보 포괄성, 의미적 정합성과 같은 
품질 차원에 어떠한 영향을 미치는지를 구분하여 분석하는 것이 
중요하다. 본 연구는 이러한 관점에서 키워드 기반, 의미 기반, 
그리고 하이브리드 검색 전략을 동일한 생성 조건 하에서 
비교함으로써, 검색 기반 문맥 보강이 버그 리포트 자동 생성에 
기여하는 방식과 그 한계를 정량적으로 분석하고자 한다. 
 
3. 방법론 

 
그림1. 본 연구에서 사용한 버그 리포트 자동 생성 실험 

파이프라인 
 
    본 연구의 전체 방법론은 그림 1에 제시된 처리 흐름을 따른다. 
그림 1은 데이터 전처리, 언어 모델 파인튜닝, 학습 세트 기반 검색 
인덱싱, 검색 결과를 반영한 프롬프트 구성, 그리고 버그 리포트 
생성으로 이어지는 일련의 과정을 단계적으로 나타낸다. 
이를 통해 검색 기반 문맥 보강 전략을 적용한 오픈 소스 기반 
대규모 언어 모델의 구조화된 버그 리포트가 최종적으로 
생성된다. 
 
3.1 데이터 전처리 및 분할 
  본 연구에서는 기존 연구에서 구축·공개된 Bugzilla 기반 버그 
리포트 데이터셋을 사용하였다 [16]. 해당 데이터셋은 LLM 기반 
버그 리포트 자동 생성 연구를 위해 정제된 공개 데이터셋으로, 본 
연구는 데이터 전처리 및 구성 방식에 따른 영향을 배제하기 위해 
기존 연구에서 정의된 최종 데이터셋을 그대로 사용하였다. 
기존 연구에서는 원본 Bugzilla 리포트 중 상태가 “fixed” 또는 
“closed”로 표시된 사례를 대상으로 데이터를 구성하였다. 이는 
이미 해결된 버그 리포트가 결함 재현 절차, 실행 환경, 기대 결과 
및 실제 결과와 같은 핵심 정보를 상대적으로 충실히 포함하고 
있어, 구조화된 버그 리포트 생성 모델의 학습과 평가에 
적합하다는 판단에 기반한다. 

  데이터 품질을 확보하기 위해, 기존 연구에서는 두 단계의 정제 
절차를 적용하였다. 첫 번째 단계에서는 정규 표현식 기반 
필터링을 통해 요약(Summary), 재현 절차(Steps to Reproduce), 
기대 결과(Expected Result), 실제 결과(Actual Result), 추가 
정보(Additional Information)가 명시적으로 구분된 리포트만을 
유지하였다. 두 번째 단계에서는 자동화된 CTQRS 평가를 
적용하여 [10], 구조적 완성도가 일정 기준 이상으로 확보된 
리포트만을 최종 데이터셋에 포함시켰다. 이 과정은 의미적 
정합성과 정보 충실성을 동시에 만족하는 리포트만을 학습 및 
평가 대상으로 제한하기 위한 것이다. 
  정제된 데이터셋 중 일부는 기존 연구에서 수동 검토를 통해 
추가로 확인되었으며, 자동 생성 모델의 학습 데이터나 검색 기반 
예시로 활용하기에 부적합한 사례는 제외되었다. 본 연구는 
이러한 검증 과정을 거쳐 공개된 최종 데이터셋을 동일하게 
사용함으로써, 데이터 사용의 공정성과 실험 결과의 재현성을 
확보하였다. 
구성된 데이터셋은 학습, 검증, 테스트 세트(8:1:1)로 분할하여 
사용되었으며, 데이터 분할 역시 기존 연구에서 정의된 설정을 
그대로 유지하였다. 이를 통해 본 연구에서 관찰되는 성능 차이가 
데이터 전처리나 분할 방식의 차이가 아니라, 검색 기반 문맥 보강 
전략과 검색 설계의 차이에 기인하도록 실험 환경을 통제하였다. 
 
3.2 학습 세트 임베딩 인덱싱 
  본 연구에서는 검색 기반 문맥 보강 전략을 체계적으로 분석하기 
위해, 학습 세트에 포함된 과거 버그 리포트 사례들을 사전에 
인덱싱하고 이를 검색 가능한 형태로 구성하였다. 검색의 목적은 
입력으로 주어진 비정형 버그 요약과 유사한 과거 사례를 
식별하여, 생성 단계에서 입력-출력 예시로 활용함으로써 버그 
리포트 생성 과정에 추가적인 문맥 정보를 제공하는 데 있다. 본 
절에서는 검색 공간의 정의, 유사도 계산 방식, 그리고 서로 다른 
검색 전략의 설계와 해석을 명확히 기술한다. 
  검색 대상은 학습 세트에 포함된 버그 요약(summary)으로 
한정한다.   검색은 입력 요약 에 대해 학습 세트 내 요약 들과의 𝑠

𝑞
𝑠

𝑖
유사도를 계산하는 방식으로 수행된다. 검색을 통해 선택된 상위 𝑘
개의 사례는 이후 프롬프트 구성 단계에서 입력-출력 예시 쌍( , ) 𝑠

𝑖
𝑟

𝑖
형태로 주입된다. 모든 검색은 학습 세트 범위 내에서만 수행되며, 
검증 및 테스트 데이터는 검색 대상에서 제외함으로써 데이터 
누수 가능성을 최소화하였다. 학습 세트는 요약-리포트 쌍의 
집합으로 정의되며, 다음과 같이 표현된다. 
 

 𝐷
𝑡𝑟𝑎𝑖𝑛

 = {(𝑠
𝑖
,  𝑟

𝑖
) | 𝑖 =  1,  ...,  𝑁}
 

● 은 학습 세트에 포함된 개별 버그 리포트 사례의 𝑖
인덱스를 나타냄 

● 은 학습 세트에 포함된 전체 사례 수를 의미함 𝑁
● 는 요약 에 대응하는 구조화된 버그 리포트를 나타냄 𝑟

𝑖
𝑠

𝑖
● 는 생성 단계에서 주어지는 새로운 비정형 버그 요약을 𝑠

𝑞
나타냄 

 
  BM25 점수가 높을수록 입력 요약과 과거 요약 간의 어휘적 
일치도가 높음을 의미하며, 오류 메시지나 컴포넌트 명과 같이 
명시적인 기술 용어가 공유되는 사례가 우선적으로 선택된다. 
 

 𝐵𝑀25(𝑠
𝑞
,  𝑠

𝑖
) =

𝑡 ∈ 𝑠
𝑞

∑ 𝐼𝐷𝐹(𝑡) · 
𝑓(𝑡, 𝑠

𝑖
) · (𝑘

1
 + 1)

𝑓(𝑡, 𝑠
𝑖
) · (1 − 𝑏 + 𝑏 · 

|𝑠
𝑖
|

𝑎𝑣𝑔𝑑𝑙 )

 
● 는 입력 요약 에 포함된 개별용어(term)을 의미함 𝑡 𝑠

𝑞
● 는 요약 에서 용어 의 등장 빈도를 나타냄 𝑓(𝑡,  𝑠

𝑖
) 𝑠

𝑖
𝑡

● 는 요약 의 길이를 나타냄 |𝑠
𝑖
| 𝑠

𝑖
● avgdl은 학습 세트 요약 코퍼스의 평균 길이를 나타냄 
● IDF( )는 학습 세트 요약을 기준으로 계산된 역문서 𝑡

빈도를 나타냄 
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● 은 용어 빈도의 포화 정도를 조절하는 파라미터를 𝑘
1
의미함 

● 는 문서 길이 정규화의 영향을 조절하는 파라미터를 𝑏
의미함 

 
  의미 기반 검색은 Sentence-BERT 기반 임베딩을 활용하여 
구현하였다 [12]. 각 요약은 임베딩 함수  
𝜙(⋅)를 통해 동일한 의미 공간의 벡터로 변환되며, 두 요약 간의 
의미적 유사도는 코사인 유사도로 계산된다.   이 값은 −1에서 1 
사이의 범위를 가지며, 값이 클수록 두 요약이 의미적으로 
유사함을 의미한다. SBERT 유사도 검색은 어휘적 중복이 낮은 
경우에도 결함의 원인, 증상, 맥락이 유사한 사례를 효과적으로 
회수할 수 있다. 
 

 𝑆𝑖𝑚
𝑆𝐵𝐸𝑅𝑇(𝑠

𝑞
, 𝑠

𝑖
)
 =

 (𝑒
𝑞
 · 𝑒

𝑖
)

(||𝑒
𝑞
||) · (||𝑒

𝑖
||)

 
● 𝜙(⋅)는 사전 학습된 Sentence-BERT 임베딩 함수를 
의미함 

● 는 입력 요약 의 임베딩 벡터 𝑒
𝑞
 =  𝜙(𝑠

𝑞
) 𝑠

𝑞
● 는 입력 요약 의 임베딩 벡터 𝑒

𝑖
 =  𝜙(𝑠

𝑖
) 𝑠

𝑖
 
  본 연구에서는 키워드 기반 검색과 의미 기반 검색의 상호 보완적 
특성을 결합하기 위해 BM25-SBERT 하이브리드 검색 전략을 
정의하였다. 하이브리드 검색은 두 검색 방식에서 산출된 순위를 
결합하여 다음과 같은 결합 순위 점수를 계산한다. 특정 검색 
방식에 대한 편향을 최소화하기 위해  = 0.5로 고정하여 동일 α
가중치를 적용하였다. 결합 순위 점수가 낮을수록 어휘적 단서와 
의미적 정합성을 동시에 만족하는 사례임을 의미한다. 
 

 𝑅𝑎𝑛𝑘
ℎ𝑦𝑏𝑟𝑖𝑑

(𝑠
𝑖
) = α ·  𝑟𝑎𝑛𝑘

𝐵𝑀25
(𝑠

𝑖
) +  (1 −  α) ·  𝑟𝑎𝑛𝑘

𝑆𝐵𝐸𝑅𝑇
(𝑠

𝑖
)

 
● 는 BM25 기준에서의 요약 의 순위를 나타냄 𝑟𝑎𝑛𝑘

𝐵𝑀25
𝑠

𝑖
● 는 SBERT 유사도 기준에서의 요약 의 순위를 𝑟𝑎𝑛𝑘

𝑆𝐵𝐸𝑅𝑇
𝑠

𝑖
나타냄 

● 는 두 검색 신호 간의 기여도를 조절하는 가중치를 α
의미함 

 
  추가적으로, 본 연구는 검색 결과에 재정렬 단계를 적용한 확장 
설정을 별도로 구성하였다. 재정렬은 1차 검색을 통해 확보된 상위 
개의 후보 집합 에 대해 수행되며, 각 후보에 대해 다음과 같은 𝑘' 𝐶
재정렬 점수를 계산한다. 재정렬 점수가 높을수록 입력 요약과 
과거 사례 간의 정합성이 높다고 판단되며, 이를 기준으로 후보 
집합을 재정렬한 뒤 상위 개의 사례를 최종 검색 결과로 선택한다 𝑘
[17]. 본 연구에서는 재정렬 기법의 순수한 추가 효과를 분석하기 
위해 이를 독립적인 확장 설정으로 포함하였다. 
 

 𝑆𝑐𝑜𝑟𝑒
𝑟𝑒𝑟𝑎𝑛𝑘

(𝑠
𝑖
,  𝑟

𝑖
) =  ψ(𝑠

𝑞
,  𝑠

𝑖
,  𝑟

𝑖
)

 
● 은 입력 요약 와 후보 요약–리포트 쌍 ( , )을 ψ(·) 𝑠

𝑞
𝑠

𝑖
𝑟

𝑖
하나의 텍스트 시퀀스로 결합하여 관련도 점수를 
산출하는 cross-encoder 기반 함수를 나타냄 

● ( , )는 학습 세트에서 검색된 요약-리포트 쌍을 의미함 𝑠
𝑖

𝑟
𝑖

 
  이와 같이 본 연구에서는 검색 공간, 유사도 계산 방식, 검색 
전략의 결합 및 확장 방식을 명시적으로 정의함으로써, 검색 기반 
문맥 보강을 하나의 분석 가능한 설계 요소로 취급한다. 이러한 
정의는 이후 실험에서 키워드 기반, 의미 기반, 하이브리드 검색, 
그리고 재정렬 확장 설정이 LLM 기반 버그 리포트 자동 생성 
품질에 미치는 영향을 일관된 기준 하에서 비교·분석하기 위한 
기반을 제공한다. 
 
3.3 프롬프트 설계 

  본 연구에서는 검색 기반 문맥 보강 전략의 효과를 공정하게 
비교·분석하기 위해, 모든 실험에서 동일한 프롬프트 구조와 지시 
체계를 사용하였다. 프롬프트는 입력으로 주어진 비정형 버그 
요약을 구조화된 버그 리포트로 변환하는 것을 목표로 하며, 검색 
전략이나 예시 수를 제외한 모든 구성 요소는 실험 전반에 걸쳐 
고정하였다. 
  검색 기반 문맥 보강 설정에서는 학습 세트로부터 검색된 사례를 
프롬프트에 예시 형태로 삽입하였다. 각 예시는 입력 요약과 이에 
대응하는 구조화된 버그 리포트 쌍으로 구성되며, 이는 언어 
모델이 요구되는 출력 형식과 서술 수준을 명확히 인식하도록 
돕는 기준점으로 작동한다. 예시의 수는 1/2/3-shot으로 
조절하였으며, 예시 수를 제외한 프롬프트의 나머지 구성 요소와 
지시문은 모든 실험에서 동일하게 유지하였다. 이를 통해 검색 
전략과 예시 수 변화가 생성 품질에 미치는 영향을 독립적으로 
분석할 수 있도록 실험 조건을 통제하였다. 
  검색을 사용하지 않는 설정에서는 예시 없이 동일한 지시문과 
출력 형식 제약만을 적용하였다. 이 설정은 검색 기반 문맥 보강의 
효과를 비교하기 위한 베이스라인으로 활용되었으며, 프롬프트 
구조 자체의 차이가 아닌 검색 예시의 유무와 구성 방식만이 성능 
차이에 영향을 미치도록 설계되었다. 
  검색된 예시가 프롬프트에 삽입되는 전체 구조는 그림 2에 
제시한다. 그림 2는 입력 요약, 검색을 통해 선택된 예시 쌍, 
고정된 지시문, 그리고 출력 형식 제약이 하나의 프롬프트 
문맥으로 결합되는 과정을 개략적으로 나타낸다. 이를 통해 검색 
기반 문맥 보강이 단순한 참고 정보 제공이 아니라, 생성 단계에서 
언어 모델의 출력 행동을 제약하고 유도하는 프롬프트 구성 
요소로 작동함을 확인할 수 있다. 
 

You are an expert QA engineer. Convert the user’s unstructured input 
into a structured bug report. 
 
--- Reference Examples (Retrieved) --- 
Example #1: 
[Input] 
<Example Summary>  
 
[Output] 
<Generated Bug Report> 
 
--- End of Examples --- 
### Input to Convert: 
<Summary> 
 
### Output Bug Report 

그림 2. 검색 기반 문맥 보강을 활용한 프롬프트 구조 예시  
 
3.4 버그 리포트 생성 
  본 연구에서는 미세조정된 대규모 언어 모델과 고정된 
프롬프트를 사용하여 버그 리포트를 생성하였다. 생성 단계는 
검색 기반 문맥 보강 전략과 예시 구성 방식이 생성 결과에 미치는 
영향을 비교하기 위한 절차로 정의되었으며, 전략 간의 공정한 
비교를 위해 생성 과정 전반의 조건을 일관되게 유지하였다. 이를 
통해 생성 결과의 차이가 모델 설정이나 실행 환경의 변화가 
아니라, 검색 기반 문맥 보강 전략과 예시 구성의 차이에 의해 
발생하도록 실험을 설계하였다. 
  각 입력 샘플은 버그 요약-리포트 쌍으로 제공되며, 생성 
과정에서는 3.3절에서 정의한 출력 형식 제약에 따라 구조화된 
버그 리포트로 변환된다. 검색을 사용하지 않는 설정에서는 예시 
없이 동일한 지시문과 출력 형식만이 적용되었다. 이때 검색 
전략과 예시 수를 제외한 모든 생성 조건은 실험 전반에 걸쳐 
동일하게 유지하였다. 
 
4. 실험 
4.1 실험 요약 및 설정 
  본 연구의 실험은 검색 기반 문맥 보강 전략의 설계 차이가 
대규모 언어 모델 기반 버그 리포트 자동 생성 품질에 미치는 
영향을 비교·분석하기 위해 구성되었다. 이를 위해 검색을 
적용하지 않는 생성 설정을 베이스라인으로 정의하고, 키워드 
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기반 검색(BM25), 의미 기반 검색(SBERT), BM25-SBERT 
하이브리드 검색, 그리고 재정렬 단계를 포함한 확장 설정을 
동일한 생성 조건 하에서 비교하였다. 모든 실험은 동일한 데이터 
분할과 생성 절차를 유지하여, 관찰된 성능 차이가 검색 전략과 
문맥 보강 방식의 차이에 기인하도록 통제하였다. 
  실험에는 Qwen2.5-7B-Instruct [19], LLaMA-3.2-3B-Instruct [20], 
Mistral-7B-Instruct-v0.3 [21]의 세 가지 LLM을 사용하였다. 모든 
모델에는 LoRA 기반 미세조정을 동일한 설정으로 적용하였으며 
[9], Unsloth 프레임워크를 기반으로 학습을 수행하였다 [22]. 의미 
기반 검색에는 sentence-transformers/all-mpnet-base-v2 모델을 
사용하였고 [12], 재정렬 확장 설정에는 BAAI/bge-reranker-v2-m3 
모델을 적용하였다 [17]. 
  생성 과정에서는 확률적 변동성을 배제하기 위해 temperature를 
0으로 설정하고 샘플링을 비활성화한 결정론적 디코딩을 
사용하였다. 이를 통해 검색 전략과 문맥 보강 방식의 차이가 생성 
결과에 미치는 영향을 보다 명확하게 분석하였다. 모든 실험은 
단일 NVIDIA RTX 4090 GPU를 사용하는 Ubuntu 24.04 (WSL2) 
환경에서 수행되었으며, CUDA 12.6, PyTorch 2.5.1+cu121 [23], 
Transformers 4.55.3 [24], Unsloth 프레임워크 [22]를 동일하게 
적용하였다. 
 
4.2 데이터셋 
  본 연구의 실험은 Bugzilla 기반 버그 리포트 데이터셋을 
사용하여 수행되었다 [2]. 해당 데이터셋은 기존 연구에서 
구축·공개된 데이터셋을 기반으로 하며 [16], 비정형 버그 요약과 
이에 대응하는 구조화된 버그 리포트로 구성된 쌍 형태를 갖는다. 
각 쌍은 하나의 버그 요약과, 이를 재현 절차, 기대 결과, 실제 
결과, 실행 환경 등의 구조적 요소로 정리한 버그 리포트로 
이루어져 있다. 
  본 연구에서 사용한 최종 데이터셋은 총 3,966개의 요약-리포트 
쌍으로 구성되어 있으며, 검색 기반 문맥 보강 전략의 효과를 
분석하기에 충분한 규모와 품질을 갖는다. 해당 데이터셋은 자동 
생성 모델 학습과 평가에 적합하도록 기존 연구에서 정제된 
결과물로, 구조적 완성도와 정보 충실성이 확보된 리포트들로 
이루어져 있다 [16]. 
  본 데이터셋은 버그 요약과 구조화된 리포트로 구성된 텍스트 
기반 데이터셋으로, 본 연구의 모든 실험은 이러한 텍스트 
정보만을 입력과 출력으로 사용하여 수행되었다. 
  구성된 데이터셋은 학습, 검증, 테스트 세트로 분할하여 
사용되었으며, 모든 실험에서는 동일한 분할을 유지하였다. 특히 
검색 기반 문맥 보강 과정에서도 학습 세트만을 검색 대상으로 
사용하고, 평가 대상 리포트와 동일한 사례가 예시로 활용되지 
않도록 엄격히 통제하였다. 이를 통해 데이터 누출 가능성을 
차단하고, 검색 전략 및 문맥 보강 설정 간 비교 실험의 공정성과 
결과 해석의 신뢰성을 확보하였다. 
 
4.3 평가 지표 
  본 연구에서는 생성된 버그 리포트의 품질을 단일 관점이 아닌 
다각적 관점에서 분석하기 위해, 구조적 완성도, 어휘적 정보 
포괄성, 어휘적 균형, 의미적 정합성의 네 가지 측면을 반영하는 
자동 평가 지표를 사용하였다. 각 지표는 서로 상보적인 품질 
요소를 측정하며, 특정 지표에 대한 편향을 완화하기 위해 복수의 
지표를 함께 적용하였다. 지표 간 비교의 직관성과 의미적 
정합성을 확보하기 위해, 본 연구에서 보고하는 모든 지표 값은 
백분율(%) 형태로 정규화하여 제시한다. 

● CTQRS (구조적 완성도) [10]: CTQRS는 생성된 버그 
리포트가 재현 절차, 환경 정보, 기대 결과 및 실제 결과와 
같이 재현 가능성과 관련된 핵심 구조 요소를 얼마나 
체계적으로 포함하고 있는지를 평가하는 지표이다. 본 
연구의 목적은 생성된 리포트가 실제로 재현에 
성공하는지(재현 성공률)를 직접적으로 평가하는 것이 
아니라, 재현을 가능하게 하는 구조적 전제조건이 충분히 
갖추어졌는지를 분석하는 데 있으므로, CTQRS를 
구조적 완성도에 대한 대리 지표로 사용하였다. 다만 
CTQRS는 자동화된 평가 지표로서 개발자의 이해 
용이성이나 실제 재현 효율과 같은 질적 요소를 완전히 
반영하지는 못하며, 이에 따라 본 연구에서는 CTQRS 

점수의 향상을 재현 성공의 직접적인 보장으로 해석하지 
않는다. CTQRS 산출은 기존 연구에서 제시된 자동 평가 
스크립트를 활용하여 동일한 기준 하에서 일관되게 
측정하였다. 

● ROUGE-1 Recall (어휘적 정보 포괄성) [11]: 참조 
리포트의 핵심 정보가 생성된 결과물에 얼마나 누락 없이 
포함되었는지를 측정하기 위해 ROUGE-1 Recall을 
사용하였다. 이는 생성된 텍스트가 참조 리포트의 주요 
단어를 얼마나 폭넓게 포함하는지를 나타내며, 값이 
낮을수록 핵심 단서의 누락 가능성이 높음을 보인다. 본 
연구에서는 검색 기반 문맥 보강이 핵심 정보의 포함에 
미치는 영향을 분석하기 위한 지표로 활용하였다. 

● ROUGE-1 F1 (어휘적 균형) [11]: ROUGE-1 F1은 
Recall(어휘적 정보 포괄성)과 Precision(정밀도)의 조화 
평균으로, 핵심 정보를 포함하는 동시에 불필요하거나 
중복된 표현을 얼마나 억제했는지를 평가한다. 즉, 
단순히 정보를 많이 포함하여 Recall을 높이는 것에 
그치지 않고, 생성 결과가 장황해지거나 불필요한 토큰을 
과도하게 생성하는 현상을 함께 점검할 수 있다. 본 
연구에서는 문맥 보강 과정에서 발생할 수 있는 중복과 
장황함을 포함한 어휘적 품질의 균형을 분석하기 위해 
F1을 함께 고려하였다. 

● SBERT 유사도 (의미적 정합성) [12]: 표면적 단어 일치 
여부를 넘어, 생성된 리포트와 참조 리포트 간의 의미적 
정합성을 평가하기 위해 SBERT(Sentence-BERT) 기반 
코사인 유사도를 측정하였다. 이 지표는 사용된 어휘가 
다르더라도 문장의 전체적인 의미와 의도가 얼마나 
일관되게 유지되는지를 포착할 수 있다. 본 연구에서는 
의미 기반 검색 및 하이브리드 검색 전략이 생성 결과의 
의미적 정합성에 미치는 영향을 분석하기 위한 지표로 
사용하였다. 

 
이와 같은 지표 구성은 검색 기반 문맥 보강이 버그 리포트 자동 
생성 품질에 미치는 영향을 구조적, 어휘적, 의미적 측면에서 
종합적으로 분석하기 위한 것이다. 다만 자동 평가 지표는 
개발자의 이해 용이성이나 실제 재현 효율과 같은 질적 요소를 
완전히 반영하지는 못한다는 한계가 있다. 이러한 점을 고려하여, 
향후 연구에서는 개발자 참여 기반의 주관적 평가를 통해 생성된 
버그 리포트의 실질적 유용성과 재현 가능성을 함께 검증할 
계획이다. 본 연구에서는 실험 결과의 통계적 안정성을 확보하기 
위해 부트스트랩 리샘플링 기법을 적용하였다. 각 평가 지표에 
대해 테스트 데이터셋으로부터 복원 추출을 5,000회 반복 
수행하여 95% 신뢰 구간을 산출하였으며, 이를 통해 단일 
평균값이 가질 수 있는 우연성을 배제하고 결과의 신뢰도를 
검증하였다. 베이스라인 실험의 경우, 개별 생성 결과 데이터가 
공개되어 있지 않아 ROUGE-1 F1 및 paired 통계 분석을 수행할 
수 없었으며, 따라서 베이스라인 결과는 직접적인 통계 비교가 
아닌 참고 기준으로만 활용된다. 
 
4.4 연구 질문 및 실험 결과 
  본 절에서는 검색 기반 문맥 보강 전략이 대규모 언어 모델 기반 
버그 리포트 자동 생성 품질에 미치는 영향을 체계적으로 
분석한다. 이를 위해 검색을 적용하지 않는 생성 설정을 
베이스라인으로 정의하고, 키워드 기반 검색(BM25), 의미 기반 
검색(SBERT), BM25-SBERT 하이브리드 검색, 그리고 
재정렬(Re-ranking)을 포함한 확장 설정을 동일한 조건 하에서 
비교하였다. 본 연구는 검색 전략의 유형과 결합 방식, 그리고 확장 
설정이 생성 품질에 미치는 영향을 단계적으로 검증하기 위해 
다음과 같은 연구 질문을 설정하였다. 

● RQ1. 키워드 기반 검색의 영향: 키워드 기반 
검색(BM25)을 활용한 문맥 보강은 검색을 사용하지 않는 
생성 방식과 비교하여 버그 리포트의 구조적 완성도와 
어휘적 정보 포괄성을 향상시키는가? 

● RQ2. 의미 기반 검색의 특성: 유사도 기반 
검색(SBERT)을 활용한 문맥 보강은 키워드 기반 검색과 
비교하여 의미적 정합성과 표현 안정성 측면에서 어떠한 
특성을 보이는가? 
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● RQ3. BM25-SBERT 하이브리드 검색의 성능적 특성: 
BM25-SBERT 하이브리드 검색은 단일 검색 전략 대비 
구조적 완성도, 어휘적 균형, 의미적 정합성 측면에서 
보다 안정적인 성능을 제공하는가? 

● RQ4. 재정렬 확장 설정의 추가 효과: 검색 결과에 대해 
재정렬 단계를 추가하는 확장 설정은 하이브리드 검색의 
생성 품질에 유의미한 추가 효과를 제공하는가, 아니면 
그 효과가 제한적인 범위에 머무르는가? 

 
  먼저, 검색 기반 문맥 보강 전략의 효과를 보다 명확히 분석하기 
위해 실험에 사용할 기준 모델을 선정하는 사전 비교 실험을 
수행하였다. 비교 대상은 Qwen2.5-7B-Instruct, 
LLaMA-3.2-3B-Instruct, Mistral-7B-Instruct-v0.3의 세 가지 
모델이며, 동일한 데이터셋과 학습 설정, 평가 지표 하에서 성능을 
비교하였다. 검색을 적용하지 않은 베이스라인 조건에서 
Qwen2.5-7B-Instruct는 CTQRS 77%, ROUGE-1 Recall 61%, 
SBERT 유사도 85%를 기록하여, LLaMA-3.2-3B-Instruct(CTQRS 
63%, ROUGE-1 Recall 50%, SBERT 유사도 73%)와 
Mistral-7B-Instruct-v0.3(CTQRS 71%, ROUGE-1 Recall 59%, 
SBERT 유사도 84%)에 비해 전반적으로 안정적인 성능을 보였다. 
이는 구조적 완성도와 의미적 정합성 측면에서 
Qwen2.5-7B-Instruct 모델이 기본 생성 품질에서 상대적으로 높은 
성능을 일관되게 유지함을 보여준다. 
  검색 기반 문맥 보강을 적용한 이후에는 세 모델 모두에서 
CTQRS와 ROUGE-1 Recall이 일관되게 증가하는 공통적인 
경향이 관찰되었다. 반면 shot 수가 증가할수록 ROUGE-1 F1 
점수는 모든 모델에서 지속적으로 감소하는 양상을 보였는데, 
이는 ROUGE-1 F1이 어휘적 정보 포괄성과 정밀도의 균형을 
반영하는 지표라는 점을 고려할 때, 관찰된 성능 변화가 포괄성 
중심의 생성으로 기울어졌음을 보여주는 결과로 해석할 수 있다. 
이러한 변화는 결과적으로 어휘적 균형의 저하로 이어졌음을 
의미한다. 
  모델별 성능 차이를 보다 명확히 비교하기 위해 하이브리드 
1-shot 설정을 기준으로 살펴보면, Qwen2.5-7B-Instruct는 CTQRS 
92.0%, ROUGE-1 Recall 81.3%, F1 62.4%, SBERT 유사도 
91.0%를 기록하여 네 가지 지표 전반에서 균형 잡힌 성능을 
보였다. 반면 LLaMA-3.2-3B-Instruct는 동일 설정에서 CTQRS 
89.9%, Recall 79.7%, F1 52.1%, SBERT 유사도 87.4%를 
기록하여, 특히 ROUGE-1 F1과 SBERT 유사도 측면에서 Qwen 
대비 낮은 절대 성능을 나타냈다. 이러한 경향은 BM25, SBERT, 
재정렬 설정에서도 유사하게 관찰되었으며, LLaMA 모델은 일정 
수준의 점수를 유지한 반면 어휘적 균형과 의미적 정합성 
측면에서 상대적으로 불리한 양상을 보였다. 
  Mistral-7B-Instruct-v0.3는 하이브리드 1-shot에서 CTQRS 
93.5%, Recall 81.0%, F1 62.1%, SBERT 유사도 88.7%로 높은 
초기 성능을 보였으나, shot 수가 증가함에 따라 성능 저하 폭이 
가장 크게 나타났다. BM25 및 SBERT 기반 설정에서도 유사한 
감소 양상이 반복되었다. 이는 Mistral 모델이 구조적 완성도는 
유지하는 반면, 예시 수 증가 상황에서 의미적 정합성과 어휘적 
균형이 빠르게 저하되는 특성을 가짐을 보여준다. 
  이와 같이 여러 검색 전략과 shot 설정 전반에서 반복적으로 
관찰된 결과를 종합하면, Qwen2.5-7B-Instruct는 구조적 완성도, 
어휘적 균형, 의미적 정합성 측면에서 가장 안정적인 성능을 
보였으며, 검색 전략 변화에 따른 성능 변동도 상대적으로 
완만하였다. 이에 따라 이후 RQ1-RQ4에 대한 주 실험은 
Qwen2.5-7B-Instruct를 기준  모델로 설정하여 수행하였다. 
  이제 RQ1-RQ3에 해당하는 검색 전략 비교 결과를 살펴본다. 
모든 실험은 재정렬을 적용하지 않은 기본 검색 설정을 기준으로 
수행되었으며, 각 검색 전략과 shot 수에 따른 정량적 결과는 표 
1에 제시되어 있다. 또한 검색 전략 간 상대적 특성을 보다 명확히 
비교하기 위해 시각적 분석에서는 1-shot 설정 결과를 중심으로 
함께 제시하였다. 표 1에 제시된 결과는 각 설정의 평균 성능과 
함께, 동일한 테스트 인스턴스에 대해 5,000회 부트스트랩 
리샘플링으로 산출한 95% 신뢰구간을 포함한다. 이를 통해 
관측된 성능 차이가 일부 특정 사례에 의해 발생한 것이 아니라, 
입력 전반에서 일관되게 유지되는 경향인지 여부를 함께 분석할 
수 있다. 

 
표 1. 검색 전략과 shot 수에 따른 생성 품질 비교 결과. 괄호 안의 
값은 5,000회 부트스트랩 리샘플링으로 산출한 95% 신뢰구간의 

half-width를 나타낸다. 
Method CTQRS ROUGE-1Recall ROUGE-1 F1 SBERT 

Baseline 77 61 - 85 

BM25 1-shot 92.3(±0.8) 81.5(±1.8) 62.7(±2.2) 91.3(±0.9) 

BM25 2-shot 92.4(±0.8) 81.5(±2.0) 61.4(±2.2) 89.3(±1.3) 

BM25 3-shot 93.2(±0.7) 80.7(±2.0) 49.1(±2.6) 78.4(±2.1) 

SBERT 1-shot 91.6(±0.9) 80.8(±2.0) 62.2(±2.3) 91.1(±1.0) 

SBERT 2-shot 91.5(±1.0) 80.4(±2.1) 59.6(±2.4) 88.8(±1.4) 

SBERT 3-shot 92.6(±0.9) 78.9(±2.2) 50.4(±2.5) 81.8(±1.9) 

Hybrid 1-shot 92(±0.9) 81.3(±1.9) 62.4(±2.2) 91.0(±1.0) 

Hybrid 2-shot 91.8(±0.9) 81.4(±2.0) 60.2(±2.3) 88.9(±1.4) 

Hybrid 3-shot 92.7(±0.9) 79.8(±2.2) 49.2(±2.6) 79.6(±2.0) 

 
  먼저 키워드 기반 검색(BM25)을 적용한 결과를 살펴본다. 그림 
3은 BM25 기반 RAG의 1-shot 설정에서의 생성 품질을 네 가지 
평가 지표(CTQRS, ROUGE-1 Recall, ROUGE-1 F1, SBERT 
유사도) 기준으로 베이스라인과 비교한 결과를 시각적으로 
보여준다. 1-shot 설정에서 CTQRS는 77.0%에서 92.3%로 
15.3%p 상승하였으며, ROUGE-1 Recall 역시 61.0%에서 
81.5%로 20.5%p 증가하였다. 이는 키워드 기반 검색이 재현에 
필요한 구조적 요소와 주요 정보가 생성 과정에서 보다 충실히 
반영되었음을 보여준다. ROUGE-1 F1 점수는 1-shot 설정에서 
62.7%를 기록하여, 어휘적 균형 측면에서도 상대적으로 높은 
수준을 유지하였다. 또한 SBERT 유사도는 85.0%에서 91.3%로 
6.3%p 향상되어, 의미적 정합성 역시 향상되는 경향이 
관찰되었다. 또한 지표들의 신뢰구간 폭이 상대적으로 좁게 
유지된 점은, BM25 기반 검색의 성능 향상이 일부 특정 사례에 
의해 좌우되지 않고 다양한 입력에 대해 안정적으로 관찰됨을 
보인다. 
 

 
그림 3. BM25 기반 RAG의 1-shot 설정에서 생성된 버그 리포트의 

품질을 네 가지 평가 지표로 베이스라인과 비교한 결과. 
 
  이후 shot 수가 증가함에 따라 지표 변화 양상을 분석하였다. 
CTQRS는 2-shot에서 92.4%, 3-shot에서 93.2%를 기록하여, 예시 
수 증가에도 불구하고 구조적 완성도는 높은 수준을 유지하였다. 
반면 ROUGE-1 F1 점수는 1-shot 62.7%에서 2-shot 61.4%, 
3-shot 49.1%로 점진적인 감소를 보였으며, SBERT 유사도 역시 
1-shot 91.3%에서 2-shot 89.3%, 3-shot 78.4%로 하락하는 경향이 
관찰되었다. 이는 예시 수 증가에 따라 어휘적 정보 포괄성은 
강화되는 반면, 어휘적 균형과 의미적 정합성 측면에서는 
상대적인 감소가 관찰되었음을 의미한다. 
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  다음으로 의미 기반 검색(SBERT)을 적용한 결과를 분석한다. 
그림 4는 SBERT 기반 RAG의 1-shot 설정에서의 네 가지 지표를 
베이스라인과 비교한 결과를 제시한다. CTQRS는 77.0%에서 
91.6%로 14.6%p 상승하였으며, ROUGE-1 Recall은 61.0%에서 
80.8%로 19.8%p 증가하였다. ROUGE-1 F1 점수는 1-shot에서 
62.2%를 기록하여, BM25와 유사한 수준의 어휘적 균형을 
달성하였다. 특히 SBERT 유사도는 85.0%에서 91.1%로 6.1%p 
향상되어, 의미적 정합성이 안정적으로 유지되며 향상되는 경향을 
보였다. 이는 의미 기반 검색이 어휘적 일치에 의존하지 않고도 
참조 리포트의 핵심 문맥을 효과적으로 반영할 수 있음을 
보여준다. 
 

 
그림 4. SBERT 기반 RAG의 1-shot 설정에서 생성된 버그 

리포트의 품질을 네 가지 평가 지표로 베이스라인과 비교한 결과. 
 
  shot 수 변화에 따른 결과를 살펴보면, CTQRS는 2-shot에서 
91.5%, 3-shot에서 92.6%를 기록하여 비교적 안정적인 수준을 
유지하였다. ROUGE-1 F1 점수는 1-shot 62.2%에서 2-shot 
59.6%, 3-shot 50.4%로 감소하였으나, SBERT 유사도는 1-shot 
91.1%에서 2-shot 88.8%, 3-shot 81.8%로 BM25 대비 상대적으로 
완만한 감소 폭을 보였다. 이는 의미 기반 검색이 shot 수 증가 
환경에서도 의미적 정합성을 비교적 안정적으로 유지하는 특성을 
가짐을 보인다. 
  마지막으로 BM25-SBERT 하이브리드 검색 결과를 분석한다. 
그림 5는 하이브리드 검색의 1-shot 설정에서 네 가지 지표를 
베이스라인과 비교하여 제시한다. 하이브리드 검색은 CTQRS가 
77.0%에서 92.0%로 15.0%p 상승하였고, ROUGE-1 Recall은 
61.0%에서 81.3%로 20.3%p 증가하였다. ROUGE-1 F1 점수는 
1-shot에서 62.4%를 기록하였으며, SBERT 유사도는 85.0%에서 
91.0%로 6.0%p 향상되었다. 이는 하이브리드 전략이 키워드 기반 
검색의 높은 초기 성능을 상당 부분 유지하고 있음을 의미한다. 
 

 
그림 5. BM25-SBERT 하이브리드 기반 RAG의 1-shot 설정에서 
생성된 버그 리포트의 품질을 네 가지 평가 지표로 베이스라인과 

비교한 결과. 

 
  shot 수가 증가함에 따라 하이브리드 검색 역시 일부 지표의 
감소가 관찰되었으나, 그 감소 폭은 상대적으로 완만하였다. 
ROUGE-1 F1 점수는 1-shot 62.4%에서 2-shot 60.2%, 3-shot 
49.2%로 감소하였고, SBERT 유사도는 1-shot 91.0%에서 2-shot 
88.9%, 3-shot 79.6%로 하락하였다. 이는 BM25 단독 전략 대비 
ROUGE-1 F1 및 SBERT 유사도 측면에서 감소 폭이 상대적으로 
완만하게 나타난 결과이다. 이러한 관측 결과를 종합하면, 
하이브리드 검색은 BM25의 높은 초기 성능과 SBERT의 상대적 
안정성을 부분적으로 결합하여, shot 수 증가 환경에서도 비교적 
균형 잡힌 성능을 유지하는 접근으로 해석할 수 있다. 
  종합하면, RQ1-RQ3의 결과는 검색 기반 문맥 보강이 버그 
리포트 생성 품질에 구조적, 어휘적, 의미적 측면에서 뚜렷한 
변화를 유도함을 보여준다. BM25는 적은 예시 수 환경에서 가장 
우수한 성능을 보였고, SBERT는 shot 수 증가 상황에서 의미적 
정합성을 비교적 안정적으로 유지하였다. 하이브리드 검색은 이 
두 전략의 특성을 절충하여, 다양한 설정에서 균형 잡힌 성능을 
제공하는 실용적인 대안으로 기능하였다. 이러한 결과의 의미와 
실무적 함의는 다음 절에서 보다 자세히 논의한다. 
  다음으로 BM25-SBERT 하이브리드 검색 결과에 재정렬 기법을 
추가로 적용했을 때 버그 리포트 생성 품질이 어떻게 
변화하는지를 분석한다. 재정렬은 1차 검색 단계에서 수집된 후보 
문서들을 대상으로 추가적인 정합성 평가를 수행하여, 생성 
단계에 주입되는 예시의 순위를 조정하는 확장 설정으로 
적용되었다. 본 실험에서는 재정렬을 적용하지 않은 하이브리드 
검색 설정을 기준선으로 삼아, 재정렬 추가가 CTQRS, ROUGE-1 
Recall, F1, SBERT 유사도에 미치는 영향을 비교하였다. 각 
설정의 절대적인 성능 수준은 표 2에 제시되어 있다. 
 
표 2. BM25-SBERT 하이브리드 검색에 재정렬 기법을 적용한 
경우와 미적용한 경우를 shot 수별로 비교한 생성 품질 결과. 괄호 
안의 값은 5,000회 부트스트랩 리샘플링으로 산출한 95% 

신뢰구간의 half-width를 나타낸다. 
Method CTQRS ROUGE-1Recall ROUGE-1 F1 SBERT 

Hybrid 1-shot 92(±0.9) 81.3(±1.9) 62.4(±2.2) 91(±1.0) 

Hybrid 2-shot 91.8(±0.9) 81.4(±2.0) 60.2(±2.3) 88.9(±1.4) 

Hybrid 3-shot 92.7(±0.9) 79.8(±2.2) 49.2(±2.6) 79.6(±2.0) 

Rerank 1-shot 91.7(±0.8) 80.7(±1.9) 62.7(±2.3) 90.0(±1.2) 

Rerank 2-shot 92.4(±0.8) 81.8(±1.9) 59.6(±2.2) 88.7(±1.4) 

Rerank 3-shot 93.1(±0.7) 79.6(±2.0) 51.2(±2.4) 81.7(±1.8) 

 
  표 2에 따르면, 재정렬을 적용한 하이브리드 검색 설정은 
전반적으로 재정렬을 적용하지 않은 경우와 유사한 성능 범위를 
보이며, 일부 지표에서는 소폭의 차이가 관찰된다. 그러나 이러한 
비교는 각 설정의 평균 성능을 독립적으로 비교한 결과로, 동일한 
테스트 인스턴스를 기준으로 재정렬이 실제로 추가적인 개선 
효과를 제공하는지를 직접적으로 검증하기에는 한계가 있다. 
  이에 따라 본 연구에서는 재정렬 기법의 순수한 추가 효과를 보다 
엄밀히 분석하기 위해, Hybrid 1-shot 설정을 기준으로 재정렬 
적용 여부에 따른 성능 차이(Δ = rerank − no-rerank)에 대해 
paired bootstrap 분석을 수행하였다. Hybrid 1-shot 설정은 이전 
실험에서 상대적으로 안정적인 성능 분포와 비교적 높은 품질을 
보인 설정으로, shot 수 증가에 따른 부가적인 변동 요인의 영향을 
최소화한 상태에서 재정렬 기법의 효과를 관찰하기에 적절한 기준 
설정으로 선택되었다. 
  paired bootstrap 분석 결과는 표 3에 제시되어 있다. 분석 결과, 
CTQRS와 ROUGE 기반 지표(Recall 및 F1)의 경우 재정렬 적용에 
따른 평균 성능 차이는 매우 제한적이며, 해당 차이의 95% 
신뢰구간이 모두 0을 포함하는 것으로 나타났다. 이는 재정렬 
기법의 효과가 구조적 완성도나 어휘적 중복 및 균형 측면에서 
입력에 따라 상이하게 나타나며, 해당 지표 전반에 걸쳐 일관된 
성능 향상을 제공한다고 보기 어렵다는 점을 보인다. 반면 SBERT 
유사도에서는 재정렬 적용 시 평균적으로 양의 성능 차이가 
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관찰되었으며, 해당 차이의 신뢰구간이 0을 포함하지 않아 의미적 
정합성 측면에서는 통계적으로 유의미한 개선 효과가 확인되었다. 
이는 재정렬 기법이 동일한 입력에 대해 생성되는 예시들의 
의미적 정합성을 비교적 일관되게 개선했음을 의미하며, 
구조적·어휘적 지표와는 다른 특성을 보임을 나타낸다. 
  이러한 결과는 재정렬 기법이 생성된 버그 리포트의 구조적 
구성이나 표면적 어휘 품질을 전반적으로 향상시키기보다는, 
검색된 예시와의 의미적 정합성을 중심으로 제한적인 추가 이점을 
제공함을 보인다. 즉, 하이브리드 검색 기반 문맥 보강 설정에서 
재정렬 확장은 의미적 유사도 측면에서는 일정 수준의 기여를 
보이나, 전반적인 생성 품질을 구조적, 어휘적, 의미적 측면 
전반에서 일관되게 개선하는 핵심 요인으로 작용한다고 보기는 
어렵다. 
 
표 3. Hybrid 1-shot 설정에서 재정렬 적용 여부에 따른 성능 

차이(Δ = rerank − no-rerank)에 대해 수행한 paired bootstrap 분석 
결과. 

Metric Δ mean (±95% CI) 

CTQRS +0.31 (±0.71) 

ROUGE-1 Recall +0.58 (±1.09) 

ROUGE-1 F1 −0.33 (±1.42) 

SBERT +1.01 (±0.83) 

 
5. 토의 
5.1 실험 결과 해석 
  본 절에서는 검색 기반 문맥 보강 전략이 LLM 기반 버그 리포트 
자동 생성 품질에 미치는 영향을 정량적 결과를 중심으로 
분석한다. 분석의 초점은 검색 전략, shot 수, 그리고 평가 지표 
간의 관계에 있다. 
  먼저 검색을 적용하지 않은 베이스라인과 비교했을 때, 모든 검색 
기반 설정에서 구조적 완성도와 어휘적 정보 포괄성이 일관되게 
향상되었다. 베이스라인의 CTQRS는 77% 수준에 머물렀으나, 
검색 기반 설정에서는 전략과 예시 수에 관계없이 약 91-93% 
범위로 수렴하였다. 이는 검색된 예시가 생성 결과의 형식과 구성 
요소 포함 양상에 유의미한 영향을 미쳤음을 보인다. ROUGE-1 
Recall 역시 베이스라인의 61%에서 검색 적용 후 약 80-82%로 
상승하여, 검색 기반 문맥 보강이 참조 리포트의 핵심 정보를 보다 
폭넓게 포함하는 경향을 보인다. 
  검색 전략별 차이는 어휘적 균형과 의미적 정합성 지표에서 보다 
뚜렷하게 나타났다. 키워드 기반 검색(BM25)은 1-shot 설정에서 
ROUGE-1 Recall이 최대 81.5%로 가장 높게 나타났으나, 예시 수 
증가에 따라 ROUGE-1 F1과 SBERT 유사도가 급격히 
감소하였다. 예를 들어 BM25의 ROUGE-1 F1은 1-shot에서 
62.7%였으나 3-shot에서는 49.1%로 감소하였고, SBERT 유사도 
역시 91.3%에서 78.4%로 하락하였다. 이는 BM25가 어휘적 
일치도를 기반으로 많은 정보를 회수하는 데에는 효과적이나, 
예시 수 증가에 따라 어휘적 정보 포괄성이 확대되면서 어휘적 
균형과 의미적 정합성이 함께 저하되는 경향이 관찰됨을 보인다. 
  의미 기반 검색(SBERT)은 CTQRS와 ROUGE-1 Recall에서 
BM25와 유사한 수준의 성능을 보이면서도, 예시 수 증가에 따른 
성능 저하 폭이 상대적으로 작게 나타났다. SBERT의 ROUGE-1 
F1은 1-shot에서 62.2%, 3-shot에서 50.4%로 감소하였으며, 
SBERT 유사도는 동일 조건에서 91.1%에서 81.8%로 감소하였다. 
이는 의미 기반 검색이 어휘적 일치보다는 의미적 정합성을 
반영함으로써, 예시 수 증가 환경에서도 의미적 정합성을 
상대적으로 안정적으로 유지함을 보여준다. 
  하이브리드 검색은 단일 검색 전략과 비교하여 전반적으로 
중간적인 성능 분포를 보였으며, 지표 간 변동 폭이 상대적으로 
작게 나타났다. 1-shot 설정에서 하이브리드 검색은 CTQRS 
92.0%, ROUGE-1 Recall 81.3%, ROUGE-1 F1 62.4%, SBERT 
유사도 91.0%를 기록하였다. 예시 수가 3-shot으로 증가한 
경우에도 ROUGE-1 F1과 SBERT 유사도의 감소 폭은 BM25 단독 
전략보다 완만하게 나타났으며, 이는 어휘적 정보 포괄성과 

의미적 정합성 간의 균형이 상대적으로 안정적으로 유지되었음을 
보인다. 
  이러한 특성은 두 검색 방식의 상호 보완적 성격에 기인하는 
것으로 해석할 수 있다. BM25는 오류 메시지와 같은 명시적 기술 
용어를 효과적으로 회수하는 반면, SBERT는 표현 차이가 
존재하더라도 결함의 원인이나 동작 맥락이 유사한 사례를 
포착하는 데 강점을 가진다. 하이브리드 전략은 이 두 신호를 
결합함으로써 어휘 불일치나 의미적 모호성에 따른 검색 실패 
가능성을 완화하고, 예시 수 증가 환경에서도 의미적 정합성과 
어휘적 균형의 급격한 저하를 일부 완화한 것으로 보인다. 
  예시 수 변화에 따른 분석에서는 모든 검색 전략에서 CTQRS가 
예시 수 증가에 따라 상승하는 경향을 보였다. 반면 ROUGE-1 
F1과 SBERT 유사도는 예시 수가 증가할수록 감소하는 일관된 
패턴을 보였으며, 특히 3-shot 설정에서 감소 폭이 두드러졌다. 
이는 예시 수 증가가 구조적 형식 학습에는 긍정적으로 작용하는 
반면, 어휘적 균형과 의미적 정합성 측면에서는 감소로 이어지는 
trade-off 구조가 일관되게 관찰되었음을 의미한다. 
  재정렬 기법을 적용한 확장 설정의 경우, ROUGE-1 F1에서 최대 
약 0.3%p 수준의 소폭 개선이 일부 설정에서 관찰되었으나, 
CTQRS와 ROUGE-1 Recall, SBERT 유사도에서는 일관된 향상이 
나타나지 않았다. 또한 예시 수 증가에 따른 성능 감소 패턴은 
재정렬 적용 여부와 무관하게 유지되었다. 이는 재정렬 기법이 
검색 결과의 순위를 미세하게 조정하는 데에는 기여할 수 있으나, 
전반적인 생성 품질의 변화 양상을 구조적, 어휘적, 의미적 지표 
전반에서 일관되게 변화시키는 핵심 요인으로 작용하기에는 
한계가 있음을 보인다. 
 
5.2 위협 요인 
  본 연구는 검색 기반 문맥 보강 전략이 LLM 기반 버그 리포트 
자동 생성 품질에 미치는 영향을 분석하기 위해, 파인튜닝된 언어 
모델과 검색 기반 예시를 결합한 실험 설정을 사용하였다. 이와 
같은 실험 구성은 데이터 구성, 학습 설정, 검색 범위, 그리고 결과 
해석과 관련된 잠재적 위협 요인을 수반할 수 있다. 본 연구에서는 
이러한 위협을 최소화하기 위해 실험 설계 단계에서 가능한 
범위의 통제를 적용하였다. 
  먼저 파인튜닝 데이터 사용과 관련된 위협을 고려할 필요가 있다. 
본 연구에서는 기존 연구에서 정제된 Bugzilla 기반 데이터셋을 
사용하여 언어 모델을 파인튜닝하였으며, 학습, 검증, 테스트 
세트를 사전에 명확히 분리하였다. 또한 검색 인덱싱은 학습 
세트에 한정하여 수행함으로써, 평가 대상인 테스트 샘플과 
동일한 사례가 검색 예시로 사용되지 않도록 통제하였다. 이러한 
설계를 통해 검색 기반 문맥 보강 과정에서 발생할 수 있는 
직접적인 데이터 누수 가능성을 최소화하였다. 따라서 본 
연구에서 관찰된 성능 향상은 테스트 데이터에 대한 단순한 
암기나 정답 노출로 설명되기 어렵다. 
  한편 파인튜닝 자체가 검색 기반 문맥 보강의 효과를 
과대평가했을 가능성 또한 고려될 수 있다. 이를 완화하기 위해 본 
연구에서는 모든 실험 설정에서 동일한 파인튜닝 모델과 동일한 
하이퍼파라미터를 사용하였다. 즉, 파인튜닝은 검색 전략 간 
비교에서 고정된 요소로 유지되었으며, 실험에서 관찰된 성능 
차이는 검색 전략의 유형, 예시 수, 그리고 문맥 구성 방식의 
차이에 기인하도록 설계되었다. 이에 따라 본 연구의 결과는 
파인튜닝의 유무가 아니라, 동일한 파인튜닝 조건 하에서 검색 
전략이 생성 품질에 미치는 상대적 영향을 중심으로 해석되어야 
한다. 
  검색 예시가 생성 결과를 과도하게 유도하거나 특정 출력 패턴을 
암기하게 만들었을 가능성도 위협 요인으로 고려될 수 있다. 본 
연구에서는 검색된 예시를 few-shot 프롬프트 형태로 
제공하였으나, 예시 수를 1-shot에서 3-shot까지 단계적으로 
변화시키며 성능 변화를 분석하였다. 실험 결과, 예시 수 증가에 
따라 구조적 완성도는 향상되었으나 어휘적 균형과 의미적 
정합성은 감소하는 경향이 관찰되었다. 이는 검색 예시가 단순한 
정답 암기나 복제를 유도했다기보다는, 문맥 보강 수준에 따라 
상충 관계가 발생함을 보여주는 결과로 해석할 수 있다. 
  검색 전략과 파인튜닝 데이터 간의 결합 편향 역시 고려할 필요가 
있다. 본 연구의 파인튜닝 데이터와 검색 인덱싱 데이터는 동일한 
도메인(Bugzilla)에 기반하지만, 검색은 입력 요약과의 유사도를 
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기준으로 수행되었으며, 특정 출력 필드나 정답 문장을 
직접적으로 회수하도록 설계되지 않았다. 또한 서로 다른 검색 
전략(BM25, SBERT, 하이브리드)을 동일한 파인튜닝 모델에서 
비교함으로써, 검색 전략 자체의 특성이 생성 품질에 미치는 
영향을 분리하여 관찰할 수 있도록 하였다. 
  데이터셋의 일반화 가능성 또한 제한 요소로 작용할 수 있다. 본 
연구는 Bugzilla 기반 데이터셋에 국한되어 수행되었으며, GitHub 
Issues나 Jira와 같이 리포트 형식과 사용자 서술 방식이 상이한 
플랫폼에 대해 동일한 성능 경향이 유지된다고 단정할 수는 없다. 
다만 본 연구의 목적은 특정 플랫폼에서의 절대적인 성능을 
제시하는 것이 아니라, 검색 전략 선택에 따라 구조적 완성도, 
어휘적 정보 포괄성, 어휘적 균형 간의 관계가 어떻게 
변화하는지를 분석하는 데 있다. 이러한 분석 프레임워크는 다른 
이슈 트래킹 시스템에도 유사한 분석 관점으로 확장 적용될 수 
있다. 
  평가 지표와 관련해서는 자동 평가 지표 사용에 따른 제약이 
존재한다. 본 연구는 CTQRS, ROUGE-1 Recall, ROUGE-1 F1, 
SBERT 유사도를 사용하여 생성 품질을 분석하였으며, 이는 
구조적 품질과 내용 정합성을 정량적으로 비교하는 데 적합하다. 
그러나 이러한 지표는 실제 개발자가 인지하는 가독성이나 실무적 
유용성을 직접적으로 반영하지는 못한다. 특히 검색 기반 문맥 
보강은 정보 포함을 증가시키는 특성상, 일부 설정에서 중복 
표현이나 장황한 문장이 생성될 수 있으며 이는 ROUGE-1 F1 
감소로 간접적으로 반영되었다. 또한 검색 단계의 품질을 
Recall@k, nDCG, MRR과 같은 전통적인 정보검색 지표로 직접 
평가하지 않고, CTQRS, ROUGE, SBERT 유사도와 같은 생성 
기반 평가 지표를 통해 검색 결과가 생성 품질에 미치는 영향을 
간접적으로 분석하였다. 이로 인해 검색 실패 사례나 검색 결과의 
관련도 분포가 생성 결과의 저하에 어떠한 방식으로 기여하는지에 
대한 정밀한 인과 분석은 제한적이다. 향후 연구에서는 검색 품질 
지표와 생성 품질 지표를 함께 고려하여, RAG 파이프라인 내 검색 
단계와 생성 단계 간의 영향 관계를 보다 체계적으로 분석할 
필요가 있다. 
  통계적 분석 측면에서도 제한이 존재한다. 본 연구는 검색 전략 
간 평균 성능 비교를 중심으로 분석하였으며, 모든 연구 질문에 
대해 샘플 단위의 짝지은 통계 검정을 일관되게 적용하지는 
않았다. 다만 재정렬 확장 설정(RQ4)에 대해서는 동일 테스트 
인스턴스를 기준으로 paired bootstrap Δ 분석을 수행하여 추가 
효과를 검증하였고, 그 외 설정에 대해서는 5,000회 부트스트랩 
리샘플링을 통해 95% 신뢰 구간을 산출하였다. 보다 포괄적인 
통계적 유의성 분석은 향후 반복 실험과 다중 시드를 통해 보완될 
수 있다. 
  또한 본 연구에서 관찰된 성능 향상이 실제 유지보수 생산성 
향상으로 직접 이어진다고 단정하기는 어렵다. 파인튜닝과 검색 
기반 문맥 보강은 추가적인 계산 비용을 수반하며, 실무 적용 
효과는 개발 워크플로우에 따라 달라질 수 있다. 따라서 본 연구의 
결과는 검색 기반 문맥 보강 전략의 설계와 비교를 위한 분석적 
관점에서 해석되어야 하며, 실제 개발자를 대상으로 한 사용자 
연구와 시스템 수준의 평가가 필요하다. 본 연구의 분석 
프레임워크는 다른 환경에도 적용될 수 있으나, 산업 환경에서의 
유효성은 데이터 특성과 시스템 제약을 고려한 추가 검증이 
요구된다. 
 
6. 관련 연구 
6.1 버그 리포트 요약 및 자동 생성 
  버그 리포트의 비정형성과 정보 과잉 문제를 완화하기 위해, 초기 
연구들은 요약 자동화에 집중하였다. Rastkar et al. [25]은 핵심 
문장을 추출하는 기법을, Liu et al. [26]은 딥러닝을 통해 문맥 
흐름을 반영하는 요약 기법을 제안하여 결함 파악 효율을 높였다. 
그러나 이러한 요약 중심 접근은 텍스트 길이를 줄이는 데에는 
효과적이었으나, 결과물이 여전히 비정형 서술에 머물러 재현 
절차, 실행 환경, 기대 결과와 같은 구조적 요소를 명시적으로 
제공하지 못한다는 한계가 있었다. 즉, 요약 품질은 개선되었으나 
실제 유지보수에 즉시 활용 가능한 구조적 완성도를 확보하지는 
못한 것이다. 
  최근에는 LLM을 활용하여 요약을 넘어 구조화된 버그 리포트를 
생성하려는 연구가 등장하고 있다. 이들 연구는 지시형 

프롬프트를 통해 필수 항목을 포함하는 출력 형식을 유도함으로써 
기존 요약 접근의 구조적 한계를 보완하고 있다. 그러나 기존의 
생성 연구들은 주로 모델 자체의 성능이나 프롬프트 형식 설계에 
초점을 맞추고 있으며, 생성의 재료가 되는 입력 문맥의 구성 
방식이 품질에 미치는 영향은 충분히 다루지 않았다. 이에 본 
연구는 생성 기법 자체보다는 생성 과정에 제공되는 문맥의 구성 
방식(검색 전략)에 주목하여, 서로 다른 검색 전략과 예시 구성 
선택이 생성 품질의 여러 속성 간 균형과 그 변화 양상에 어떠한 
영향을 미치는지를 체계적으로 분석한다는 점에서 기존 연구들과 
구별된다. 
 
6.2 검색 기반 문맥 보강과 프롬프트 전략 
  유사한 과거 버그 리포트는 결함 재현 절차나 실행 환경과 같은 
유용한 문맥을 제공하여 자동 생성 품질 향상에 기여한다. 
최근에는 단순 키워드 매칭을 넘어 의미 기반 임베딩 이나 
하이브리드 전략 을 통해 검색 안정성을 높이려는 시도가 
활발하다. 이러한 검색 기술의 발전은 LLM의 프롬프트 기반 문맥 
학습과 결합하며 그 중요성이 확대되었다. Brown et al. [27]이 
보인 바와 같이, 검색된 유사 사례는 프롬프트 내의 예시로 
주입되어 모델의 출력 방향성을 유도하는 핵심 인터페이스로 
기능한다. 즉, 검색 전략은 단순한 정보 조회를 넘어 생성 모델의 
문맥 품질을 결정하는 결정적인 설계 변수로 작용한다. 
  그러나 기존 연구들은 검색 정확도 향상이나 고정된 문맥 
하에서의 프롬프트 기법 [28, 29, 30]을 상호 독립적으로 다루는 
경향이 강했다. 검색 결과가 프롬프트 문맥으로 통합되는 방식과 
그에 따른 생성 품질의 상관관계를 유기적으로 분석한 시도는 
드물었다. 이에 본 연구는 검색 기반 문맥 보강을 프롬프트 구성의 
핵심 변수로 정의하고, 키워드·의미·하이브리드 등 다양한 검색 
신호가 버그 리포트의 구조적 완성도와 의미적 정합성에 미치는 
영향을 체계적으로 규명함으로써 기존의 분절된 연구 한계를 
극복한다. 
   
6.3 생성 결과 평가 지표의 다차원적 확장 
  텍스트 생성 연구에서 결과물의 품질을 정량적으로 평가하는 
것은 여전히 도전적인 과제이다. 전통적으로 자동 요약 및 생성 
분야에서는 ROUGE 계열 지표가 표준으로 활용되어 왔으나 [11], 
이는 표면적인 어휘 중복만을 측정할 뿐 생성된 텍스트의 의미적 
정합성이나 정보 구조의 적절성을 반영하지 못한다는 한계가 
지속적으로 지적되어 왔다 [31]. 이를 보완하기 위해 제안된 
BERTScore [32]나 SBERT 유사도 [12]와 같은 의미 기반 지표들은 
의미적 정합성을 평가하는 데에는 유용하지만, 버그 리포트와 
같이 명확한 구조적 구성 요소를 요구하는 도메인 특화 문서의 
품질을 판단하는 데에는 한계가 있다. 
   소프트웨어 공학 분야에서는 이러한 구조적 특성을 반영하기 
위해 CTQRS와 같은 지표를 도입하여 버그 리포트의 구조적 
충실도를 정량화해 왔다 [10]. CTQRS는 어휘적 유사도만으로는 
포착하기 어려운 재현 가능성의 전제 조건, 즉 필수 항목의 포함 
여부를 평가하는 데 적합하다. 그러나 기존의 LLM 기반 버그 
리포트 자동 생성 연구들은 여전히 ROUGE-1 Recall과 같은 
재현율 중심 지표에 크게 의존하는 경향이 있다 [7]. 
  특히 본 연구와 같이 검색 기반 문맥 보강(RAG)을 적용하는 
환경에서는 재현율 중심 평가의 한계가 더욱 두드러진다. 검색을 
통해 외부 정보가 프롬프트에 주입될 경우, 모델이 핵심 정보를 더 
많이 포함하게 되어 재현율은 자연스럽게 상승하지만, 동시에 
불필요한 정보가 과도하게 생성되거나 출력이 장황해지는 
부작용이 발생할 수 있기 때문이다. 따라서 생성 품질을 정확히 
판단하기 위해서는 정보의 포괄성뿐만 아니라, 불필요한 중복을 
억제하고 정보의 밀도를 유지했는지를 나타내는 정밀도 관점의 
분석이 필요하다. 
  이에 본 연구는 기존의 CTQRS, ROUGE-1 Recall, SBERT 
유사도 평가에 더해, ROUGE-1 F1 지표를 핵심 분석 도구로 
도입하였다 [11]. ROUGE-1 F1 지표는 재현율과 정밀도의 조화 
평균으로서, 검색 전략이 정보의 총량을 늘리는 데 기여하는지, 
혹은 실질적인 정보의 정확도를 희생시키는지에 대한 상충 
관계(trade-off)를 규명하는 결정적인 기준을 제공한다. 이러한 
다각적인 지표 구성은 단일 지표 의존으로 인한 편향을 방지하고, 
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검색 기반 문맥 보강의 효과와 한계를 입체적으로 해석하기 위한 
틀을 제공한다. 
 
7. 결론 
  본 연구는 LLM 기반 버그 리포트 자동 생성 과정에서 검색 기반 
문맥 보강(RAG) 전략이 생성 품질에 미치는 영향을 체계적으로 
분석하였다. 이를 위해 키워드 기반 검색(BM25), 의미 기반 
검색(SBERT), 하이브리드 검색 전략, 그리고 재정렬 기법을 
포함한 확장 설정을 동일한 조건 하에서 비교하였다. 
  실험 결과, 검색 기반 문맥 보강은 검색을 사용하지 않는 생성 
방식과 비교하여 버그 리포트의 구조적 완성도와 어휘적 정보 
포괄성을 전반적으로 향상시키는 것으로 나타났다. 특히 
하이브리드 검색 전략은 단일 검색 방식 대비 다양한 설정과 서로 
다른 모델 전반에서 일관된 성능 특성을 보였다. 문맥 보강에 
사용되는 예시 수가 증가할수록 구조적 완성도는 향상되는 반면, 
어휘적 균형과 의미적 정합성은 저하되는 경향이 관찰되어, 문맥 
보강 수준과 생성 품질 간의 상충 관계가 존재함이 관찰되었다. 
한편 검색 결과에 재정렬 기법을 적용한 확장 설정은 의미적 
정합성 측면에서는 제한적인 추가 효과를 보였으나, 구조적 
완성도나 어휘적 품질을 전반적으로 향상시키는 데에는 효과가 
일관되지 않았다. 
  평가 측면에서는 구조적 완성도의 대리 지표로서 CTQRS와 
함께, 어휘적 정보 포괄성과 어휘적 균형을 각각 반영하는 
ROUGE-1 Recall 및 F1, 그리고 의미적 정합성을 측정하는 
SBERT 유사도를 종합적으로 고려함으로써, 검색 기반 문맥 
보강이 생성 품질의 다양한 차원에 미치는 영향을 다각도로 
분석하였다. 이를 통해 검색 기반 문맥 보강이 정보 포함을 
증가시키는 동시에, 설정에 따라 불필요한 표현이나 의미적 
정합성 저하를 유발할 수 있음을 정량적으로 확인하였다. 
  본 연구는 검색 기반 문맥 보강의 적용 여부 자체보다는, 검색 
전략의 선택과 구성 방식이 LLM 기반 버그 리포트 자동 생성 
품질의 여러 속성 간 상충 관계의 형태와 그 변화 양상에 영향을 
미치는 설계 요소임을 실증적으로 분석하였다는 점에서 의의를 
가진다. 향후 연구에서는 다양한 데이터 분할과 이슈 추적 
시스템을 포함한 추가 실험과 실제 개발자를 대상으로 한 사용자 
연구를 통해 본 연구에서 관찰된 결과의 일반성과 실무적 
유효성을 추가로 검증할 필요가 있다. 
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1. 서 론 

최근 제조 산업 전반에서 무인 공장 및 자동화 

공정의 도입이 확대되면서, 공장 내 다양한 상황에 

대응하기 위한 작업 메뉴얼의 중요성이 더욱 

강조되고 있다.[1] 무인 공장 환경에서는 작업자의 

상시 개입이 제한되기 때문에, 설비 상태나 작업 

조건 변화에 따라 적절한 작업 절차를 신속하고 

일관되게 제공하는 것이 필수적이다.[2] 그러나 

기존의 작업 메뉴얼은 주로 수작업으로 

작성·관리되며, 공장 상황 변화에 따른 즉각적인 

반영이 어렵고 유지·보수 비용이 크다는 한계를 

가진다.[3][4][5] 

특히 무인 공장에서는 설비 고장, 공정 이상, 작업 조

건 변화 등 다양한 상황이 발생할 수 있으며, 이러한 

상황에 대응하기 위한 메뉴얼을 사전에 모두 정의하

는 것은 현실적으로 어렵다.[6][7] 이로 인해 현장 

적용 시 메뉴얼의 누락이나 비일관성이 발생할 수 있

으며, 이는 공장 운영 효율 저하로 이어질 수 있다. 

한편, 최근 대규모 언어모델(Large Language Models, 

LLMs)은 자연어 이해 및 생성 분야에서 뛰어난 성능

을 보이며, 산업 도메인에서도 다양한 응용 가능성이 

제시되고 있다. 이러한 언어모델은 주어진 상황 정보

를 기반으로 절차적이고 일관된 텍스트를 생성할 수 

있다는 점에서, 작업 메뉴얼 자동 생성에 활용될 잠

 대규모 언어 모델 기반 무인공장 작업 정책 자동 생성
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요약 

무인 공장 환경에서는 작업자의 상시 개입이 제한되기 때문에, 공장 내 다양한 상황에 대해 

일관되고 신속한 대응이 가능한 작업 메뉴얼의 중요성이 증가하고 있다. 그러나 기존 작업 메

뉴얼은 수작업으로 작성·관리되는 경우가 많아, 공장 상황 변화에 유연하게 대응하기 어렵다는 

한계를 가진다. 본 논문에서는 무인 공장에서의 상황 인지 정보를 기반으로 작업 메뉴얼을 자

동으로 생성하는 대규모 언어모델 기반 접근 방법을 제안한다. 이를 위해 실제 공장 환경에서 

발생할 수 있는 정적 상황을 반영한 시나리오를 구성하고, 각 상황에 대응하는 작업 메뉴얼 데

이터셋을 구축하였다. 또한 Qwen, Mistral, LLaMA 계열의 대규모 언어모델을 활용하여 동일한 

상황 시나리오에 대한 작업 메뉴얼 생성 결과를 비교·분석하였다. 실험에서는 데이터 규모의 한

계로 인해 정량적 성능 지표 대신 전문가 기반 정성 평가를 수행하였으며, 작업 절차의 논리성, 

현장 적용 가능성, 표현의 명확성을 중심으로 평가하였다. 실험 결과, 대규모 언어모델이 무인 

공장 환경에서 상황 인지 기반 작업 메뉴얼 자동 생성에 활용 가능함을 확인하였다. 본 연구는 

무인 공장 환경에서 작업 메뉴얼 자동 생성의 가능성을 제시한다. 

 
Abstract 

In unmanned factory environments, the importance of reliable and consistent work manuals has increased 

due to the limited availability of human operators. However, conventional work manuals are typically 

created and maintained manually, making them difficult to adapt to changing factory situations. 

This paper proposes a large language model–based approach for automatically generating work manuals 

based on situation awareness in unmanned factories. Static situation scenarios that may occur in real 

factory environments are defined, and corresponding work manual datasets are constructed. Using these 

scenarios, work manuals are generated and analyzed using Qwen, Mistral, and LLaMA series large 

language models. Due to the limited size of the dataset, expert-based qualitative evaluation is conducted 

instead of quantitative performance metrics. The evaluation focuses on the logical consistency of work 

procedures, practical applicability, and clarity of expression. The experimental results demonstrate that 

large language models can effectively generate work manuals for situation-aware scenarios in unmanned 

factory environments. This study confirms the feasibility of automatic work manual generation and provides 

a foundation for future intelligent factory operation support systems. 
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재력을 가진다. 

본 논문에서는 무인 공장에서의 상황 인지 단계에서 

수집된 공장 상황 정보를 기반으로, 작업 메뉴얼을 

자동으로 생성하는 대규모 언어모델 기반 접근 방법

을 제안한다. 이를 위해 실제 공장 환경을 고려한 상

황 시나리오를 정의하고, 각 상황에 대응하는 작업 

메뉴얼 데이터를 구축하였다. 또한 Qwen, Mistral, 

LLaMA 계열의 대규모 언어모델을 대상으로 동일한 

상황 시나리오에 대한 작업 메뉴얼 생성 결과를 비교

·분석함으로써, 무인 공장 환경에서 작업 메뉴얼 자동 

생성의 가능성을 검토한다. 

본 연구의 주요 기여는 다음과 같다. 

 첫째, 무인 공장 환경을 고려한 상황 시나리오–

작업 메뉴얼 데이터 구축 방법을 제시한다. 

 둘째, 대규모 언어모델을 활용한 상황 인지 기반 

작업 메뉴얼 자동 생성 방식을 제안한다. 

 셋째, 전문가 기반 정성 평가를 통해 모델 별 작

업 메뉴얼 생성 특성을 분석하고, 대시보드 기반 

결과 시각화를 통해 실용 가능성을 검토한다. 

 

2. 관 련 연 구 

제조 산업 분야에서는 공정 자동화와 스마트팩토리 

확산에 따라, 공장 운영 과정에서 발생하는 다양한 

정보를 효율적으로 활용하기 위한 연구가 지속적으로 

이루어져 왔다. 특히 최근에는 대규모 언어모델

(Large Language Models, LLMs)의 발전과 함께, 자연

어 이해 및 생성 기술을 제조 환경에 적용하려는 시

도가 활발히 진행되고 있다. 

Li 등은 대규모 언어모델이 제조업 전반의 다양한 태

스크를 지원할 수 있음을 체계적으로 분석하였다. 특

히 공정 설명, 작업 지시 이해, 기술 문서 생성과 같

은 제조 현장의 언어 중심 태스크뿐만 아니라, 설계·

품질 관리·공급망 관리 등 복합적인 제조 시나리오에

서 LLM의 활용 가능성을 제시하였다 [8]. 해당 연구

는 LLM이 복잡한 제조 관련 지식을 자연어 및 멀티

모달 형태로 처리·추론할 수 있음을 사례 기반으로 

보였으며, 이를 통해 LLM이 단순한 텍스트 생성 도구

를 넘어 제조 현장의 지식 관리 및 작업 지원을 위한 

범용적 인공지능 도구로 활용될 수 있음을 논의하였

다. 

제조 도메인 특화 성능을 향상시키기 위한 연구도 수

행되었다. Xia 등은 제조 도메인 말뭉치를 활용한 파

인튜닝과 오류 기반 보정(error-assisted fine-tuning) 

기법을 통해 대규모 언어모델의 도메인 적응 성능을 

향상시키는 방법을 제안하였다 [9]. 해당 연구는 일

반 목적의 언어모델을 제조 환경에 직접 적용할 경우 

발생하는 한계를 지적하고, 오류 정보를 활용한 반복

적 보정 과정을 통해 제조 질의 응답 및 코드 생성 

성능을 개선할 수 있음을 보였다. 

한편, LLM의 제조 산업 적용을 보다 거시적인 관점에

서 분석한 연구도 존재한다. Wulf 등은 어포던스 이론

(affordance theory)을 기반으로 대규모 언어모델이 

제조 산업에서 설계, 품질 관리, 운영 의사결정 등 다

양한 영역에서 가치를 창출할 수 있음을 분석하였다 

[10]. 이 연구는 LLM이 제조 시스템 전반의 운영 효

율성과 의사결정 지원 역량을 향상시킬 잠재력을 지

니고 있음을 보여주는 동시에, 실제 현장 적용을 위

해서는 구체적인 활용 시나리오와 적용 맥락의 정의

가 필요함을 지적하였다. 

제조 현장에서의 지식 공유 및 문서 활용을 지원하기 

위한 연구도 보고되었다. Rossi 등은 LLM 기반 지식 

검색 및 문서 활용 도구를 제안하여, 기술 문서와 운

영 지식을 현장 작업 지원에 효과적으로 활용할 수 

있음을 보였다 [11]. 해당 연구는 전문가 문서와 현

장 데이터를 결합한 질의응답 시스템을 통해 정보 접

근성과 문제 해결 효율을 향상시킬 수 있음을 보여주

었으나, 상황 인지 결과를 입력으로 받아 작업 메뉴

얼을 자동 생성하는 문제까지는 다루지 않았다. 

산업 자동화 시스템 전반에서 LLM을 활용하려는 시

도 또한 이루어지고 있다. Xia 등은 LLM을 지능형 산

업 자동화 프레임워크에 통합하고, 이를 기반으로 사

용자 질의 이해부터 작업 계획 및 수행까지 지원할 

수 있는 LLM 기반 에이전트 구조를 제안하였다 [12]. 

해당 연구는 LLM이 산업 자동화 환경에서 인간–시스

템 상호작용을 개선하고, 보다 유연한 의사결정 및 

작업 수행을 가능하게 할 수 있음을 사례 기반으로 

보여주었다. 

또한 Fakih 등은 LLM을 산업 제어 시스템에서 사용

되는 PLC 코드 생성에 적용하고, 컴파일 및 형식 검

증 결과를 기반으로 반복적으로 개선하는 프레임워크

를 제안하였다 [13]. 이 연구는 LLM이 산업 자동화 

영역에서 검증 가능한 코드와 같은 실질적인 작업 산

출물을 생성할 수 있음을 보여주었으나, 작업 절차나 

메뉴얼과 같은 문서 생성 문제를 직접적으로 다루지

는 않았다. 

이와 같이 기존 연구들은 제조 산업에서의 LLM 활용 

가능성을 다양한 관점에서 탐구해 왔으나, 무인 공장 

환경에서 상황 인지 결과를 입력으로 받아 작업 메뉴

얼을 자동으로 생성하는 문제를 직접적으로 다룬 연

구는 제한적이다. 본 연구는 이러한 연구 공백을 보

완하고자, 무인 공장의 상황 인지 정보를 기반으로 

작업 메뉴얼을 자동 생성하고, 다양한 대규모 언어모

델의 생성 특성을 비교·분석한다는 점에서 기존 연구

와 차별성을 가진다. 

 

3. 연 구 방 법 

3.1 상황 인지 정보 정의 및 입력 구성 

본 연구에서는 무인 공장의 정적 상황 인지 단계를 

가정한다. 정적 상황 인지는 설비 상태, 공정 조건, 

작업 환경 정보 등 일정 시점에서 변화하지 않는 공 
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장 상황 정보가 사전에 정리되어 제공되는 단계를 의 

미한다. 이러한 상황 인지 정보는 센서 데이터나 상

위 시스템에서 추출된 결과를 바탕으로, 자연어 기반

의 시나리오 형태로 구성된다. 

각 시나리오는 공장 내 특정 작업 또는 상황을 설명

하는 텍스트로 구성되며, 설비 상태, 발생 가능한 문

제 상황, 작업 조건 등의 정보를 포함한다. 본 연구에

서는 이러한 시나리오를 대규모 언어모델의 입력으로 

활용하여, 상황에 대응하는 작업 메뉴얼을 생성하도

록 설계하였다. 

 

3.2 작업 메뉴얼 자동 생성 구조 

작업 메뉴얼 자동 생성 단계에서는 입력된 상황 시나

리오를 바탕으로 대규모 언어 모델이 작업 절차를 자

동으로 생성한다. 생성되는 작업 메뉴얼은 작업 단계, 

주의 사항, 대응 절차 등을 포함하는 자연어 형태의 

문서로 구성된다. Algorithm 1은 본 연구에서 사용한 

작업 메뉴얼 자동 생성 절차를 나타낸다. 

먼저, 라인 1–2에서는 무인 공장 환경에서 수집된 상

황 인지 정보를 자연어 기반의 상황 시나리오 텍스트

로 구성한다. 본 연구에서는 모든 입력을 텍스트 형

태로 가정하며, 설비 상태, 공정 조건, 작업 환경 정

보는 외부 시스템 또는 사전 처리 과정을 통해 텍스

트로 요약된 형태로 제공된다. 이를 통해 대규모 언

어 모델이 직접 처리 가능한 텍스트 표현을 입력으로 

사용한다. 

이후 라인 3–5에서는 입력된 상황 시나리오에 대해 

텍스트 정규화 및 전처리를 수행한다. 이 단계에서는 

불필요한 표현을 제거하고, 단위 및 용어를 통일하며, 

약어를 해소함으로써 상황 정보의 일관성을 확보한다. 

전처리된 텍스트를 기반으로 작업 목표, 사용 설비, 

자재, 위험 요소 및 제약 조건과 같은 핵심 작업 요

소를 구조적으로 추출한다. 

 
알고리즘 1 작업 메뉴얼 생성 과정 

다음으로 라인 6–8에서는 추출된 작업 요소와 사전에 

정의된 정책 템플릿 및 도메인 제약 조건을 결합하여, 

그림 1 전체 연구 과정 
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대규모 언어 모델에 입력될 프롬프트를 구성한다. 이 

프롬프트는 작업 메뉴얼의 형식과 내용 구조를 유도

하기 위한 역할을 한다. 

라인 9–10에서는 구성된 프롬프트를 대규모 언어 모

델에 입력하여 작업 메뉴얼 초안을 생성한다. 본 연

구에서는 Qwen, Mistral, LLaMA 계열의 대규모 언어 

모델을 대상으로 동일한 입력 시나리오와 프롬프트를 

적용하여 작업 메뉴얼 생성 결과를 비교하였다. 이를 

통해 모델 별 작업 메뉴얼 생성 특성과 표현 방식의 

차이를 분석하였다. 

마지막으로 라인 11–12에서는 생성된 작업 메뉴얼 

초안에 대해 형식 검증, 누락된 작업 단계 확인, 안전 

제약 조건 검토 등의 후처리 및 검증 과정을 수행한

다. 이를 통해 작업 단계 중심으로 구조화된 최종 작

업 메뉴얼을 출력하며, 생성된 결과는 실제 무인 공

장 환경에서 활용 가능한 형태로 정리된다. 

 

3.3 대시보드 기반 결과 시각화 

생성된 작업 메뉴얼 결과를 직관적으로 분석하고 비

교하기 위해 대시보드 기반 시각화 환경을 구축하였

다. 사용자는 상황 시나리오를 입력한 후, 모델 별로 

생성된 작업 메뉴얼 결과를 단계적으로 확인할 수 있

다. 이를 통해 동일한 상황에 대해 서로 다른 대규모 

언어모델이 생성한 작업 메뉴얼의 차이를 직관적으로 

비교할 수 있다. 

대시보드는 작업 단계별 텍스트 출력, 모델 간 결과 

비교, 시나리오별 결과 탐색 기능 등을 제공하며, 실

제 현장 적용 가능성을 검토하는 데 활용된다. 이러

한 시각화 환경은 작업 메뉴얼 자동 생성 시스템의 

실용성을 평가하기 위한 보조 도구로 활용된다. 

 

3.4 접근 방법 요약 

제안하는 접근 방법은 무인 공장의 상황 인지 정보를 

자연어 시나리오로 변환하고, 이를 대규모 언어모델

에 입력하여 작업 메뉴얼을 자동 생성하는 구조를 따

른다. 이를 통해 사전에 모든 작업 메뉴얼을 수작업

으로 정의하지 않고도, 다양한 공장 상황에 대해 유

연하게 대응 가능한 작업 메뉴얼을 생성할 수 있다. 

본 연구는 복잡한 제어 로직이나 실시간 판단을 포함

하지 않고, 정적 상황 인지 단계를 대상으로 함으로

써 시스템 구조를 단순화하였다. 이는 대규모 언어모

델을 활용한 작업 메뉴얼 자동 생성의 가능성을 검증

하기 위한 초기 단계 접근으로서 의의를 가진다. 

 

4. 실 험 설 정 

 본 장에서는 제안한 무인 공장 상황 인지 기반 작업 

메뉴얼 자동 생성 시스템의 유효성을 검증하기 위한 

실험 설정과 평가 결과를 제시한다. 본 연구의 목적

은 대규모 언어모델을 활용한 작업 메뉴얼 자동 생성

의 가능성을 검토하는 것이므로, 다양한 상황 시나리

오에 대해 생성된 작업 메뉴얼의 품질을 중심으로 평

가를 수행하였다. 

 

4.1 연구 질문 

본 연구에서는 무인 공장 환경에서의 상황 인지 기반 

작업 메뉴얼 자동 생성 가능성과, 대규모 언어모델 

간 생성 특성의 차이를 분석하기 위해 다음과 같은 

연구 질문을 설정하였다. 

 

4.1.1 RQ1. 무인 공장의 정적 상황 인지 정보를 기반

으로 대규모 언어모델이 작업 메뉴얼을 자동으로 생

성할 수 있는가? 

RQ1은 무인 공장 환경에서 상황 인지 정보를 입력으

로 활용할 때, 대규모 언어모델이 실제 작업 메뉴얼

로 활용 가능한 결과를 생성할 수 있는지를 검증하기 

위한 질문이다. 본 연구에서는 설비 상태, 공정 조건, 

작업 환경 정보 등을 포함하는 정적 상황 시나리오를 

자연어 형태로 구성하고, 이를 대규모 언어모델의 입

력으로 제공하였다. 생성된 작업 메뉴얼이 작업 단계, 

주의 사항, 대응 절차 등을 포함하는지 여부를 중심

으로 분석함으로써, 작업 메뉴얼 자동 생성의 가능성

을 평가한다. 

 

4.1.2 RQ2 동일한 상황 시나리오에 대해 서로 다른 

대규모 언어모델은 작업 메뉴얼 생성 특성에서 어떤 

차이를 보이는가? 

RQ2는 동일한 공장 상황 시나리오가 주어졌을 때, 

서로 다른 대규모 언어모델이 생성하는 작업 메뉴얼

의 특성과 표현 방식에서 어떠한 차이가 나타나는지

를 분석하기 위한 질문이다. 이를 위해 본 연구에서

는 Qwen, Mistral, LLaMA 계열의 대규모 언어모델을 

대상으로 동일한 입력 시나리오와 프롬프트 구조를 

적용하였다. 모델 별로 생성된 작업 메뉴얼을 비교함

으로써, 작업 절차의 구조화 수준, 표현의 명확성, 현

장 적용 가능성 측면에서의 차이를 정성적으로 분석

한다. 

이러한 연구 질문을 통해 본 연구는 대규모 언어모델

을 활용한 무인 공장 작업 메뉴얼 자동 생성의 실현 

가능성을 검토하고, 모델 선택 및 향후 시스템 고도

화를 위한 기초적인 분석 결과를 제공하고자 한다. 

 

4.2 실험 설정 

본 연구의 실험은 무인 공장 환경에서 작업 메뉴얼 

자동 생성 과정을 비교·분석하기 위한 목적 하에 설

계되었다. 이를 위해 모든 실험은 동일한 조건에서 

수행되도록 구성하였으며, 입력 데이터와 프롬프트 

구조를 고정한 상태에서 대규모 언어모델의 출력 특

성을 관찰하는 방식으로 진행하였다. 상황 시나리오

는 사전에 정의된 정적 상황 인지 결과를 기반으로 

구성되었으며, 각 시나리오는 독립적으로 모델에 입
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력되었다. 실험 과정에서는 하나의 시나리오에 대해 

모델을 개별적으로 실행하고, 생성된 작업 메뉴얼 결

과를 수집하였다. 모델 실행 순서나 외부 조건에 따

른 영향을 최소화하기 위해 동일한 실행 환경과 파라

미터 설정을 유지하였다. 

생성된 작업 메뉴얼은 후속 분석을 위해 단계별 작

업 절차를 중심으로 정리되었으며, 모델 별 결과 비

교가 가능하도록 동일한 형식으로 저장되었다. 이러

한 실험 설정을 통해 모델 간 생성 결과의 차이가 입

력 조건이나 실행 환경이 아닌, 모델 자체의 특성에

서 비롯되었는지를 분석할 수 있도록 하였다. 본 실

험은 정량적 성능 수치 비교보다는, 동일 조건 하에

서 생성된 작업 메뉴얼의 구조와 표현 차이를 관찰하

는 데 초점을 두고 수행되었다. 이를 통해 연구 질문

에서 설정한 대규모 언어모델의 작업 메뉴얼 생성 가

능성과 모델 간 특성 차이를 효과적으로 분석하고자 

하였다. 

 

4.3 파인 튜닝 데이터셋 구성 

본 연구에서는 무인 공장 환경에서의 작업 매뉴얼 자

동 생성을 위해, 상황 시나리오–작업 매뉴얼 쌍으로 

구성된 파인 튜닝 데이터셋을 구축하였다. 각 샘플은 

특정 공장 상황을 서술한 자연어 기반 상황 시나리오

와, 이에 대응하는 작업 매뉴얼 텍스트로 구성된다. 

상황 시나리오는 설비 상태, 작업 조건, 작업 환경 및 

발생 가능한 문제 상황을 포함하도록 설계되었으며, 

모든 입력은 대규모 언어 모델이 직접 처리할 수 있

도록 텍스트 형태로만 구성되었다. 작업 매뉴얼은 작

업 단계, 주의 사항, 비정상 상황 대응 절차를 포함하

는 자연어 문서로 작성되었다. 

데이터는 AI 기반 방식으로 초안을 생성한 후, 작업 

절차의 논리성, 안전성 및 현장 적용 가능성을 고려

한 수동 정제 과정을 거쳤다. 구축된 데이터셋은 정

상 작업과 이상 상황을 포함한 다양한 작업 유형을 

반영하며, 본 연구에서는 데이터 규모의 한계로 인해 

작업 매뉴얼 생성 가능성을 검증하기 위한 경량 파인 

튜닝에 활용되었다. 

표 1 데이터셋 설명 

구분 내용 

데이터 구성 단위 상황 시나리오-작업 매뉴얼 pair 

입력 데이터 텍스트 기반 상황 시나리오 

출력 데이터 작업 단계/주의사항/대응절차를 

포함한 작업 매뉴얼 

총 데이터 수 300 pairs 

상황 유형 정상 작업, 설비 이상, 공정지연, 

작업 오류 대응 

도메인 범위 무인 공장 공정 운영 및 설비 관

리 

생성 방식 Ai 기반 초안 생성 후 수동 정제 

정제 기준 의미적 일관성, 작업 절차 순차

성, 안전성, 현실성 

활용 목적 LLM 파인튜닝 및 작업 매뉴얼 

생성 성능 평가 

 

4.4 평가 방법 

본 연구에서는 데이터 규모의 한계와 작업 매뉴얼 

생성 문제의 특성으로 인해, 전문가 기반 정성 

평가(expert-based qualitative evaluation)를 

수행하였다. 평가는 데이터 기반 분석 경험을 갖춘 AI 

전문가 5명에 의해 이루어졌으며, 각 평가자는 

머신러닝 또는 대규모 언어모델 분야에서 3년 이상의 

연구 또는 실무 경험을 보유하고 있다. 

동일한 상황 시나리오에 대해 각 대규모 

언어모델이 생성한 작업 매뉴얼을 제시하고, 모델 

정보를 블라인드 처리한 상태에서 비교·분석을 

수행하였다. 평가는 정상 및 비정상 상황을 포함한 

N개의 시나리오를 대상으로 진행되었다. 

평가 기준은 (1) 작업 절차의 논리성, (2) 현장 적용 

가능성, (3) 표현의 명확성의 세 가지 항목으로 

정의하였으며, 각 항목은 5점 리커트 척도(1–5)로 

평가되었다. 점수 1은 기준을 전혀 충족하지 못하는 

경우, 점수 3은 부분적으로 충족하는 경우, 점수 5는 

기준을 충분히 충족하는 경우로 정의하였다. 평가 

결과는 평가자별 점수를 종합하여 산출하였으며, 

평가 일관성을 확인하기 위해 평가자 간 일치도를 

함께 분석하였다. 

본 평가는 BLEU, ROUGE와 같은 자동 정량 

지표로는 충분히 반영하기 어려운 작업 절차의 

구조적 완성도와 표현 특성을 비교·분석하는 데 

목적이 있다. 

 

5. 실 험 결 과  

본 장에서는 제안한 무인 공장 상황 인지 기반 작

업 메뉴얼 자동 생성 시스템의 실험 결과를 제시한다. 

동일한 상황 시나리오에 대해 Qwen, Mistral, LLaMA 

계열 대규모 언어모델이 생성한 작업 메뉴얼을 대상

으로 전문가 기반 정성 평가를 수행하였으며, 모델 

별 생성 특성을 비교·분석하였다. 

 

5.1 전문가 정성 평가 결과 ( RQ1의 실험 결과) 

전문가 평가는 정성 평가를 수행하였으며, 모델 별 

생성 특성을 비교·분석하였다. 

 

표 2 모델 별 작업 메뉴얼 정성 평가 결과 

모델 작업 절차 

논리성 

현장 적용 

가능성 

표현의 

명확성 

종합 평가 

Qwen 
3 3 3 3 
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Mistral 
3 4 3 3 

LLaMA 
5 5 5 5 

※ 평가는 전문가 주관적 판단에 따른 상대적 비교 결과임 

 

표 2는 모델 별 작업 메뉴얼 생성 결과에 대한 정성 

평가 요약을 나타낸다. (1점: 기준을 전혀 충족하지 

못함, 3점: 기준을 부분적으로 충족함, 5점: 기준을 충

분히 충족함(2점,4점은 중간수준으로 해석) 

평가 결과, 동일한 상황 시나리오에 대해서도 대규모 

언어모델에 따라 작업 메뉴얼의 구성 방식과 표현 특

성에서 차이가 나타났다. 모든 모델은 작업 절차와 

대응 방법을 포함하는 작업 메뉴얼을 생성할 수 있었

으나, 생성된 결과의 구조화 수준과 구체성에는 차이

가 존재하였다. 

LLaMA 계열 모델은 작업 절차를 단계적으로 명확하

게 구분하여 제시하는 경향을 보였으며, 각 단계에서 

수행해야 할 작업 내용과 주의 사항을 비교적 구체적

으로 서술하였다. 이로 인해 작업 절차 논리성, 표현

의 명확성, 현장 적용 가능성 측면에서 모두 높은 평

가를 받았다. 이러한 결과는 LLaMA 계열 모델이 절

차 중심 문서 생성 및 지시 기반 응답 생성에 강점을 

가지는 특성과 관련된 것으로 해석된다. 

Mistral 계열 모델은 전반적으로 안정적인 작업 메뉴

얼을 생성하였으며, 작업 단계 간 흐름은 비교적 자

연스럽게 유지되었다. 다만 일부 시나리오에서는 작

업 절차가 포괄적으로 서술되어, 단계별 세부 설명이 

충분히 구체화되지 않은 경우가 관찰되었다. 이에 따

라 현장 적용 가능성 측면에서는 중간 수준의 평가를 

받은 것으로 분석된다. 

Qwen 계열 모델의 경우, 상황에 대한 전반적인 설명

은 비교적 충실하였으나, 상황 설명과 작업 지침이 

혼합되어 표현되는 사례가 관찰되었다. 이로 인해 작

업 단계의 경계가 명확하지 않은 경우가 발생하였으

며, 작업 메뉴얼의 구조화 수준 측면에서 상대적으로 

낮은 평가를 받았다. 

이러한 결과는 대규모 언어모델의 학습 데이터 구성

과 생성 전략 차이가 작업 메뉴얼 생성 특성에 직접

적인 영향을 미친 것으로 판단된다. 

 

5.2 대시보드 기반 비교 결과(RQ2의 실험 결과) 

모델 별 작업 메뉴얼 생성 결과를 보다 직관적으로 

비교·분석하기 위해 대시보드 기반 시각화 분석을 수

행하였다. 대시보드에서는 동일한 상황 시나리오에 

대해 모델 별 작업 메뉴얼을 나란히 제시함으로써, 

작업 단계 구성 방식과 표현 차이를 쉽게 확인할 수 

있도록 구성하였다. 

대시보드 분석 결과, LLaMA 계열 모델은 작업 메뉴

얼을 명확한 단계 중심 구조로 생성하는 경향을 보였

다. 작업 단계가 번호 기반으로 명확히 구분되어 제

시되었으며, 각 단계에서 수행해야 할 작업 내용과 

주의 사항이 비교적 간결하면서도 구체적으로 서술되

었다. 이러한 특성은 표 3에서 제시된 바와 같이 작

업 단계 구분, 주의 사항 명시, 절차 일관성 항목에서 

모두 높은 평가를 받은 결과와 일관된 경향을 보인다. 

특히 전반적 구조화 수준이 우수한 것으로 평가되어, 

작업 매뉴얼 로서의 가독성과 현장 적용 가능성이 높

은 형태를 제공하는 것으로 분석된다. 

Mistral 계열 모델의 경우, 대시보드 상에서 작업 단

계는 비교적 명확하게 구분되었으나, 일부 단계에서 

설명이 다소 포괄적으로 제시되는 경향이 관찰되었다. 

작업 절차의 흐름은 자연스럽게 유지되었으며, 표 3

에서도 절차 일관성 항목에서 양호한 평가를 받은 것

으로 나타났다. 다만 주의 사항 명시와 작업 단계의 

세부 구조 측면에서는 LLaMA 계열 모델에 비해 다소 

간략한 표현을 사용하여, 전반적 구조화 수준은 중간 

수준으로 평가되었다. 이는 안정적인 생성 특성을 보

이지만, 현장 적용 시 추가적인 해석이 요구될 수 있

음을 시사한다. 

반면, Qwen 계열 모델은 대시보드 화면에서 상황 설

명과 작업 지침이 하나의 서술 흐름으로 혼합되어 표

현되는 사례가 상대적으로 두드러졌다. 작업 단계가 

명시적으로 구분되지 않거나 단계 경계가 불명확한 

경우가 관찰되었으며, 이로 인해 작업 절차를 순차적

으로 파악하는 데 다소 어려움이 있었다. 이러한 특

성은 표 3에서 작업 단계 구분 및 전반적 구조화 수

준이 낮게 평가된 결과와 일치한다. 다만, 상황에 대

한 배경 설명과 문제 원인 서술은 비교적 충실하여, 

상황 이해 측면에서는 장점을 가지는 것으로 분석된

다. 

표 3에 제시된 정성 비교 결과는 대시보드 기반 시각

적 분석에서 관찰된 특성과 전반적으로 일관된 경향

을 보인다. 즉, LLaMA 계열 모델은 구조화된 작업 메

뉴얼 생성에 강점을 보였고, Mistral 계열 모델은 안정

적인 절차 흐름을 유지하는 중간적 특성을, Qwen 계

열 모델은 서술 중심의 설명 능력을 중심으로 한 생

성 특성을 보였다. 

종합적으로, 대시보드 및 정성 지표 기반 비교 분석 

결과는 동일한 상황 시나리오에 대해서도 대규모 언

어모델 간 작업 메뉴얼 생성 특성이 뚜렷하게 다름을 

보여준다. 이는 RQ2에서 제기한 모델 간 생성 특성 

차이가 실제 출력 결과에서도 명확히 관찰됨을 의미

하며, 무인 공장 환경에서 작업 메뉴얼 자동 생성 시

스템을 운용할 때 목적에 따라 적합한 모델을 선택할 

필요가 있음을 시사한다. 
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표 3 모델 별 작업 메뉴얼 생성 특성 비교 

항목 Qwen Mistral LLaMA 

작업 단계 구분 미흡 보통 명확 

주의 사항 명시 보통 보통 우수 

절차 일관성 보통 양호 우수 

전반적 구조화 

수준 

미흡 보통 우수 

 

표 4 Qwen 입출력 예시 

모델 Qwen 

입력 공장 A 구역에서 자율 이동 로봇이 주행 중 넘어졌

고, 주변에 작업자 2명이 존재하는 상황이다.  

출력 1. 즉각적으로 해야 할 조치: 작업자들은 로봇 주변을 

피하고, 로봇 주변에 있는 물체를 피하며 안전 거리

로 이동하고, 로봇 사고 발생 사실을 공장 안전 담당

자에게 신고하고 대기한다. 

2. 로봇 상태 점검 항목: 로봇의 전원 상태, 로봇의 

자율 주행 모드 상태, 로봇의 센서 정상 작동 여부, 

로봇의 충돌 시 정지 기능 정상 작동 여부 

3. 작업자 안전 관련 조치: 작업자들은 로봇 주변에 

가까운 지역에서 작업을 하지 않고, 로봇 사고 발생 

후 로봇 주변에 가까운 지역에서 작업을 하지 않는

다. 

4. 실패 시 대처 조치: 로봇 수리 팀이 로봇을 수리하

거나 교체하는 작업을 수행한다. 로봇 수리 시간 동

안 작업을 수행하기 위해 대체 로봇을 배치하거나 작

업자 수를 증가시킨다. 

5. 실패 시 봐야 할 항목: 로봇의 소프트웨어 버그, 

하드웨어 문제, 로봇의 센서 정상 작동 여부 

 

표 5 Mistral 입출력 예시 

모델 Mistral 

입력 공장 A 구역에서 자율 이동 로봇이 주행 중 넘어졌

고, 주변에 작업자 2명이 존재하는 상황이다.  

출력 1. 즉각적으로 해야 할 조치: 작업자들은 로봇 주변을 

피하고, 로봇 정지 버튼을 눌러 로봇을 정지시키고, 

공장 안전 담당자에게 사고 상황을 신속하고 대응 방

안을 듣는다. 

2. 로봇 상태 점검 항목: 로봇의 전원 상태, 로봇의 

주행 모드, 로봇의 센서 정상 작동 여부, 로봇의 충돌 

이력 

3. 작업자 안전 관련 조치: 작업자들은 로봇 주변에 

가까운 지역에서 멀리 떨어지고, 안전 장비를 착용하

고, 로봇 상태를 점검하기 전에 로봇이 정지되었는지 

확인한다. 

4. 실패 시 대처 조치: 로봇이 정상적으로 작동하지 

않을 경우, 로봇 유지 보수 팀에 문의하고, 로봇 대체 

로봇을 배치하여 작업을 계속하거나, 작업을 일시 중

단하고 로봇 유지 보수를 수행한다. 

 

표 6 LLaMA 입출력 예시 

모델 LLaMA 

입력 공장 A 구역에서 자율 이동 로봇이 주행 중 넘어졌

고, 주변에 작업자 2명이 존재하는 상황이다.  

출력 1. 즉각적으로 해야 할 조치: 작업자들은 로봇 주변을 

피하고, 로봇 정지 버튼을 눌러 로봇을 정지시키고, 

공장 안전 담당자에게 사고 상황을 신고하고 대응 방

안을 듣는다. 

2. 로봇 상태 점검 항목: 로봇의 전원 상태, 로봇의 

주행 모드, 로봇의 센서 정상 작동 여부, 로봇의 충돌 

이력 

3. 작업자 안전 관련 조치: 작업자들은 로봇 주변에 

가까운 지역에서 멀리 떨어지고, 안전 장비를 착용하

고, 로봇 상태를 점검하기 전에 로봇이 정지되었는지 

확인한다. 

4. 실패 시 대처 조치: 로봇이 정상적으로 작동하지 

않을 경우, 로봇 유지 보수 팀에 문의하고, 로봇 대체 

로봇을 배치하여 작업을 계속하거나, 작업을 일시 중

단하고 로봇 유지 보수를 수행한다. 

 

5.3 성능에 영향을 미치는 주요 요인 분석 

앞선 실험 결과를 바탕으로, 무인 공장 상황 인지 

기반 작업 메뉴얼 자동 생성 메커니즘을 활용할 때 

생성 성능에 영향을 미치는 주요 요인을 분석한다. 

본 연구의 메커니즘은 정적 상황 인지 정보를 자연어 

시나리오로 변환하고, 이를 대규모 언어모델에 입력

하여 작업 메뉴얼을 생성하는 구조를 따른다. 실험 

결과를 종합하면, 작업 메뉴얼 생성 성능은 단일 요

소가 아닌 여러 요인의 복합적인 영향에 의해 결정되

는 것으로 분석된다. 

 

(1) 입력 시나리오의 구조화 수준 

작업 메뉴얼 생성 성능에 가장 큰 영향을 미치는 

요인 중 하나는 입력되는 상황 시나리오의 구조화 수

준이다. 상황 시나리오가 설비 상태, 문제 상황, 작업 

조건 등을 명확하게 구분하여 기술할수록, 모델은 이

를 기반으로 작업 단계를 보다 논리적으로 구성하는 

경향을 보였다. 반면, 상황 정보가 서술적으로 혼합되

어 제공될 경우, 작업 단계 구분이 불명확한 결과가 

생성되는 사례가 관찰되었다. 이는 작업 메뉴얼 자동 

생성에서 입력 시나리오 설계가 중요한 선행 요소임

을 시사한다. 

 

(2) 대규모 언어모델의 절차 중심 문서 생성 특성 

모델 자체의 학습 특성과 생성 전략 또한 작업 메

뉴얼 생성 성능에 중요한 영향을 미친다. 실험 결과, 

절차 중심 문서나 지시 기반 응답 생성에 강점을 가

진 모델일수록 작업 단계 구분이 명확하고 구조화된 
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작업 메뉴얼을 생성하는 경향을 보였다. 이는 대규모 

언어모델이 학습 과정에서 접한 데이터 유형과 응답 

생성 방식이 작업 메뉴얼과 같은 문서 생성 과제에 

직접적인 영향을 미침을 의미한다. 

 

(3) 출력 형식에 대한 제약 및 프롬프트 설계 

프롬프트에서 작업 단계 구분, 출력 형식, 응답 범

위 등을 얼마나 명확히 제약하는지도 생성 성능에 영

향을 미치는 요인으로 분석되었다. 출력 형식에 대한 

제약이 상대적으로 약한 경우, 모델은 상황 설명 중

심의 서술적 응답을 생성하는 경향을 보였으며, 이는 

작업 메뉴얼로서의 구조적 명확성을 저하시킬 수 있

다. 반면, 단계 중심 출력 형식을 명시적으로 유도한 

경우, 작업 절차의 일관성과 가독성이 향상되는 경향

이 관찰되었다. 

 

(4) 후처리 및 결과 정제 단계의 역할 

작업 메뉴얼 자동 생성 과정에서 후처리 단계 역시 

전체 성능에 영향을 미치는 요소로 작용한다. 생성된 

결과를 작업 단계 중심으로 정리하고, 중복되거나 불

필요한 설명을 제거하는 후처리 과정을 거칠 경우, 

작업 메뉴얼의 활용성이 향상되는 것으로 분석되었다. 

이는 대규모 언어모델의 출력 결과를 그대로 활용하

기보다는, 후처리 과정을 통해 실제 현장 적용에 적

합한 형태로 정제할 필요가 있음을 시사한다. 

 

(5) 메커니즘 관점의 종합 분석 

이상의 분석을 종합하면, 무인 공장 상황 인지 기

반 작업 메뉴얼 자동 생성 메커니즘의 성능은 입력 

시나리오 설계, 모델의 생성 특성, 프롬프트 제약 방

식, 그리고 후처리 전략이 상호작용한 결과로 결정된

다. 즉, 특정 모델의 성능 우수성만으로 작업 메뉴얼 

생성 품질이 보장되는 것이 아니라, 전체 메커니즘을 

어떻게 구성하고 운용하는지가 중요한 요인으로 작용

한다. 

 

이는 대규모 언어모델을 활용한 작업 메뉴얼 자동 

생성 시스템을 실제 무인 공장 환경에 적용할 경우, 

모델 선택뿐만 아니라 입력 정보 구성과 출력 정제 

전략을 함께 고려해야 함을 의미하며, 향후 시스템 

고도화를 위한 중요한 시사점을 제공한다. 

 

6. 위 협 요 소  

본 연구는 무인 공장에서의 상황 인지 기반 작업 

메뉴얼 자동 생성 가능성을 검토하는 초기 단계 연구

로서, 다음과 같은 위협 요소를 가진다. 

첫째, 데이터 규모의 한계이다. 본 연구에서 사용한 

상황 시나리오–작업 메뉴얼 데이터셋은 실제 공장 환

경을 반영하여 구성되었으나, 데이터 수가 제한적이

어서 모든 공장 상황을 포괄하지는 못한다. 이에 따

라 생성 결과의 일반화에는 한계가 존재할 수 있다. 

둘째, 평가 방식의 주관성이다. 본 연구에서는 정량적 

성능 지표 대신 전문가 기반 정성 평가를 수행하였다. 

이는 작업 메뉴얼의 실용성을 평가하는 데 적합한 방

법이지만, 평가자의 주관이 결과에 영향을 미칠 가능

성이 있다. 

셋째, 정적 상황 인지 가정이다. 본 연구는 정적 상황 

인지 단계를 가정하고 실험을 수행하였으며, 실시간 

상황 변화나 동적 이벤트는 고려하지 않았다. 따라서 

실제 무인 공장 환경에서 발생할 수 있는 복합적인 

상황을 충분히 반영하지 못할 수 있다. 

마지막으로, 모델 의존성 문제이다. 실험에 사용된 대

규모 언어모델의 학습 데이터와 구조적 특성에 따라 

생성 결과가 영향을 받을 수 있으며, 이는 모델 간 

비교 결과에 편향을 유발할 가능성이 있다. 

 

7. 결 론 및 향 후 과 제  

본 논문에서는 무인 공장에서의 상황 인지 정보를 

기반으로 작업 메뉴얼을 자동으로 생성하는 대규모 

언어모델 기반 접근 방법을 제안하였다. 실제 공장 

환경을 고려한 정적 상황 시나리오를 구성하고, Qwen, 

Mistral, LLaMA 계열의 대규모 언어모델을 활용하여 

작업 메뉴얼 자동 생성 가능성을 검토하였다. 전문가 

기반 정성 평가를 통해, 대규모 언어모델이 무인 

공장 환경에서 작업 절차와 대응 방법을 자동으로 

생성하는 데 활용될 수 있음을 확인하였다. 

향후 연구에서는 다음과 같은 방향으로 연구를 

확장할 계획이다. 첫째, 상황 시나리오–작업 메뉴얼 

데이터셋을 확장하여 보다 다양한 공장 환경과 

상황을 포괄하는 정량적 성능 평가를 수행할 

예정이다. 둘째, 정적 상황 인지 단계를 넘어 실시간 

상황 변화가 반영되는 동적 환경으로 연구 범위를 

확장할 계획이다. 셋째, 생성된 작업 메뉴얼의 

신뢰성과 안전성을 향상시키기 위한 후처리 및 검증 

기법을 도입할 예정이다. 마지막으로, 실제 무인 공장 

시스템과의 연계를 통해 현장 적용 가능성을 

검증하는 실증 연구를 진행할 계획이다. 
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Unified Graph Neural Networks 

Junaid Khan Kakar, Faisal Mohammad, Dimitri Bakale Duksan Ryu 

(Department of Software Engineering, Jeonbuk National University) 

 

요   약 

현대 소프트웨어 공학의 발전은 복잡한 프로그램의 의미론을 포괄적으로 포착할 수 있는 정교한 자동 

코드 분석 시스템을 요구한다. 그러나 기존의 신경망 기반 접근법들은 주로 단일 구조적 관점 또는 텍스

트 특징에 의존함으로써 소스 코드의 다면적 본질을 충분히 포착하지 못하는 한계를 보인다. 특히, 이러

한 방법론들은 추상 구문 트리(AST), 제어 흐름 그래프(CFG), 데이터 흐름 그래프(DFG) 간의 유기적 상

호작용을 간과하여 프로그램 이해가 단편적으로 이루어지는 경향이 있다. 본 연구는 이러한 구조적 단절

을 해소하고자 AST, CFG, DFG를 포괄적인 코드 속성 그래프(CPG)로 통합하고 이를 그래프 신경망을 

통해 처리하는 새로운 계층적 다중 모달 프레임워크를 제안한다. 제안된 방법론은 적응형 어텐션 기반 

그래프 융합 전략을 채택하여 지역적 구문 패턴과 전역적 의미 의존성을 동시에 보존하도록 설계되었다. 

OBG-Code2 및 CodeSearchNet 데이터셋을 활용한 실험 평가 결과, 제안된 통합 모델은 단일 관점 기

반 베이스라인 대비 코드 검색 과제에서 24.8%의 상대적 성능 향상을 달성하여 우수한 코드 이해 능력

을 입증하였다. 이러한 연구 결과는 다중 모달 구조 정보의 통합이 차세대 구조 인식형 신경 코드 지능 

시스템 발전을 위한 필수 요소임을 시사한다. 

Abstract 

 The advancement of modern software engineering necessitates automated systems 

capable of deeply comprehending complex program semantics. However, existing neural 

approaches often suffer from a critical limitation: reliance on isolated structural views or 

textual features, which fail to capture the multifaceted nature of source code. By neglecting 

the interplay between syntactic structures, controlling flows, and data dependencies, current 

models frequently result in a fragmented understanding of program logic. To overcome this 

structural disconnect, this study proposes a hierarchical multi-modal framework that 

integrates Abstract Syntax Tree (ASTs), Control Flow Graph (CFGs), and Data Flow Graph 

(DFGs) into a comprehensive Code Property Graph (CPG) utilizing a unified graph neural 

network. Our method employs a novel graph fusion strategy with adaptive attention 

mechanisms to preserve both local syntactic patterns and global semantic dependencies. 

Empirical evaluations on the OBG-Code2 and CodeSearchNet datasets demonstrate that this 

unified approach significantly outperforms single-view baselines, achieving a 24.8% relative 

improvement in code search tasks. These results confirm that synthesizing multi-modal 

structural information is essential for advancing structure-aware neural code intelligence. 
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1. Introduction 

Modern software engineering increasingly relies on 

automated code understanding systems to support 

tasks such as code search, summarization, and 

vulnerability detection. While large language models 

(LLMs) like CodeBERT and CodeT5 have advanced 

natural language-code alignment, their text-centric 

architectures often overlook the rich structural 

semantics inherent in source code [3]. Graph-based 

approaches like GraphCodeBERT partially address this 

by incorporating data flow graphs (DFGs), but they 

remain limited to a single structural view, ignoring 

critical syntactic (AST) and control-flow (CFG) 

relationships. This gap hinders models from fully 

capturing program behavior, particularly for complex 

logic or cross-language analysis [1][2]. 

Recent work highlights the potential of multi-view 

code representations. Demonstrate through GALLa 

that aligning abstract syntax trees (ASTs) with LLMs 

improves structural reasoning, while Guo et al. show 

that combining multiple code views in CodeSAM 

enhances model attention patterns. However, existing 

methods face two critical limitations: 1) Architectural 

incompatibility with decoder-only LLMs, as seen in 

GraphCodeBERT’s modified transformer layers, and 2) 

Narrow structural scope most models prioritize either 

DFGs or ASTs, neglecting the complementary value of 

control-flow semantics. Nam et al. further emphasizes 

that current LLMs struggle with control-flow analysis, 

particularly in identifying data dependencies across 

execution paths [4][6]. 

To extract useful information from graph data, early 

graph analysis methods used graph embedding 

methods to project the graph into a low-dimensional 

vector space to create new features for dimensionality 

reduction, while preserving the essential 

characteristics of the original data. This makes the 

original graph more tractable. Subsequently, traditional 

vector-based machine learning methods can easily 

complete graph analysis tasks. Although the low-

dimensional vector representations obtained in this 

way make graph learning models or algorithms easier 

to extract useful information, such methods usually 

suffer high computation and space overhead. To 

alleviate this issue, graph neural network (GNN) 

algorithms [16] have attracted recent attention to 

automatically capture high-level vertex representations 

and graph topology information from the given original 

low-level graph-structured data [18].  

This paper proposes a novel framework that 

integrates AST, CFG, and DFG into a unified CPG 

while maintaining compatibility with pre-trained LLMs. 

Building on GALLa’s graph alignment strategy , our 

approach introduces three key innovations: 1) A 

hierarchical graph encoder that processes multi-

relational edges (syntax, control, data) through type-

specific attention mechanisms, 2) A parameter-

efficient adapter layer that projects unified graph 

embeddings into the LLM’s latent space without 

architectural modifications, and 3) A multi-stage 

training protocol that jointly optimizes structural and 

textual alignment using contrastive learning objectives. 

Our main contributions are summarized as follows: 

• We extend GraphCodeBERT by integrating AST 

and DFG in addition to the existing CFG, resulting 

in a unified and enriched code representation 

CPGs that better captures both syntactic and 

semantic information. 

• In contrast to prior approaches that often neglect 

syntactic structure, our method explicitly models 

the complete structural and semantic context of 

source code, thereby improving the model's 

capacity for understanding code. 

• Extensive ablation studies and benchmark 

evaluations across multiple tasks, including code 

summarization, code search, and code 

generation—demonstrate that incorporating all 

three graph modalities leads to consistent and 

significant performance gains. 

The organization of this work is as follows. In section 

2, we present the background and related work on 

graph representation and their unified models. In 

section 3, we present the methodology. Then, in 

section 4, we talk about experimental setup and 

results. In section 6, threats or validity to be verified. 

In section 7, we conclude our work. 

2. Related Work 

Research on source code understanding seeks to 

combine textual and structural semantics. Existing 

methods broadly fall into text-based models, encoder–

decoder models with syntactic structure, and graph-

based or multi-view approaches. While effective for 

tasks like code search, these sequential models fail to 

capture the structural relationships that define program 

behavior. 

(i) Text-Based code Models 

Text-based models treat code as token sequences 

and apply Transformer architecture. CodeBERT and 

CodeT5 achieve strong performance on tasks such as 

code search and summarization but lack explicit 
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structural reasoning [4,5]. TransCoder-IR improves 

semantic grounding using LLVM intermediate 

representation during training; however, IR remains 

text-based and does not explicitly capture control or 

data-flow structures [7]. While effective for tasks like 

code search, these sequential models fail to capture 

the structural relationships that define program 

behavior. 

(ii)  Encoder-Decoder models 

Encoder–decoder models incorporate syntactic 

information, primarily through ASTs. TreeBERT 

encodes AST paths and decodes source code via 

cross-attention [12], while models such as 

SynCoBERT, SPT-Code, and UniXcoder linearize ASTs 

into sequences [7]. These approaches capture syntax 

effectively but struggle with complex graph structures 

such as DFGs and CFGs. CodeT5 extended this line of 

work by incorporating identifier-aware pre-training 

and a unified encoder-decoder architecture, enabling 

both understanding and generation tasks. However, 

like CodeBERT, it remains fundamentally limited by its 

sequential view of code. The model cannot explicitly 

reason about syntactic structure, control flow, or data 

dependencies information that human developers rely 

on heavily when reading and writing code [5]. 

(iii) Graph-Based and Multi-View Models 

Graph-based approaches explicitly model program 

semantics using ASTs, CFGs, and DFGs. 

GraphCodeBERT integrates data-flow information to 

improve code understanding [3,6,9], while Code 

Property Graphs unify multiple program views and 

have been applied to security and program analysis 

tasks [11]. Recent work, such as GALLA, aligns large 

language models with graph representations to better 

capture structural and semantic relationships 

[1,14,16]. GALLa takes a different approach by 

learning explicit alignments between AST structures 

and language model representations, showing 

improvements in structural reasoning tasks. However, 

this work focuses primarily on syntax and does not 

address control flow or data dependencies [1,14,16]. 

 

3. Methodology 

The proposed methodology as shown in Figure 2 

aims to address the limitations of current code 

understanding models by unifying multiple structural 

representations of source code specifically, ASTs, 

CFGs, and DFGs into a single, comprehensive CPG as 

shown in Figure 1. This unified graph is designed to 

capture the full spectrum of syntactic, semantic, and 

control-flow information inherent in code, which is 

often missed by models that focus on only one 

structural view. The approach begins by parsing 

source code into its respective AST, CFG, and DFG 

components, each of which encodes different aspects 

of program logic: ASTs provide hierarchical syntactic 

structure, CFGs represent possible execution paths, 

and DFGs illustrate data dependencies. These graphs 

are then merged into a multi-relational CPG, where 

each edge type (syntax, control, data) is explicitly 

annotated. A hierarchical graph encoder processes 

this CPG using type-specific attention mechanisms, 

allowing the model to learn nuanced relationships 

across different structural modalities. 

 
Figure 1: Multi-graph code understanding model workflow. 

 

To integrate these rich structural embeddings with 

pre-trained large language models (LLMs) like 

CodeBERT, a parameter-efficient adapter layer is 

introduced, projecting the graph-based features into 

the LLM’s latent space without requiring architectural 

changes. The training protocol is multi-stage: it 

begins with pre-training the graph encoder on graph 

reconstruction and masked node prediction tasks, 

followed by contrastive learning to align graph and 

textual representations, and concludes with fine-

tuning on downstream code understanding tasks such 

as summarization, search, and generation. This 

methodology not only enhances the model’s ability to 

reason for complex code semantics but also ensures 

compatibility and scalability with existing LLM-based 

frameworks, providing a more holistic and effective 

solution for automated code intelligence [8]. 

The proposed architecture presents a 

comprehensive framework for multi-task code analysis 

that integrates multiple graph representations to 

enhance model performance across code 
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summarization, generation, and search tasks. The 

pipeline begins with the OGB-Code2 dataset, which 

serves as the primary data source containing Python 

method definitions represented as AST [9][10]. 

The Joern static analysis tool is employed to extract 

three complementary graph representations from the 

source code: AST capturing syntactic structure, DFG 

representing variable dependencies and data flow 

relationships, and CFG modeling program execution 

paths. 

These heterogeneous graph representations are then 

unified through a CPG extraction process, creating a 

comprehensive multi-layered representation that 

preserves both syntactic and semantic information. 

The unified CPG serves as input to the model building 

phase, where separate but related neural architectures 

are constructed for three distinct tasks: code 

summarization for generating natural language 

descriptions, code generation for producing code from 

specifications, and code search for retrieving relevant 

code snippets. 

The multi-task learning approach allows the model 

to leverage shared representations across tasks during 

the training phase, potentially improving generalization 

and performance. Finally, the trained models undergo 

comprehensive evaluation using task-specific metrics 

to assess their effectiveness across all three code 

analysis domains [11][12]. 

 

 

 

Figure 2: Overview of the proposed multi-graph architecture 

for code analysis tasks. The framework leverages the OGB-

Code2 dataset and employs the Joern tool to extract multiple 

graph representations (AST, DFG, CFG) which are unified 

into CPG for training models on code summarization, code 

generation, and code search tasks. 

 

 

Algorithm 1: Hierarchical Multi-Modal Code 

Representation Learning 

Input: Code snippet c, Label y, Task τ 

Output: Prediction ŷ 

1: Procedure PROPOSED_MODEL (c, y, τ) 

// Part 1: Structural View Extraction and Unification 

2: CPG ← GENERATE_CPG(c) // Use Joern to extract 

method-level graph 

3: AST, CFG, DFG ← EXTRACT_GRAPHS(CPG) 

4: G ← MERGE(AST, CFG, DFG) // Unified 

representation 

 

// Part 2: Hierarchical Encoding Phase 

5: h_graph ← HIERARCHICAL_GRAPH_ENCODER(G) 

6: h_text ← ROBERTA_BACKBONE_ENCODER(c) 

 

// Part 3: Cross-Modal Feature Fusion 

7: h_fused ← ADAPTER_LAYER(h_text, h_graph) // 

Latent space projection 

 

// Part 4: Task-Specific Inference 

8; if τ ∈ {"summarization", "generation"} then 

9: ŷ ← TRANSFORMER_DECODER(h_fused, y) 

10: else if τ = "search" then 

11: h_query ← ROBERTA_BACKBONE_ENCODER(y) 

12: ŷ ← SIMILARITY_SCORE(h_fused, h_query) 

13: end if 

14: return ŷ 

end procedure 

4. Experimental Setup 

This section details the experimental configuration 

and methodology used to address the proposed 

research questions (RQs). 

(i) Research Questions 

RQ1: How does the integration of multiple code 

structural representations (AST, CFG, DFG) into a 

unified graph enhance the performance of code 

understanding models compared to single-structure or 

text-only baselines? 

RQ2: Can a unified graph-based approach 

effectively capture both syntactic and semantic code 

relationships to improve code search and natural 

language code retrieval tasks on large-scale, real-

world datasets? 

RQ3: What are the trade-offs in terms of 

computational efficiency and model complexity when 

employing a merged graph structure (AST+CFG+DFG) 

in transformer-based code models, and how can 
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these be optimized for practical deployment? 

 

(ii) Benchmark Datasets 

We evaluate our approach using projects from the 

OGB-Code2 dataset, a large-scale benchmark from 

the Open Graph Benchmark designed for graph-based 

code understanding tasks [8]. The dataset consists of 

over 450,000 Python method ASTs extracted from 

more than 13,000 GitHub repositories, where the task 

is to predict method-name sub-tokens from the 

corresponding ASTs. OGB-Code2 provides 

standardized splits, evaluation metrics, and public 

leaderboards, enabling fair and reproducible 

comparisons across models [15]. To validate 

generalizability, we utilize the CodeSearchNet dataset, 

a prominent multi-language benchmark containing 

many code-documentation pairs [19]. Spanning six 

programming languages (Go, Java, JS, PHP, Python, 

Ruby), it serves as a robust testbed for cross-domain 

semantic understanding. Our evaluation focuses on 

the Python subset to maintain parity with OGB-Code2 

while testing the model's ability to handle diverse 

coding styles and repository structures common in 

broader open-source ecosystems. 

(iii) Baseline 

We adopt GraphCodeBERT as the baseline model, 

which enhances code understanding by incorporating 

DFGs to model variable dependencies [9]. Unlike 

AST-based approaches, GraphCodeBERT captures 

semantic relationships through DFGs and integrates 

them into a Transformer using graph-guided masked 

attention. It is pre-trained with edge prediction and 

structure–code alignment objectives, achieving strong 

performance across multiple code intelligence tasks, 

making it a suitable and competitive baseline. 

(iv) Performance Measures 

To evaluate the quality and effectiveness of models 

in software engineering tasks such as code 

summarization and code generation, we employ 

several established automatic evaluation metrics as 

given in Table 1. These metrics provide a standardized 

way to assess the accuracy, relevance, and 

correctness of generated outputs by comparing them 

against ground-truth references. 

 

5. Experimental Results 

Before analyzing the specific research questions, we 

first verified the stability of our training process. Figure 

6 presents the loss trajectories over 5 epochs; both 

training and validation losses decrease consistently, 

confirming that the multi-graph architecture 

generalizes well to unseen data. Based on this stable 

convergence, we proceed to evaluate the model's 

performance on the three downstream tasks. Based on 

the quantitative evaluation presented in the 

accompanying figures, the proposed multi-graph CPG 

architecture demonstrates robust performance across 

all three evaluated tasks, significantly outperforming 

the baseline on both the OBG-Code2 and 

CodeSearchNet datasets. 

Table 1: Demonstrate the performance metrics to 

evaluate the effectiveness of the model 

Metric Description 

BLEU 
Measures precision of n-gram overlap 

between generated text and reference. 

ROUGE-1 
Measures unigram (word-level) recall 

between candidate and reference. 

ROUGE-2 
Measures bigrams recall between 

candidate and reference. 

MRR 
Measures the rank of the first correct 

answer. 

ROUGE-L Measures longest common subsequence 

Recall@k 
Measures whether relevant items are 

retrieved in the top-k results. 

 

RQ1: In the code generation task as given in Figure 3, 

the proposed model achieves exceptional results on 

the OBG-Code2 dataset, securing a ROUGE-1 score 

of 0.95 and ROUGE-L score of 0.97. This strong 

performance is consistent on the CodeSearchNet 

dataset, where the model attains a ROUGE-1 score of 

0.91 and ROUGE-L score of 0.94. These high scores 

indicate a substantial degree of semantic overlap 

between the generated code and reference 

implementations across both benchmarks. While the 

BLEU scores remain moderate (0.34 for OBG-Code2 

and 0.30 for CodeSearchNet), reflecting the precision-

oriented nature of the metric, the ROUGE-2 scores 

(0.66 and 0.62, respectively) demonstrate reasonable 

bigram-level alignment. The gap between ROUGE-1 

and ROUGE-2 scores suggests that while the model 

captures individual tokens effectively, maintaining 

exact phrase-level precision remains a challenging 

objective. 

The code summarization results as shown in 

Figure 4 exhibit a remarkably similar performance 

pattern. On OBG-Code2, the model achieves a 

ROUGE-1 score of 0.96 and a ROUGE-L score of 
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0.95, alongside a BLEU score of 0.33 and ROUGE-2 

score of 0.65. Similarly, on the CodeSearchNet dataset, 

the model maintains high performance with a ROUGE-

1 score of 0.92 and ROUGE-L score of 0.91. This 

consistency across both generation and 

summarization tasks indicates the model's robust 

ability to capture semantic relationships in both 

directions—effectively translating code to natural 

language descriptions and vice versa. 

For code search given in Figure 5, the model 

demonstrates strong retrieval capabilities on the OBG-

Code2 dataset with Recall@1 (0.84), Recall@10 (0.87), 

and ROUGE-2 (0.86) scores. The high Recall@1 

performance is particularly notable, indicating that the 

model frequently retrieves the most relevant code 

snippet as the top result. Meanwhile, the strong 

ROUGE-2 score in this context confirms consistent 

ranking quality across queries. These results 

collectively validate the effectiveness of the multi-

graph representation approach in capturing the 

semantic code relationships essential for accurate 

retrieval tasks across diverse datasets. 

 

Figure 3. Comparative evaluation of code generation 

performance on OBG-Code2 and CodeSearchNet datasets. 

The proposed model consistently outperforms the baseline, 

achieving high ROUGE-1 (0.91–0.95) and ROUGE-L (0.94–

0.97) scores, demonstrating superior structural accuracy in 

generating code across both benchmarks. 

Ablation Study: To systematically evaluate the 

contribution of our multi-graph architecture, we 

compare its performance against the GraphCodeBERT 

baseline, which relies solely on Data Flow Graphs 

(DFG). This comparison addresses two critical 

research questions: the effectiveness of unified graph 

representations (RQ2) and the associated 

computational trade-offs (RQ3). 

RQ2: The performance comparison between the 

single-graph baseline and our proposed multi-graph 

CPG architecture reveals substantial improvements 

across all evaluated tasks, validating the hypothesis 

that a unified structural representation enhances code 

understanding. 

 

Figure 4. Performance comparison for the code 

summarization task across OBG-Code2 and CodeSearchNet 

datasets. The multi-graph approach exhibits strong semantic 

capture, yielding ROUGE-1 scores of 0.92–0.96 and 

ROUGE-L scores of 0.91–0.95, significantly surpassing 

baseline metrics in generating natural language descriptions. 

 

In Code search performance, the GraphCodeBERT 

utilizing only DFG, often struggles to capture the full 

structural context of code. In our evaluation on the 

OBG-Code2 dataset, the baseline achieved 

a Recall@1 of 0.69 and Recall@10 of 0.67. In sharp 

contrast, our multi-graph model, which integrates AST, 

CFG, and DFG, demonstrates significantly superior 

performance with a Recall@1 of 0.84 and Recall@10 

of 0.87. This represents a relative improvement of 

approximately 21.7% in top-1 retrieval accuracy. 

While GraphCodeBERT's DFG-only approach 

effectively captures data dependencies ("where-the-

value-comes-from"), it misses the explicit syntactic 

hierarchy provided by ASTs and the execution flow 

logic contained in CFGs. 

Our results indicate that incorporating these 

complementary structures allows the model to better 
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align natural language queries with code snippets, 

bridging the semantic gap that single-graph models 

often fail to cross. 

 

Figure 5. Code search retrieval results on the OBG-Code2 

dataset. The proposed model demonstrates robust retrieval 

capability with a Recall@1 of 0.84 and Recall@10 of 0.87, 

verifying the effectiveness of the unified graph 

representation in retrieving relevant code snippets. 

 

For Generalization to Generation and Summarization, 

the advantages of the multi-graph approach extend 

beyond retrieval. In code summarization, our model 

achieves a ROUGE-L score of 0.95, significantly 

outperforming the baseline's 0.76. Similarly, for code 

generation, the proposed model attains a ROUGE-L 

score of 0.97 compared to the baseline's 0.79. These 

consistent gains across disparate tasks—retrieval, 

summarization, and generation—confirm that the 

unified CPG representation provides a more robust 

and versatile understanding of code than the DFG-

only baseline, which was primarily optimized for tasks 

like clone detection and code refinement. 

RQ3: A critical concern with multi-graph 

architectures is the potential for prohibitive 

computational overhead. To address this, we 

quantitatively analyzed the efficiency of trade-offs, as 

summarized in Table 2. 

Training Overhead: Constructing and encoding the 

unified CPG does introduce a computational cost. The 

total training time for the proposed model was 18.2 

hours, compared to 12.5 hours for GraphCodeBERT—

an increase of approximately 45.6%. This increase is 

 
Figure 6: Loss curves for training and validation over 5 

epochs. Both curves show a steady decrease, indicating that 

the model is learning effectively and generalizing well to the 

validation data without signs of overfitting. 

 

attributed to the larger graph size and the complexity 

of the graph neural network layers processing the 

fused AST, CFG, and DFG nodes. 

Memory and Inference: The unified representation 

results in a longer average context length (410 

tokens vs. 180 tokens), which directly impacts memory 

usage. Our model requires 9.8 GB of GPU VRAM, 

compared to 6.2 GB for the baseline. Inference 

latency also increases from 45 ms to 62 ms per 

sample. 

 

Table 2: Demonstrate the computational efficiency and 

structural complexity averaged across the three 

evaluation tasks 

Efficiency 

Metric 

GraphCodeBERT 

(DFG) 

Proposed 

Model (CPG) 

Model 

Parameters 

125M 125M 

Training Time 

(Average) 

12.5 Hours 18.2 Hours 

GPU Memory 

(VRAM) 

6.2 GB 9.8 GB 

Inference 

Latency 

45 ms 62 ms 

Avg. Context 

Length 

180 Tokens 410 Tokens 

 

Efficiency-Performance Trade-off: While the proposed 

model incurs higher computational costs, the trade-off 

is justifiable for applications prioritizing accuracy. 
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The ~22% improvement in Recall@1 and ~25% gain in 

ROUGE-L scores come at the cost of a 37% increase 

in inference latency. Importantly, the model parameter 

count remains identical (125M) because the graph 

encoding is handled via input transformations rather 

than adding significant layers to the transformer 

backbone itself. This suggests that the multi-graph 

approach is a viable solution for high-performance 

scenarios where improved accuracy outweighs the 

moderate increase in resource consumption. 

The quantitative analysis reveals that the multi-graph 

CPG model outperforms GraphCodeBERT's single-

graph baseline by approximately 25% in terms of 

relative improvement on code search tasks. This 

substantial performance gain validates the hypothesis 

that combining multiple graph representations provides 

more comprehensive code understanding than single-

graph approaches. The improvement is particularly 

 

significant considering GraphCodeBERT was designed 

to be more efficient than AST-based approaches by 

avoiding "unnecessarily deep hierarchy", yet the multi-

graph approach overcomes this efficiency trade-off 

while delivering superior results across multiple 

evaluation metrics and tasks. 

 

6. Threat to Validity 

While the proposed approach demonstrates strong 

performance, several limitations remain. First, the 

graph extraction process was optimized for the 

specific structural characteristics of the OBG-Code2 

and CodeSearchNet datasets. The generalizability of 

these gains to programming languages with 

fundamentally different syntax or dynamic features 

(e.g., Lisp, Ruby) remains to be fully verified [14][15]. 

Additionally, static analysis-based graph extraction 

can struggle to capture dynamic behaviors such as 

run-time control flow, reflection, or metaprogramming 

patterns, potentially missing important semantic 

information [15]. Finally, the complexity of processing 

heterogeneous multi-graph structures introduces 

optimization challenges. As noted in the efficiency 

analysis, the increased context length and graph 

density lead to higher memory consumption, which 

may constrain deployment on resource-limited edge 

devices [16]. 

 

7. Conclusion 

This study introduces a unified CPG representation 

that synergistically integrates ASTs, CFGs, and DFGs 

for neural code understanding. By evaluating this 

architecture on the OBG-Code2 and CodeSearchNet 

datasets, we demonstrated that our multi-graph 

approach consistently outperforms the single-graph 

GraphCodeBERT baseline. We observed significant 

gains in Recall@k for code search and ROUGE scores 

for generation and summarization, confirming that 

synthesizing multiple graph modalities captures richer 

syntactic and semantic relationships. Our efficiency 

analysis reveals that while this enhanced expressivity 

comes with a moderate increase in training time and 

inference latency, the substantial performance 

improvements justify the cost for accuracy-critical 

applications. Future work will focus on optimizing 

graph pruning techniques to reduce computational 

overhead and extending the evaluation to a broader 

range of programming languages. 
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요약 

Just-In-Time (JIT) 결함 예측은 커밋 시점에 결함 유발 여부를 식별한다. 전통 ML은 효율적이지만 의미 이해가 

부족하고, LLM은 깊은 추론이 가능하나 비용이 높고 단순 코드에서 환각이 발생한다. 본 연구는 Random 

Forest, XGBoost, CatBoost 앙상블(95개 통계 피처)과 Qwen2.5-Coder LLM을 선택적으로 결합한 하이브리드 

프레임워크를 제안한다. ML 앙상블로 1차 예측 후, 불확실성 높거나 모델 간 의견 불일치 시(27.1%)에만 

LLM을 호출해 커밋 메시지 diff, SHAP 설명으로 모호성을 해소한다. 3,738개 Python 커밋 평가 결과 F1-score 

0.81(ML 단독 0.79 대비 향상), 150개 임계값에서 견고성 확인. LLM 사용 제한으로 계산 비용 72.9% 절감. 

zero-shot 컨텍스트 증강으로 파인튜닝 없이 구현. ML 이 노이즈를 걸러내고 LLM 이 복잡 엣지 케이스를 

실시간으로 해결해 품질과 실용성을 동시에 달성했다. 

Abstract 

Just-In-Time (JIT) software defect prediction aims to identify defect-inducing commits at commit time [1]. Still, it 
faces a critical trade-off: traditional machine learning (ML) is efficient but lacks semantic understanding. At the same 
time, Large Language Models (LLMs) offer deep reasoning but are computationally prohibitive and prone to 
hallucinations on simple code [1]. In this paper, we propose a cost-efficient hybrid framework that selectively 
integrates an LLM agent with an ML ensemble. Our approach uses a two-stage decision mechanism: first, an ensemble 
of Random Forest, XGBoost, and CatBoost models predicts defect probability using 95 statistical features; secondly, 
a hybrid routing layer invokes a code-specialized LLM agent (Qwen2.5-Coder) only for uncertain cases or significant 
ML models' disagreement. The LLM performs semantic analysis using the ensemble predictions, commit messages, 
code diffs, and SHAP-based feature explanations to resolve ambiguity. Evaluated on 3,738 Python commits, the hybrid 
system achieved an F1-score of 0.81, significantly outperforming the optimized ML baseline (F1: 0.79). Sensitivity 
analysis confirms robustness across 150 threshold configurations. By restricting LLM analysis to 27.1% of commits, 
the framework reduces computational costs by 72.9%. Furthermore, our approach utilizes a zero-shot, context-
augmented reasoning strategy that eliminates the need for expensive LLM fine-tuning. These results demonstrate that 
selective integration is both quality-enhancing and highly practical: the ML layer filters noise while the training-free 
LLM agent resolves complex edge cases through on-the-fly semantic reasoning. 

Keywords: Just-in-time defect prediction, Large language models, Machine learning, LLM agents, Software 
Engineering.
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1. Introduction 

Software defects are inevitable in modern 
development, with studies showing that 5-50% of 
commits introduce bugs [1,2]. Just-In-Time (JIT) 
defect prediction addresses this by identifying 
potentially buggy commits at commit time, allowing 
developers to conduct targeted code reviews and 
testing before defects propagate to production [1,2]. 
Traditional JIT approaches use machine learning 
models trained on commit metrics (e.g., lines changed, 
files modified, developer experience) and achieve F1-
scores ranging from 0.30 to 0.70 across different 
datasets [3]. However, these approaches struggle with 
semantic understanding, where ML models rely on 
quantitative features but cannot reason about code 
logic, design patterns, or bug-prone constructs [4]. 
Recent Large Language Models (LLMs) like GPT-4, 
Claude, and CodeLlama demonstrate remarkable code 
understanding capabilities, achieving high accuracy 
on code analysis tasks [5]. However, applying LLMs 
to all commits is computationally expensive and 
impractical for real-time JIT prediction, as some 
commits can exceed model context lengths, LLM 
inference takes significantly longer, and many 
commits are obviously clean or buggy based on simple 
metrics [6,7]. This study investigates the synergy 
between statistical machine learning and semantic 
reasoning through three paths: the accuracy of hybrid 
defect detection, the cost-efficiency of selective model 
deployment, and the validity of confidence-based 
routing mechanisms. We introduce a context-enriched 
two-stage hybrid architecture that strategically routes 
ambiguous commits from an optimized ML ensemble 
to a code-specialized LLM agent. Crucially, we 
introduce a training-free reasoning strategy that 
leverages SHAP-augmented context to achieve 
superior accuracy without the need for task-specific 
LLM fine-tuning. Evaluated on a balanced dataset of 
3,738 commits, the hybrid system achieves an F1-
score of 0.81, a 2.8% improvement over ML baselines. 
On a smaller 200-sample subset, the hybrid approach 
(F1 0.75) outperforms both the ML baseline (F1 0.72) 
and a Pure LLM approach (F1 0.57), proving the 
router effectively suppresses hallucinations on 
statistically clear code. Additionally, selective 
integration yields a 72.9% reduction in computational 
latency while maintaining exceptional performance 

stability across 150 configurations, offering a scalable, 
robust solution to cost-efficient JIT defect prediction. 

2. Related Work 

2.1 Just-In-Time Defect Prediction 

Early JIT defect prediction work [1,3] used commit 
metrics (lines added/deleted, number of files, 
developer experience) with traditional ML models 
(Logistic Regression, Random Forest). These 
approaches achieve F1-scores of 0.30-0.45 on 
benchmark datasets. Recent work applies deep 
learning to JIT prediction: DeepJIT [8]: CNN on 
commit messages and code changes, CC2Vec [9]: 
Hierarchical attention network, JIT-Smart [10] using 
CodeBERT [11] combined with expert features for 
line-level localization. However, these methods still 
struggle with semantic understanding of code changes, 
reasoning about design patterns and anti-patterns, and 
uncertain predictions where models lack confidence. 

2.2 LLMs for Code Analysis 

Large Language Models (LLMs) have significantly 
advanced the field of software engineering through 
robust code understanding and bug detection 
capabilities. Foundational models, such as CodeBERT 
and CodeT5+ [12], have established the efficacy of 
pre-training on code-text pairs and encoder-decoder 
architectures. Meanwhile, general-purpose models 
like GPT-4 [13] and specialized variants, like 
CodeLlama [14], have pushed the boundaries of code 
generation. In the realm of quality assurance, 
researchers have leveraged these models for 
vulnerability detection (LLM4Vuln [15]) and 
automated code review (CodeReviewer [16]). 
However, pure LLM approaches are often hindered by 
practical constraints, including high operational costs, 
significant latency, and the tendency to over-analyze 
trivial code changes [17]. To address these 
inefficiencies, hybrid systems such as FrugalGPT [18] 
and LLM Routing [19] have emerged to optimize 
performance by cascading tasks from smaller to larger 
models based on difficulty. Despite these 
advancements in selective model application, no prior 
work successfully integrated machine learning and 
LLM agents without training for Just-In-Time (JIT) 
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defect prediction with an explicit focus on cost-
performance optimization. 

3. Approach 

3.1 Overview 

Our hybrid framework combines the computational 
efficiency of statistical learning with the deep 
semantic reasoning of Large Language Models (LLMs) 
through an automated triage mechanism. As illustrated 
in Figure 1, our framework processes each commit 
from the target codebase by first extracting 95 
engineered features (commit metadata, code metrics, 
and history). An ensemble of three gradient-boosted 
decision tree models (Random Forest, XGBoost, and 
CatBoost) then computes an average buggy 
probability score (Pml) and ensemble disagreement (𝜎). 
A hybrid decision layer validates these outputs against 
empirically robust thresholds: it accepts high-
confidence predictions (Pml > 0.80 or Pml < 0.30) only 
when model consensus is high ( σ < 0.15 ). These 
statistically clear cases bypass the LLM entirely, 
returning the ensemble result with SHAP explanations 
to minimize latency. Commits falling within the 
uncertainty zone or exhibiting significant 
disagreement (𝜎 > 0.15 ) are routed to a zero-shot, 
context-augmented LLM agent. Unlike traditional 
approaches requiring fine-tuning, this agent utilizes 
the commit message, code diff, and SHAP-based 
feature importance to perform on-the-fly semantic 
reasoning. The final output is a definitive prediction, a 
natural language explanation of the root cause, and 
actionable recommendations. The complete decision 
logic is formalized in Algorithm 1. For each commit, 
the system first feeds the extracted numerical features 
into the trained ensemble of ML models. The ensemble 
computes the average buggy probability Pml (line 1) 

and the standard deviation 𝜎  across the individual 
model predictions, which serves as a reliable indicator 
of prediction disagreement and uncertainty. A 
lightweight decision gate (line 4) then evaluates two 
complementary conditions: whether Pml lies outside 
the uncertainty interval and whether model 
disagreement 𝜎  remains low. When both conditions 
hold, the framework confidently adopts the ensemble 
prediction, returns it together with the corresponding 
SHAP explanations, and bypasses the LLM entirely to 
minimize latency and cost (line 5). Otherwise, the 
commit is routed to the LLM agent (lines 6-7). The 
agent receives the commit message, the full code diff, 
the ensemble probability Pml, and the detailed SHAP 
values, then performs deep semantic reasoning to 
produce the final output (line 8): a definitive binary 
prediction (buggy/clean), a clear natural language 
explanation of its reasoning, and a practical code fix 
suggestion for the developer when appropriate.  

3.2 Machine Learning models 

In this study, we selected three models based on their 
outstanding performances on repeated tests: XGBoost, 
CatBoost, and Random Forest. The models were 
trained using numerical features in the training set of 
the dataset, then tested on the test set. To leverage the 
complementary strengths of our three base models, we 
construct an ensemble predictor through simple 
averaging using equation (1), which empirically 
outperforms weighted schemes and stacking 
approaches while maintaining interpretability. Each 
base model produces a probability estimate 𝑝𝑖 ∈ [0,1] 
representing the likelihood that a commit introduces a 
defect, where higher values indicate higher bug risk. 
The ensemble probability is computed as the 
arithmetic mean of individual predictions, treating all 
models equally to avoid overfitting to validation data. 
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Figure 1. Hybrid just-in-time software defect prediction framework overview 
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 𝑝ensemble = 1
3

(𝑝RF + 𝑝XGB + 𝑝CAT)              (1) 

We additionally compute the standard deviation from 
equation (2) across the three predictions to quantify 
model agreement, where low variance (σ<0.10) 
indicates consensus and high variance (σ>0.15) 
signals uncertainty requiring deeper analysis. This 
agreement metric was proven crucial for our hybrid 
decision layer, as commits with high disagreement 
often require semantic understanding beyond 
statistical patterns. 

σ = √1
3

∑ (𝑝𝑖 − 𝑝ensemble)2
𝑖                          (2) 

3.3 Hybrid Decision Layer 

The hybrid decision layer serves as the intelligent 
routing mechanism that balances prediction accuracy 
against computational cost by selectively invoking 
LLM analysis only when ML models demonstrate 
uncertainty or disagreement. Our routing strategy 
operates on two key insights from preliminary analysis: 
first, ML ensemble predictions exhibit strong 
reliability at extreme confidence levels (>80% or 
<30%), achieving 95%+ accuracy when models agree; 
second, the intermediate probability range (40-70%) 
and cases with high model disagreement (𝜎 > 0.15) 
represent fundamentally ambiguous scenarios where 
additional semantic reasoning significantly improves 
outcomes. The decision layer evaluates commits using 
a hierarchical rule set that prioritizes computational 
efficiency: commits with very high ensemble 
confidence (𝑝ensemble > 0.80 or 𝑝ensemble < 0.30) receive 
instant rule-based predictions, as do commits with 
moderately high confidence ( 0.70 < 𝑝ensemble ≤
0.80 𝑜𝑟 0.30 ≤ 𝑝𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 < 0.40 ) when 
accompanied by strong model agreement (𝜎 < 0.10), 
collectively comprising up to 85% of all commits. The 
remaining commits are routed to our LLM agent for 
detailed code-level analysis. This design ensures that 
LLM inference is reserved for genuinely ambiguous 
cases where the marginal accuracy gain justifies the 
computational overhead. The thresholds (0.80, 0.70, 
0.40, 0.30) and agreement threshold (𝜎 = 0.15) were 
calibrated through grid search on a held-out validation 
set to maximize F1 score while constraining LLM 

usage below 20%. Unlike binary confidence 
thresholding used in prior work, our dual-threshold 
approach with agreement modeling captures the 
nuanced relationship between prediction uncertainty 
and the potential value of deeper analysis, effectively 
creating a confidence gradient where the likelihood of 
LLM invocation increases smoothly with prediction 
ambiguity. 

3.4 Rule-Based Decision 

For high-confidence commits, the system bypasses 
LLM analysis entirely and generates predictions 
through a lightweight rule-based mechanism that 
directly translates ML ensemble outputs into final 
predictions with minimal computational overhead. 
This fast path operates on the principle that when ML 
models exhibit strong confidence and agreement, 
additional semantic analysis provides diminishing 
returns while incurring significant latency and cost. 
The rule-based decision simply applies a threshold to 
the ensemble probability: commits with pensemble ≥
0.5 are classified as buggy, otherwise clean, with the 
ensemble probability itself serving as the confidence 
score. To maintain consistency with agent-based 
predictions and support unified downstream analysis, 
the rule-based path constructs a structured output 
object identical in schema to LLM outputs, including 
auto-generated reasoning text that explains the 
decision in terms of ML confidence and model 
agreement. The reasoning incorporates the top-3 
SHAP features with positive contributions to provide 
interpretable justification, ensuring that even fast-path 
predictions include actionable insights for developers. 
By encoding domain knowledge into improvement 
suggestions based on prediction type, the rule-based 
path recommends careful review and additional testing 
for high-risk commits or standard review processes for 
low-risk ones, delivering production-ready outputs in 
under 100ms. This design ensures that the 
overwhelming majority of commits receive instant 
predictions without sacrificing the structured, 
interpretable output format required for integration 
with development workflows, while the hybrid layer 
dynamically adapts to route genuinely ambiguous 
cases to more expensive LLM analysis. 
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Table 1. Model evaluation results 

3.4 LLM Agent 

For commits routed to deep analysis, we employ a 
zero-shot, context-augmented reasoning strategy 
utilizing Qwen2.5-Coder [20]. To overcome the 
hallucination risks inherent in pure LLM approaches, 
our agent anchors its semantic analysis in the 
statistical insights provided by the ML layer. Instead 
of relying solely on code diffs, we construct a hybrid 
prompt that synthesizes the commit message and code 
changes with the ML ensemble’s probability score, 
predictions and SHAP feature explanations. This 
design creates a cognitive synergy: the ML probability 
serves as a statistical prior to calibrate the LLM’s risk 
assessment, while the SHAP values highlight specific 
risk factors (e.g., abnormal file churn or author 
history), effectively directing the LLM’s attention to 
the most critical parts of the code. This context-aware 
prompting forces the model to reconcile semantic 
logic with statistical evidence in a single inference 
pass. It also reduces the LLM’s tendency to overfit to 
superficial code patterns. The agent returns a binary 
defect prediction, confidence score (0-1), natural 
language reasoning of the key risk factors identified, 
and improvement suggestions. 

4. E perimental Setup 

4.1 Research questions 

RQ1: Can the selective integration of an LLM agent 
with an ML ensemble improve JIT defect prediction 
accuracy compared to standalone approaches (ML-
only and LLM-only)? 
RQ2: What is the cost-performance trade-off between 
uniform LLM deployment and confidence-based 
hybrid routing? 

RQ3: How robust is the hybrid framework to 
variations in routing thresholds, and does the 
confidence-based mechanism reliably identify 
commits requiring semantic analysis? 
 

 
Algorithm 1. Hybrid just-in-time defect prediction 

4.2 Training and Evaluation Setup 

For this study, we utilized the temporal split 
(jit_bug_prediction/time) component of the Defectors 
dataset [21], large-scale Python defect prediction 
benchmark comprising commits from popular open-
source repositories. It partitions commits 
chronologically to simulate real-world scenarios 
where models predict defects on future commits that 
were not seen during training. The machine learning 
algorithms were trained on 95 features derived from 
commit data, code changes, structural, and software 
metrics. Our LLM agent used Qwen2.5-Coder-14B 
(via Ollama [22]) with a temperature of 0.1 and a 
32,768-token context window. We conducted three 
evaluation configurations: a main evaluation on a 
balanced subset of 3,738 commits (1,246 buggy, 2,492 
clean; 33.3% bug ratio) for hybrid system performance,  

Algorithm 1 Hybrid JIT Defect Prediction

Parameters 
  : Random Forest, XGBoost, CatBoost
    : LLM agent with prompt templates
Input:      C: commit (hash, features, message, diff, metadata)
Output:   R: result (prediction, confidence, explanation, recommendation)
 egin
1 P_ml E.EnsemblePredict(C.features)
2      StandardDeviation(P_ml)
3
4 if (P_ml < 0.3 OR P_ml > 0.8) AND < 0.15
5           return RuleBasedDecision(P_ml, SHAP(C))
6 else
7           R_llm LLM.Analyze(C, P_ml, SHAP(C))
8           return R
9      end if

Approach F1 Score Precision Recall Accuracy A C 

Hybrid 0.8076 0.8688 0.7544 0.8801 0.9475 
Ensemble 0.7856 0.8455 0.7335 0.8665 0.9446 
CatBoost 0.7856 0.8341 0.7424 0.8649 0.9430 
XGBoost 0.7821 0.8253 0.7432 0.8620 0.9417 

Random Forest 0.7719 0.8533 0.7047 0.8612 0.9378 
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Table 2. Approaches performance comparison 

a comparison of hybrid, ML-only and LLM-only on a 
smaller subset of 200 commits (100 buggy, 100 clean), 
and a sensitivity analysis across 150 threshold 
configurations varying high confidence between 0.70 
and 0.90, low confidence between 0.20 and 0.40, and 
model disagreement between 0.08 and 0.20 to assess 
robustness to hyperparameter selection.  

4.3 Performance Measures 

We used 5 standard metrics: accuracy, precision, recall, 
F1-score, and AUC. Additionally, we measure hybrid 
system efficiency using LLM usage percentage (3), 
where LLM usage percentage (U   ) represents the 
fraction of commits requiring LLM analysis, Acommits 
the number of commits analyzed by the LLM, and 
Tcommits the total number of commits. And using cost 
savings metrics (4), where cost savings (Csaving) 
represents the complementary fraction resolved by 
instantaneous rule-based decisions (Rdecisions). 

𝑈𝐿𝐿𝑀 =  (𝐴𝑐𝑜𝑚𝑚𝑖𝑡𝑠
𝑇𝑐𝑜𝑚𝑚𝑖𝑡𝑠

) ∗  100                                  (3) 

𝐶𝑠𝑎𝑣𝑖𝑛𝑔 = (𝑅𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑠
𝑇𝑐𝑜𝑚𝑚𝑖𝑡𝑠

) ∗ 100                               (4) 

Table 3. Error type distribution among evaluated models 

Model FP F  Total 
Hybrid 142 306 448 

Ensemble 167 332 499 
CatBoost 184 321 505 
XGBoost 196 320 516 

RF 151 368 519 
 

4.4 Baselines 

We evaluate against four baselines: Random Forest 
(RF) with 100 estimators, providing robust baseline 
performance through variance reduction; XGBoost 
with a learning rate of 0.1 and a max depth=6, widely 
adopted for its superior performance on imbalanced 

defect prediction tasks, CatBoost with ordered 
boosting and specialized categorical feature handling; 
and ML Ensemble, which averages the probability 
outputs of RF, XGBoost, and CatBoost to leverage 
their complementary strengths. All models use 
identical 95 engineered features and train-test splits. 
The ML ensemble serves as our primary baseline, 
representing the strongest pure machine learning 
approach. Individual models additionally serve as 
ablation baselines to quantify the contribution of 
ensemble averaging. 

5. E perimental Results 

5.1 RQ1: Selective LLM integration performance 

The comparative evaluation reveals a clear 
performance hierarchy where the Hybrid system 
consistently outperforms both individual ML models 
and the ensemble baseline. Table 1, presents the 
comparative evaluation on the balanced test set (3,738 
commits). Among ML approaches, CatBoost achieves 
the highest individual performance (F1=0.7856). The 
ML Ensemble, matches this performance while 
achieving the highest AUC (0.9446), demonstrating 
effective variance reduction through model 
combination. The hybrid system achieves the best 
overall performance with F1=0.8076, a +2.8% 
improvement over the ML ensemble baseline. The 
Hybrid approach surpasses all ML baselines by 
breaking the traditional precision-recall trade-off: it 
simultaneously reduces false positives by 15.0% (142 
vs 167) and false negatives by 7.8% (306 vs 332), 
Table 3. The necessity of selective integration is most 
starkly illustrated in our comparison experiment on the 
200-sample subset. As seen in Table 2, the Pure LLM 
approach yielded a surprisingly low F1-score of  0.57, 
primarily due to the fact that it was not fine-tuned for 
the task leading to a high rate of hallucinations on 
statistically simple clean commits. In contrast, the 
Hybrid system achieved an F1 of 0.75 on the same 

Approach F1 Score Precision Recall Accuracy 

Ensemble 0.7219 0.8841 0.6100 0.7650  
LLM 0.5730 0.6235 0.5300 0.6050 

Hybrid (Ours) 0.7485 0.9014 0.6400 0.7850 
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subset, outperforming both the Pure LLM (+17.6%) 
and the ML Baseline (F1=0.72). This result 
definitively validates the synergy hypothesis: the ML 
layer effectively filters out the noise that confuses the 
LLM on simple tasks, while the LLM successfully 
resolves the semantic ambiguity in the complex edge 
cases that the ML models miss. Thus, the improvement 
is not merely incremental but structural leveraging 
each modality for its comparative advantage. 

 
Figure 2. Approach cost-efficiency 

5.2 RQ2: Cost-performance trade-off 

The hybrid system establishes a superior cost-
performance equilibrium that dominates both single-
modality approaches. By leveraging the confidence-
based routing mechanism, the system restricts 
expensive semantic analysis to only 27.1% of the 
dataset. While the Pure LLM approach requires 
approximately 60 seconds per commit for inference, 
the Hybrid system processes the vast majority (72.9%) 
of commits via the ML fast-path in under 100ms. 
Consequently, the total processing time for the 
balanced test set dropped from an estimated 62.3 hours 
(Pure LLM) to just 16.9 hours (Hybrid). This massive 
efficiency gain does not come at the expense of 
accuracy; rather, as shown in Figure 2, the Hybrid 
approach delivers the highest F1-score (0.81) at a 
fraction of the cost. Considering our 10,000-commit 
test set, evaluated using Claude API pricing (~$0.02 
per commit at ~3,000 input tokens and ~800 output 
tokens). Pure LLM deployment would require 10,000 
API calls costing approximately $210, whereas the 
hybrid approach requires only 2,710 calls costing 
$57—a direct saving of $153 on a single evaluation 
run. Furthermore, because our agent is training-free, 
we avoid the substantial up-front GPU costs associated 

with fine-tuning deep learning models making the 
system economically viable for continuous integration 
environments. 

 
Figure 3. Sensitivity analysis 

5.3 RQ3: Sensitivity and Routing Validity 

5.3.1 Sensitivity analysis 

To address concerns about threshold sensitivity, we 
conducted a comprehensive analysis across 150 
configurations by varying high confidence between 
0.70 and 0.90, low confidence between 0.20 and 0.40, 
and model disagreement between 0.08 and 0.20. As 
shown in Figure 3, F1 scores remain remarkably stable 
across all configurations: mean F1 = 0.8118, standard 
deviation = 0.0040, with a total range of only 0.0149 
(from 0.8043 to 0.8192). This low variance (σ < 0.01) 
demonstrates that the reported performance gains are 
not artifacts of threshold overfitting but reflect genuine 
architectural benefits of selective LLM integration.  

5.3.2 Routing Validity  

To illustrate the framework's synergy, we analyze a 
representative false positive correction from the 
lightning repository (Figure 4). The ML ensemble 
incorrectly classified commit 7dbd038 as buggy (64% 
confidence) driven by specific keyword features: 
SHAP analysis reveals that msg_has_fix (+0.18 impact) 
and lines_deleted (+0.12 impact) were the primary 
contributors, as the model over-indexed on the phrase 
‘memory leak fix’ and the deletion of a line. However, 
the hybrid system, triggered by insufficient confidence 
(<80%), performed a deeper semantic analysis of the 
code diff. By recognizing that the change was merely 
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a dependency version bump (lightning-cloud 0.5.3 to 
0.5.6) within a configuration file 
(requirements/app/base.txt) rather than a logic 
alteration in source code, the LLM correctly identified 
the commit as a safe maintenance update, overriding 
the ensemble’s keyword and statistical biased 
prediction. This demonstrates how the hybrid 
architecture effectively uses ML signals to flag 
potential risks while relying on LLM reasoning to 
filter out semantic hallucinations. 

 
Figure 4. Routing validity case study 

6. Threat to validity 

6.1 Internal validity 

Several factors may impact the internal validity of our 
findings. First, the sample size for the Pure LLM 
comparison was limited to 200 commits due to the 
prohibitive computational cost and time required for 
full-dataset inference; while this subset was stratified 
to ensure representation, a larger-scale evaluation 
would provide tighter confidence intervals for the 
"synergy" hypothesis. Second, our choice of Qwen2.5-
Coder-14B was driven by the constraint of using a 
cost-free, locally deployable model. We acknowledge 
that state-of-the-art commercial models (e.g., GPT-4 
or the upcoming GPT-5) would likely yield higher 
upper-bound performance, though at significantly 
increased operational cost. Finally, we employed a 1:2 
buggy-to-clean ratio in our test set rather than the 
typical 10-15% real-world defect rate. This design 
choice was necessary to ensure a statistically sufficient 
number of positive samples for fair evaluation within 
our restricted computational environment, potentially 
influencing the absolute values of precision and recall 

while preserving the relative performance hierarchy 
between methods. 

6.2 External Validity 

The generalizability of our results is limited by several 
factors. First, our reliance on open-source repositories 
means that the +2.8% F1 improvement may not apply 
to specialized domains, such as embedded systems or 
some enterprise codebases, which have distinct 
commit patterns. Second, our hybrid routing strategy 
was optimized for the qwen2.5-coder:14b model and 
local consumer-grade hardware; different LLM 
architectures or cloud-based API deployments may 
yield different performance and cost-saving results. 
Third, the effectiveness of our 95 engineered features 
depends on the availability of rich Git metadata, which 
may be limited in proprietary or incomplete version 
control systems. Finally, our focus on commit-level 
binary classification limits the applicability of these 
findings to broader tasks such as bug localization or 
severity prediction. 

7. Conclusion 

This research presents a hybrid ML+LLM framework 
for Just-In-Time (JIT) defect prediction, successfully 
merging the efficiency of statistical machine learning 
with the semantic depth of Large Language Models. 
By employing a confidence-based routing mechanism, 
we demonstrate that escalating only 27.1% of 
ambiguous commits to an LLM (Qwen2.5-Coder-14B) 
allows for the capture of complex logic errors while 
maintaining a high-throughput pipeline. Our empirical 
evaluation confirms that this synergy achieves good 
performance, yielding an F1-score of 0.807 and an 
72.9% reduction in infrastructure costs compared to 
standalone LLM deployments. Critically, the hybrid 
approach breaks the traditional precision-recall trade-
off, reducing both false positives (-15.0%) and false 
negatives (-7.8%). The marginal utility of the LLM is 
most pronounced in the uncertainty zone, where its 
semantic reasoning provides a 10.9% performance 
uplift. Although hardware constraints limited our 
scope to 14B-parameter models, these results establish 
a deployable benchmark for asynchronous JIT 
prediction.  
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요약 
정적분석은 소프트웨어 개발 및 보안 분야에서 널리 활용되고 있는 기술이지만, 실행 의미를 정확

히 반영하지 못하는 한계로 인해 과도한 허위경보가 발생하는 문제가 존재한다. 이러한 허위경보 

문제를 완화하기 위해 정적분석에 Large Language Model(LLM)을 결합하는 연구에 대한 관심이 꾸
준히 증가하고 있다. 다만, 정적 오염분석의 경보 분류는 source–Sink 간 실행 가능성, 제어 흐름, 

sanitizer 존재 여부 등을 복합적으로 고려해야 하므로 LLM-based 접근이 해당 문제를 다룰 때, 컨

텍스트 윈도우 초과 및 환각(hallucination)에 의한 실행 경로 오판 등 여러 문제에 직면한다. 본 연

구는 정적 오염분석의 경보 분류 문제를 단일 실행 경로 단위로 분해하여 LLM의 추론 범위를 구조

적으로 제한하는 Neuro-symbolic 접근을 제안한다. 제안 방식은 Super Graph 상에서 MAX-SAT 
기반 최단 경로 선택을 통해 후보 경로를 순차적으로 노출시키고, LLM은 해당 경로의 의미적 타당

성만 판단한다. 판단 결과는 제약으로 누적되어 경로 탐색 공간을 점진적으로 축소하며, 경보의 진

위 여부를 판단한다. 또한 제안 방식은 기존 정적도구와 사전 훈련된 LLM을 그대로 활용할 수 있

어 높은 엔지니어링 비용을 요구하지 않는다. 본 연구는 22개의 실제 C/C++ 오픈소스 소프트웨어
를 대상으로 CodeQL 기반 오염분석을 수행하여 얻은 144개의 경보에 대한 분류 성능을 평가하였

다. 또한, 제안 방식의 구조적 이점을 입증하기 위해 LLM만을 사용해 경보를 분류하는 방식의 

LLM-Only Baseline을 설계하고 비교 실험을 진행하였다. 그 결과, 본 연구의 제안 방식에서 Base-

line 대비 분류 품질의 향상, Baseline에서 발생한 컨텍스트 윈도우 초과 및 경로 오판 문제가 구조

적으로 제거됨을 확인하였다. 
 

키워드: 정적분석, 오염분석, 허위경보, Neuro-symbolic Reasoning, MAX-SAT, 대형 언어 모델, 프

로그램 분석. 

 

1. 서론 

 

정적분석은 프로그램 실행 없이 코드 구조와 제어 흐름을 분

석할 수 있어 소프트웨어 개발 및 보안 분야에서 널리 활용되

고 있다. 그러나 프로그램의 실제 실행 의미를 정확히 반영하

지 못하는 한계로 인해, 발생하는 과도한 허위경보 문제는 지

금까지 해결하기 어려운 중요한 문제로 인식되어왔다. 이 문

제는 대규모 소프트웨어에서 더욱 부각되며, 정적분석의 실용

성을 저해하는 주요 원인으로 지적되고 있다. 

최근 이러한 허위경보 문제를 완화하기 위해 LLM을 활용하

는 연구가 많은 관심을 받고있다. LLM의 코드 이해 능력은 정

적분석 도구가 놓치는 의미적 정보를 보완할 수 있는 잠재력

을 가진다.  

그러나 정적 오염분석의 경보 분류 문제의 경우 단순한 코

드 이해 문제를 넘어서는 복잡도를 가진다. source–sink 간 모

든 실행 가능한 경로에 대하여, 제어 흐름, 의미 판단, 실행 

가능성 등이 동시에 고려되어야 한다. 이러한 문제는 LLM-

based 접근에서 넓은 범위의 전역적 추론을 요구하며, 경우에 

따라 컨텍스트 윈도우 초과 및 환각으로 인한 실행 경로 오판 

문제 등 여러 어려움이 존재한다. 

본 연구에서는 정적 오염분석의 경보 분류 문제를 실행 경

로 단위 문제로 분해하여, LLM의 추론 범위를 구조적으로 제

한하는 Neuro-symbolic 접근을 제안한다. 제안 방식의 핵심 

아이디어는 MAX-SAT 기반의 최단 실행 경로 선택으로 실행 

가능 경로를 순차적으로 노출시키며, LLM은 해당 단일 실행 

경로의 의미적 타당성만 판단하도록 역할을 분리하는 것 이다. 

LLM의 판단 근거는 경로 제약으로 누적함으로써, 불필요한 후

보 실행 경로를 제거하고 탐색공간을 점진적으로 축소할 수 

있다. 

제안 방식의 효과를 평가하기 위해, LLM이 경보의 진위를 

직접 판단하는 LLM-only Baseline을 설계했다. 실험을 통해 

Baseline 대비, 제안 방식의 경보 분류 품질 향상을 입증하고, 

Baseline에서 발생할 수 있는 컨텍스트 윈도우 초과 및 환각

으로 인한 실행경로 오판 문제가 구조적으로 제거되었음을 확
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인하였다.  

 

2. 배경 

2.1. 정적분석 

정적분석(static analysis)은 대상 프로그램을 실제로 실행하

지 않고 코드 구조 및 제어 흐름을 분석하여 잠재적인 오류나 

취약점 등을 탐지하는 기술이다. 이러한 방식은 실행 환경이

나 입력값에 의존하지 않고 다양한 프로그래밍 언어로 작성된 

대규모 코드 베이스를 대상으로도 적용할 수 있어 소프트웨어 

개발 및 보안 분야에서 널리 활용되고 있다. 특히 안전하지 

않은 메모리 사용 및 접근, 외부 입력에 대한 검증 누락과 같

은 소프트웨어의 결함을 조기 발견하고 예방하는 데 중요한 

임무를 수행한다 

 

2.2. 오염분석 

오염분석(taint analysis)은 정적분석 기법의 하나로, 그림 1과 

같이 특정 값이나 상태가 프로그램 내부에서 어떻게 전파되는

지를 추적하는 것에 초점을 둔다. 오염분석은 여러 함수 호출

과 분기를 포함하는 모든 실행 경로를 고려하는, 경로 중심 

분석이라는 특징을 가진다. 

이러한 오염분석은 세 가지 핵심 구성 요소로 설명할 수 있

다. 첫째, source는 오염분석의 시작 지점이며, 외부 입력이나 

위험한 상태가 생성되는 위치를 의미한다. 둘째, sink는 

source로부터 전파된 값이 도달할 경우 문제가 발생할 수 있

는 지점을 의미한다. 마지막으로 sanitizer는 source에서 sink

로의 오염 흐름을 차단하는, 안전이 보장되는 조건이나 연산

을 의미한다. 이러한 구성 요소를 기반으로 오염분석은 

source에서 sink로 이어지는 모든 가능한 실행 경로상의 오염 

전파를 추적하여, source에서 발생한 오염이 sanitizer를 거치

지 않고, sink에 도달가능한 위험한 경로가 존재할 경우 경보

를 발생시킨다. 

 

2.3. CodeQL 기반의 정적분석 

본 연구에서 정적분석 도구로 사용하는 CodeQL[1]은 대상 

프로그램을 관계형 데이터베이스 형태로 추출한 뒤, Datalog 

와 유사한 선언형 언어로 작성된 쿼리를 통해 임의의 정적분

석 수행하는 방식으로 동작한다. 이러한 특성으로 다양한 정

적분석을 유연하게 기술하거나 수정할 수 있다는 장점이 있다. 

CodeQL을 사용하면, 대상 정적분석의 Shadow Rule을 작성함

으로써 추론 과정에서 내부적으로 생성되는 정보를 추가적으

로 수집할 수 있다. 

 

3. 동기 

3.1. 정적분석 허위경보 발생 원인 및 특성 

정적분석의 허위경보가 발생하는 근본적 원인은 분석기가 프

로그램의 실행 의미를 실제 실행 없이 소스코드와 같은 제한

된 정보에 기반해 고려해야 하므로, 과대 근사(over-

approximation)에 기반한 해석을 수행하는 것에 있다. 그렇기 

때문에 특별한 조건에서 성립하는 안전성이나 암묵적인 불변

식을 충분히 인식하지 못할 수 있으며, 그 결과 실제 실행에

 
그림 1 오염분석 개요 

 

 

그림 2 메모리 누수 허위경보 사례 

 

서는 문제가 발생하지 않거나 실행 불가능한 경로까지 분석 

대상에 포함하는 경향이 있다. 이러한 보수적인 경로의 확장

은 안전성을 높이는 대신, 허위경보의 수를 증가시키는 주요 

원인으로 작용한다. 즉, 허위경보는 단순한 분석의 오류가 아

닌 분석의 완전성과 안전성 사이의 균형에서 발생하는 구조적 

한계라고 볼 수 있다. 

이러한 허위경보 문제는 프로그램의 규모가 커지고 그 구조

가 복잡해 질 수록 더욱 뚜렷하게 나타난다. 이는 정적분석 

결과를 실용적으로 활용하는 데 있어 큰 부담으로 작용한다. 

 

3.2. LLM-based 접근의 한계 

최근 이러한 정적분석의 허위경보 문제를 개선하기 위해 

LLM을 활용하는 연구에 대한 관심이 증가하고 있다. 특히 

LLM의 코드 이해 능력은 정적분석 도구가 놓치는 의미적 정

보를 보완할 수 있는 가능성을 보여준다[2].  

그러나 정적분석과 같이 코드의 제어 흐름 이해와 의미적 판

단을 동시에 요구하는 복잡한 문제를 LLM에게만 의존하여 접

근하는 방식[3]은 몇 가지의 분명한 한계를 가지고 있다. 이

는 LLM에게 과도한 추론 부담 부과될 경우 불완전하거나 근

거가 부족한 결론 생성으로 이어질 수 있으며, 실제로 코드에 

존재하지 않는 동작이나 조건 등의 사실을 허위로 만들어내는 

환각이 종종 발생하여 결과의 신뢰성을 저하시킨다. 

 

3.2. 정적분석의 실제 허위 경보 사례 

본 절에서는 메모리누수 분석의 허위경보 예시 사례를 소개

한다. 그림 2의 코드를 보면, source에 해당하는 지점에서 변

수 p에 메모리가 동적으로 할당되며, 해당 함수가 종료되는 

지점인 sink에 도달할 때까지 할당된 메모리를 해제하거나 외

부로 소유권 이전을 위한 할당 연산(=)과 같은 코드가 명시적

으로 등장하지 않고 있다. 분석기는 이러한 표면적 제어 흐름

만으로 메모리 누수 위험 경보를 발생시켰다. 
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그러나 5행에서 sp.reset() 호출 시 포인터 p가 전달된다. 

이는 외부에 존재하는 스마트 포인터 객체로 소유권을 이전하

는 동작에 해당한다. 이 경우 메모리는 스마트 포인터 객체의 

생명주기에 따라 자동으로 관리되며, 메모리 안전이 보장되는 

명백한 sanitizer이다. 이는 분석기의 특정 라이브러리 API 명

세 누락으로 실제 존재하는 sanitizer를 놓친 전형적인 허위경

보 사례이다. 

 

4. 방법 

본 장에서는 정적 오염분석의 허위경보 분류 문제를 실행 경

로 단위 문제로 재정의하고, 이를 해결하기 위한 Neuro-

symbolic 파이프라인을 제안한다. 

 

4.1. 단일 실행 경로 단위 문제로 분해 

오염분석의 본질은 source에서 sink로 이어지는 실제 가능한 

오염 전파 경로의 존재 여부를 판단하는 것에 있다. 오염분석

의 경보가 발생하는 조건을 아래와 같이 표현할 수 있다. 

 

!"#$%(', )) = , -#"./0#)ℎ(2)
!∈#(%,')

 

 

여기서 '는 source, )는 sink 노드이며 2는 실행 가능 경로

를 나타낸다. '에서 2로 오염이 도달할 수 있는 실행 경로 2

가 단 하나라도 존재한다면 분석기는 경보를 발생시킨다. 이

때 경보가 허위경보 인지 확인하려면 다음을 보이면 충분하다. 

 

∀2 ∈ 5(', )), ¬-#"./0#)ℎ(2) 

 

즉, '에서 )로의 -#"./0#)ℎ( )를 만족하는 오염 도달 가능 

실행 경로 2가 하나도 존재하지 않을 경우에만 해당 경보는 

허위로 분류된다. 

 

경보의 분류 문제를 실행 경로 단위로 문제를 분해하면, 각 

단일 실행 경로상의 오염 도달 가능성이 유효한지를 묻는 국

소적 질문을 통해 LLM이 한번에 처리해야 하는 정보의 양을 

줄이고, 추론 범위를 명시적으로 제한하여 LLM의 추론 부담을 

줄일 수 있다. 

그 결과, 경보 분류 문제는 가능한 실행 경로를 계산하는 작

업과 경로가 실제로 오염을 유발하는지 판단하는 작업으로 나

눌 수 있다. 

본 연구는 기존의 정적분석과 LLM을 단순히 결합하는 것이 

아닌, 각 기술이 잘 수행할 수 있는 역할을 할당하고, 이를 하

나의 분석 파이프라인으로 통합하는 것을 목표로 한다. 제어 

흐름 및 도달 가능성 탐색과 같은 구조적 분석은 정적분석 및 

MAX-SAT과 같은 symbolic 기법이 담당하고 sanitizer 존재  

여부나 API 의미 등 의미 기반의 판단은 LLM이 담당한다. 

 

4.2. 전체 파이프라인 개요 

그림 3은 본 연구에서 제안하는 방식의 전체적인 흐름을 나타

낸다. 이는 크게 네 가지 단계로 구성된다. 

그림 3 파이프라인 개요 

 

(1) 경보 입력 및 제어 흐름 추출 : 분류 대상 경보를 입력 받

는다. 각 경보는 Source '의 위치와 Sink )의 위치의 쌍으로 

표현된다. 먼저 CodeQL을 이용하여 '를 포함하는 함수 7%를 

식별한다. 이후 함수 7% 의 모든 transitive callee를 계산하여 

얻어진 관심 함수 집합 ℱ(')에 대한 모든 제어 흐름 그래프

(CFG) {:)*+(7)		|		7	 ∈ ℱ}를 추출한다. 이를 통해 전체 프로그

램이 아닌 해당 경보와 실제로 연관된 부분 프로그램만을 대

상으로 이후 단계를 수행한다. 이때 Super Graph 구성 단계를 

위해 각 노드에서 함수 호출이 존재할 경우 추가적인 출력에 

Call-chain annotation을 포함하도록 한다. 

 

(2) Super Graph 구성 : 추출된 각 함수의 CFG :)*+(7)에서 

반복 구조에 해당하는 cycle edge를 제거하여 방향성 비순환 

그래프(DAG) 형태로 변환한다. 변환된 DAG :,-+(7)들을 함

수 호출 관계에 따른 interprocedural edge를 추가하여 하나의 

통합된 Super Graph :%.!/0를 구성한다. Super Graph :%.!/0는 

함수 경계를 넘나드는 source-sink의 실행 경로를 단일 그래

프상에서 표현하기 위한 기반 구조이다. 

 

(3) MAX-SAT 기반 최적 경로 선택 : Super Graph :%.!/0가 

주어졌을 때 source '에서 sink )까지 실행 가능한 최단 경로

를 선택하는 문제를 MAX-SAT 기반의 제약 최적화 문제로 모

델링한다. 시작, 종료, 흐름 보존과 같은 경로의 구조적 제약

은 Hard constraints로 인코딩하고, 최단 실행 경로 선택을 위

해서 모든 edge 변수에 대하여 −1의 가중치를 부여는 Soft 

constraints를 적용한다. MAX-SAT Solver는 모든 Hard con-

straints를 반드시 만족하면서, Soft constraints의 가중치 합이 

최대가 되는, 즉 최단 거리의 source-sink 경로를 반환한다. 

 

(4) LLM을 통한 경로 정제 : 선택된 단일 실행 경로에 대해, 

해당 경로가 실제 실행에서 유효하며, source-sink 간 오염 도

달 가능성을 LLM이 판단하도록 한다. LLM이 해당 경로가 실

제 문제가 되는 경로로 판단하면 해당 경보를 진짜경보로 분

류하고 탐색 과정을 종료한다. 반대로 오염 도달이 불가능한 

경로로 판단되면 해당 결론의 근거에 해당하는 부분을 경로에

서 배제하는 제약식을 반환한다. 그리고 제약 기반 경로 선택 

단계 (3)으로 다시 돌아가 현재까지 누적된 제약을 모두 만족

하는 최단 실행 경로를 선택한다. 이러한 과정이 반복될수록 

경로 제약은 계속해서 누적되며 더 이상 제약을 만족하는 유

효한 경로가 존재하지 않는다면 이는 허위경보로 분류된다. 
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조는 symbolic 기법과 LLM을 하나의 파이프라인으로 통합한 

Neuro-symbolic 접근 방식이다. 이를 통해 LLM이 명시적인 

단일 실행 경로의 의미적 타당성만 판단하도록 추론 범위를 

제한하고, 경로 제약 누적을 통해 경보의 원인 후보가 되는 

실행 경로 들을 점진적으로 제거함으로써 허위경보를 분류한

다. 

 

4.3. Super Graph 구성 

함수 단위의 제어 흐름을 나타내는 CFG는 CodeQL과 같은 

정적분석 도구를 사용하면 손쉽게 얻을 수 있지만, 다음과 같

은 구조적 한계를 가지고 있다. 

 

• 함수 간 호출 관계를 포함하지 않아 서로 다른 함수 간 제

어 흐름을 단일 경로로 표현할 수 없다. 

 

• Loop로 인한 순환이 포함될 수 있다. 이러한 경우 이후 단

계에서 MAX-SAT 기반의 경로 문제로 모델링할 수 없다. 

 

따라서 본 연구의 제안 방식에서는 CFG를 그대로 사용하지 

않고 다음의 두가지 변환을 통해 단일 경로 탐색에 적합한 

Super Graph를 사용한다. 

 

(1) DAG 변환 : 각 관심 함수들의 모든 CFG {:)*+(7)		|		7	 ∈

ℱ}  대하여 다음과 같은 변환을 수행한다. loop의 body에서 

header로 향하는 cycle edge을 body에서 exit으로 향하도록 

재배치를 하여 가능한 경로 공간을 유한하게 만들기 위한 과

정이다. 그림 4는 이러한 과정을 시각화 한다. 

 

:dag(7) = RemoveBackEdges M:cfg(7)N 

 

(2) Super Graph 구성: CFG 추출 단계에서 부가적으로 얻은 

Call-chain annotation 정보를 사용해 함수 호출 관계를 in-

terprocedural edge 형태로 결합한다. 최종 적으로 만들어지는 

그래프는 아래와 같이 정의될 수 있다. 

 

:super = O P :dag(7)
*∈ℱ(%)

Q ∪ SInter 

 

여기서 는 함수 호출 노드에서 피호출 함수의 Entry 노드로 

향하는 edge와 피호출 함수의 Exit에서 해당 함수 호출 노드

의 successor로 향하는 edge로 구성된다. 이를 통해 Super 

Graph는 단일 함수 내부 제어흐름 뿐만 아니라 interproce-

dural한 호출과 복귀 흐름까지 단일 경로로 표현할 수 있다 

 

Algorithm 1은 앞서 설명한 Super Graph를 구성하는 과정을 

의사코드로 나타낸 것이다. 2-5행은 CFG를 DAG로 변환하는 

단계이며, 6-10행은 모든 함수 호출과 복귀에 대한 inter-

 

 

그림 4 CFG-DAG 변환 

 

procedural edge SInter를 추가하는 단계이다. 이 과정을 통해 

MAX-SAT 기반의 경로 문제에 적합한 단일 Super Graph 

:%.!/0가 완성된다. 

 

4.4. MAX-SAT 기반 최적 경로 선택 

Super Graph :%.!/0가 주어졌을 때, 본 연구의 핵심 아이디

어의 첫번째 단계는 경로 선택 문제를 Weighted Partial MAX-

SAT (WPMS) 최적화 문제로 정의하는 것이다. WPMS은 제약 

조건의 성격에 따라 Hard constraints와 Soft constraints로 구

분하며, Hard constraints를 모두 만족하면서 동시에 Soft 

constraints를 가중치의 합을 최대화 하는 해를 찾는 문제이다. 

경로 선택 문제에서 Hard constraints는 경로의 구조적 제약으

로 인코딩 되고, Soft constraints는 경로 길이 최소화를 위한 

비용 함수로 인코딩 되며, 문제의 초기 인코딩은 다음과 같다. 

 

Edge 선택 변수: Super Graph의 각 edge (T, U) ∈ S에 대해

서 다음과 같은 Boolean 변수를 도입한다. 

 

V.,? 	= W	X$TY								.7	(T, U)	.'	'Y"YZ)Y/
	[#"'Y								\)ℎY$].'Y																	

 

 

Hard constraints (초기 경로 제약) :  

• 시작과 종료 제약 : 선택 되는 경로는 반드시 다음과 같은 
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시작/종료에 대한 초기 제약을 만족해야 하며, 아래 두가지 

제약은 선택되는 경로가 source '에서 시작하여 sink )에 도

달하는 경로의 형태를 갖도록 보장한다. 각각 source '의 

outgoing edge 중 적어도 하나는 반드시 선택, sink )의 in-

coming edge 중 적어도 하나는 반드시 선택되어야 함을 나

타낸다. 

 

Φstart(') = , V%,?
?∈Out(%)

, 	 Φend()) = , V.,'
.∈In(')

 

 

• 노드의 연속성 제약 : 경로 상에 위치한 노드는 항상 흐름

의 연속성이 유지되어야 한다. 어떤 노드 ^ 의 incoming 

edge가 선택되었다면 반드시 ^의 outgoing edge중 하나가 

선택되어야 한다 

 

Φflow(^) = O , V!,D
!∈In(D)

Q ⇒ ExactlyOnef {VD,E ∣∣ h ∈ Out(^)} j 

 

• 따라서 초기 Hard constraints는 다음과 같다. 

 

Φhard = Φstart(') ∧Φend()) ∧ l Φflow(^)
D∈Nodes

 

 

Soft constraints (최단 경로 목적 함수) : 

• 모든 edge 변수 V에 대해 −1의 가중치가 부여된다. 

 

fV.,?,  ].,?j	 where	 ].,? = −1 

 

• 목적 함수는 다음과 같다. 모든 가중치는 −1  이므로 q가 

최대화가 되려면 가장 적은 수의 edge를 선택해야 한다. 따라

서 이것은 의미적으로 MIN-SAT과 동일하다. 

 

q = r ](T, U)
(.,?)∈H

⋅ V.,? 

 

따라서 해당 MAX-SAT의 해는 가장 짧은 source-sink 경로

를 선택하는 결과를 갖는다. 

 

4.5. LLM을 통한 경로 정제 

Algorithm 2는 Super Graph 생성부터 경로 선택과 LLM의 경

로 정제 과정을 통해 경보를 분류하는 전체 과정을 의사코드

로 나타낸 것이다.  

1행에서 경로 탐색 공간이 되는 Super Graph :%.!/0를 구성

한다. 이후 3-8행 loop의 4행의 [indMinSAT( )은 Φhard	⋀	y	제
약을 만족하는 최단 실행 경로를 선택한다. 이 때 Φhard는 불변 

제약식으로 [indMinSAT( )  연산 내부에서 항상 적용되며, 

loop가 반복할 동안 변경되지 않으므로, 명시적 표기를 생략

한다. 6행에서는 선택된 경로 2의 타당성을 LLM에게 묻는다. 

이때 LLM은 둘 중 하나의 판단을 내린다. 

 

 

(1) 해당 경로는 의미적으로 타당하며, 오염이 sink까지 도달 :

경로 탐색을 중단하고 해당 경보를 진짜경보로 판단. 

 

(2) 해당 경로는 실행될 수 없거나, sanitizer가 존재 : 해당 경

로가 유효하지 않은 근거를 기반으로 경로를 배제하는 경로 

제약을 구성한다. 그리고 제약 집합에 새로운 제약을 추가한 

뒤 다시 경로 선택 단계로 돌아간다. 해당 loop가 반복될수록 

LLM에 의해 경로 제약 y가 누적되며 탐색 범위를 좁힌다. 

 

Algorithm 2는 아래 두 가지 종료 조건을 가지며 각각의 의미

는 다음과 같다. 

 

(1) LLM이 True를 반환: 이는 의미적으로 타당한 source-sink 

간 오염이 도달 가능한 실행 경로 존재함을 의미하며, 해당 

경보는 진짜경보이다. 

 

(2) 경로 선택에서 UNSAT 반환: 이는 의미적으로 타당한 

source-sink 간 오염이 도달 가능한 실행 경로가 존재하지 않

음을 의미하며, 해당 경보는 허위경보이다. 

 

4.6. LLM 경로 정제 및 허위경보 분류 예시 

해당 절에서는 본 연구의 제안 방식의 정적 오염분석 경보 

분류 과정이 어떻게 동작하는지 간단한 예시를 가지고 설명한

다. 그림 5는 3장에서 예시로 언급했던 정적분석의 허위경보 

사례의 코드를 Super Graph로 구성한 모습을 시각적으로 보

여준다. 각 노드에는 실제 코드와 대응하는 행 번호가 표기되

어 있다. 그림 6을 통해 단계적으로 동작 과정을 설명할 수 

있다. 

 

(1) 최초 반복(iteration)에서는 추가 제약 없이 Super Graph  

상의 최단 경로를 선택한다. 이 경로는 if(p != null)의 조

건을 만족하지 않는 분기를 통해 sink로 도달하는 경로이며, 

이는 new Mem(100)이 null을 반환해야만 실행 가능한 경로이

다. LLM은 이 경로가 의미적으로 오염이 발생하지 않아 오염 

도달 가능성을 판단할 필요가 없으므로 유효하지 않은 경로 

로 판단한다. 따라서 아래와 같은 경로 배제 제약이 추가되며,  
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그림 5 Super Graph 변환 예시 

 
그림 6 경로 정제 예시 

 

이후의 경로 선택 과정에서 2:→7: 방향의 edge는 고려되지 

않는다. 

 

(2) 추가된 제약이 반영된 상태에서 두 번째 경로를 선택하

면, 이번에는 if(p != null) 조건이 참인 실행 경로가 선택

되며 sp.reset(p)가 등장한다. LLM은 스마트 포인터를 통한 

소유권 이전을 sanitizer로 해석하고 해당 경로상 오염 전파

가 중단되는 것으로 판단한다. 따라서 아래와 같은 경로 제

약 추가 

 

(3) 두 제약이 모두 반영된 상태에서 다시 경로 선택을 시도

하면 더 이상 source에서 sink로 이어지는 누적된 제약을 만

족하는 유효한 경로가 존재하지 않는다. 즉, MAX-SAT의 관

점에서는 경로 선택 문제가 UNSAT으로 판정되어, 해당 경보

는 허위경보로 분류된다. 

 

5. Baseline 

본 연구는 제안 방식의 효과를 평가하기 위해, LLM만을 활용

하여 정적분석 경보를 분류하는 방식을 Baseline으로 사용한

다. Baseline은 단순히 LLM의 코드 이해 및 추론 능력에만 의

존하여 판단을 내리는 LLM-only 접근이다. 

Baseline을 별도로 설계하는 목적은 크게 두 가지이다. 첫째, 

실제 소프트웨어 개발 환경에서는 복잡한 프롬프트 엔지니어

링, 모델 미세조정 또는 내부 파라미터 수정 없이, 사전 학습

된 LLM과 기존의 정적분석 도구를 그대로 활용하여 문제를 

해결하려는 사용 시나리오가 일반적이다. 개발자는 정적분석 

도구가 보고한 경보를 확인하고, 해당 경보 위치의 코드 또는 

일부 관련 문맥을 LLM에게 제시한 뒤 조언을 얻는 방식으로  

 

 

그림 7 Basline 개요 

 

활용할 수 있다. 이러한 환경을 고려할 때, 해당 Baseline은 

실무적으로도 그럴듯한 사용 형태를 반영한다. 둘째, Baseline

은 LLM이 단독으로 정적분석의 허위경보 문제를 얼마나 해결

할 수 있는지를 확인하고, 그 현실적 한계를 평가하기 위한 

비교 기준의 역할을 수행한다. 이는 본 연구에서 제안 방식의 

구조적 이점을 비교하는 데 중요한 기준이 된다. 

 

5.2. Baseline의 설계 

그림 7은 Baseline의 동작 과정 시각화한다. 

 

(1) 초기 질의: 정적분석 도구(CodeQL)가 생성한 경보의  

source-sink 위치를 포함하는 코드 조각을 LLM에게 제공하고, 

해당 경보가 실제 발생 가능한지 여부를 판단하도록 요청한다. 

 

(2) 추가 정보 요청: LLM은 판단을 보류하고, 해당 결론을 내

리는 데 필요한 정보(예: 특정 함수 정의, 변수 선언 등)를 명

시적으로 요구할 수 있다. 

 

(3) 추가 문맥 제공: 사용자는 LLM이 요구한 추가 코드 조각

을 제공하여 문맥을 확장한다. 이 과정은 LLM의 판단이 가능

하다고 판단될 때까지 반복될 수 있다. 

 

(4) 최종 판단 : LLM이 충분한 문맥 정보를 확보했다고 판단

하는 경우, 경보의 진위 여부에 대한 True/False 분류 결과를 

반환한다. 

 

6. 실험 

본 장에서는 제안 방식에 대하여 아래 세 가지 연구 질문을 

설정하고, 실험을 통해 이를 평가한다. 

 

RQ1. 제안 방식은 허위경보와 진짜경보를 얼마나 잘 분류할 

수 있는가? 

RQ2. 제안 방식은 진짜경보를 놓치지 않고 안전하게 보존할 

수 있는가? 

RQ3. 최종적으로 검토해야 하는 경보의 수를 얼마나 줄일 수 

있는가? 

 

실험은 Intel Xeon Silver 4210R 2.4GHz CPU, 128GB RAM, 

4 NVidia RTX A5000 GPUs 사양의 workstation에서 진행했다. 
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표 1 오염분석 경보 벤치마크 

 
표 2 실험 결과 

 

4.1. 벤치마크 

C/C++ 코드로 작성된 실제 프로그램 22개를 대상으로 

CodeQL 기반 정적 오염분석을 수행하여 얻은 결과를 대상으

로 한다.(표1 참고) 이 중에는 약 100만 라인 규모의 대규모 

산업용 코드베이스 FastDDS가 포함된다. 벤치마크는 Buffer 

overflow(CWE-120)와 OS command injection(CWE-78) 그리

고 메모리 누수 관련 사례를 포함한다. 총 144개의 오염분석 

경보가 수집되었고, 이는 문제를 일으킬 수 있는 진짜경보 13

개와 허위경보 131개 로 구성된다.  

 

4.1. 실험 세팅 

본 실험에서는 제안 방식과 Baseline은 모두 사람이 개입하

지 않는 자동화된 파이프라인으로 구성되었으며, OpenAI gpt-

5-mini API를 사용하여 벤치마크 세트에 대하여 5회 반복 평

가를 수행했다. Baseline의 경우 종료 보장을 위해 정보 요청 

가능 횟수는 10번 이하로 제한하여 진행했다. 각 평가에서 아

래 세 가지 핵심 지표에 대하여 측정했다. 

 

• Accuracy: 전체 경보를 올바르게 분류한 비율 

• Recall: 진짜경보를 놓치지 않고 식별한 비율 

• Precision: 진짜라고 분류한 결과 중 실제 진짜경보의 비율 

 

Accuracy는 전체 경보 중 올바르게 분류된 비율을 나타내며, 

허위경보 제거와 진짜경보 보존이라는 두 측면을 모두 고려한 

전반적인 분류 성능을 의미한다. Recall은 허위경보 제거 과정

에서 진짜경보가 함께 제거되는 False negative 상황을 방지할 

수 있는지를 나타내므로, Recall이 높을수록 더 안전한(safe) 

분류가 이루어졌음을 의미한다. Precision은 허위경보 제거 이

후 남겨진 경보 집합 내부의 품질을 나타내며, Precision이 높

을수록 실무자가 검토해야 하는 경보 집합이 더 신뢰할 수 있

음(trustworthy)을 의미한다. 

 

4.1. 실험 결과 

종합적인 결과 비교는 표 2에 정리되어 있으며, 본 절에서는 

RQ1-RQ3에 따른 분석 결과를 제시한다. 

 

RQ1. 제안 방식은 허위경보와 진짜경보를 얼마나 잘 분류할 

수 있는가? Accuracy 기준 분석 결과, 제안 방식은 Baseline 

대비 더 높은 분류 성능을 보였다. Baseline의 평균 정확도는 

72.57%이며 분산이 19.45로 높은 변동성을 나타냈다. 반면, 

제안 방식은 평균 정확도 82.36%와 분산 6.90을 기록하여 성 

능과 안정성 모두 향상된 결과를 확인하였다. 이는 본 연구

의 제안 방식이 허위경보와 진짜경보를 보다 정확하고 일관되

게 구분할 수 있음을 보여준다. 

 

RQ2. 제안 방식은 진짜경보를 놓치지 않고 안전하게 보존할 

수 있는가? Recall은 진짜경보가 허위경보로 분류되어 제거되

는 False negative 상황을 방지할 수 있는지를 평가하는 지표

이다. 실험 결과, Baseline의 평균 Recall은 79.04%였으며 분

산은 88.91로 불안정한 성향을 보였다. 반면 제안 방식은 평

균 Recall 87.69%와 분산 17.75를 기록하여 진짜경보를 보존

하는 측면에서 보다 안전한(Safe) 성능을 보여주었다. 즉, 본 

연구의 제안 방식은 허위경보를 제거하는 과정에서 실제 취약

점을 함께 제거하는 위험을 감소시키는 효과를 가진다. 

 

RQ3. 최종적으로 개발자가 검토해야 하는 경보의 수를 얼마

나 줄일 수 있는가? Precision은 허위경보 제거 이후 남겨진 

경보 집합의 품질을 측정하는 지표이며, Precision이 높을수록 

최종 검토 대상 경보 집합이 더 신뢰할 수 있음을 나타낸다. 

Baseline의 평균 Precision은 20.95%였으며 분산은 20.93으

로 낮은 품질과 높은 변동성을 나타냈다. 반면, 제안 방식은 

평균 Precision 33.95%와 분산 15.46을 기록하여 허위경보 제

거로 인한 검토 효율 향상 측면에서 더 실용적인 결과를 보여

주었다. 이는 본 연구의 제안 방식이 개발자의 검토 부담을 

줄이는 데 기여함을 의미한다. 

 

7. 논의 

7.1. Baseline에서만 관찰된 문제들 

실험 중 Baseline 방식에서 반복적으로 관찰된 문제점들이 

존재했으며, 제안 방식에서는 동일한 문제가 나타나지 않았다. 

주요 관찰 내용은 다음과 같다. 

 

(1) 환각에 의한 실행 경로 오판: Baseline은 전체 코드 조각

을 기반으로 실행 가능성을 추론해야 하는데, 이때 제어 흐름
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을 정확히 모델링하지 못해 실제로는 도달 불가능한 경로를 

가능한 것으로 판단하는 사례가 발생하였다. 반면 제안 방식

은 SAT 기반 경로 계산을 통해 실제 실행 가능한 경로만을 

고려하므로 이러한 오판 가능성이 구조적으로 감소한다. 

 

(2) 존재하지 않는 함수 또는 변수의 정의를 요청하는 경우: 

Baseline은 필요한 맥락을 스스로 수집해야 하므로, 실제로 

입력 경로에 포함되지 않는 함수나 정의를 요청하는 경우가 

관찰되었다. 제안 방식은 Super Graph를 기반으로 경로 상 호

출되는 모든 함수 정의를 포함하여 입력을 구성하므로, 불필

요한 정보 요청이 발생하지 않았다. 

 

(3) 정보 요청 누적으로 인한 컨텍스트 윈도우 초과: Baseline

은 함수 정의, 변수 선언 등 추가 정보 요청이 누적되면서 토

큰 사용량이 증가하였다. 호출 깊이가 깊거나 코드가 길어질

수록 입력이 컨텍스트 윈도우를 초과하는 사례가 관찰되었으

며, 이 경우 답변이 중단되어 결론에 도달하지 못하였다. 반면 

제안 방식은 단일 경로 단위로 판단이 이루어지며, 최단 실행 

경로 기반의 코드 슬라이싱을 통해 입력 코드양이 비교적 작

고 일정하게 유지되는 경향을 보였다. 

 

7.2 추론 범위 제한의 효과 

두 방식의 가장 큰 차이점은 LLM이 감당해야 할 추론 범위

이다. Baseline은 다양한 실행 경로 가능성과 상태 변화를 스

스로 탐색해야 하며, 필요시 추가 정보를 요청하는 방식으로 

판단을 진행한다. 즉, 제어 흐름 분석과 의미적 판단까지 포함

하는 전역적 추론이 요구된다. 

제안 방식에서는 LLM이 수행해야 할 역할이 명확히 제한된

다. symbolic 기법이 실행 경로 계산을 담당하며, LLM은 주어

진 경로가 실제 실행 의미에서 유효한지 여부를 판단하는 국

소적 추론만 수행한다. 이러한 역할 분리는 LLM의 추론 부담

을 줄이고, 판단의 변동성과 오류 발생 가능성을 낮추는 방향

으로 작용하였다. 

 

본 실험의 결과는 제안 방식의 개선 효과가 LLM 자체의 성

능 향상에서 비롯된 것이 아니라, 구조적 제약과 입력 전략을 

통해 LLM의 추론 범위를 줄인 결과로 해석할 수 있다. 특히 

대규모 코드베이스를 대상으로 하는 정적분석 시나리오에서, 

LLM이 전역적 추론을 수행하도록 요구하는 방식은 비효율적

일 뿐만 아니라 컨텍스트 윈도우 한계에 취약할 수 있다. 반

면 제안 방식은 입력 크기를 제어하고 실행 의미 중심의 판단

을 유도한다는 점에서 실무적 적용 가능성이 있다. 

그러나 본 연구는 다음과 같은 한계를 지닌다. 

 

데이터의 독립성 미검증: 본 연구에서 사용된 벤치마크는 오

픈소스 소프트웨어로 구성된다. 그렇기 때문에 사전 학습된 

LLM이 동일하거나 유사한 코드 패턴을 이미 학습했을 가능성

을 완전히 배제하기 어렵다. 이는 LLM-based 접근 방식이 특

정 코드베이스에서 과대평가될 가능성을 시사한다. 더욱 엄밀

한 평가를 위해, 향후 학습 및 평가 데이터의 독립성 검증이 

필요하다. 소스코드가 공개되지 않은 코드베이스를 활용하는 

방식이 대안이 될 수 있다. 

 

모델 종속성: 본 연구에서는 gpt-5-mini 모델 기반으로 실험

이 진행되었다. 제안 방식의 성능이 특정 모델에 의존하는지 

여부를 평가하기 위해, 향후 다양한 모델에 대한 실험 및 추

가 검증이 요구된다. 

 

LLM의 판단 근거 검증의 부재: 제안 방식은 LLM이 반환한 판

단 근거에 대한 논리적 타당성을 기계적으로 검증하지 않으며, 

이는 결과의 정확성이 LLM의 판단 품질에 영향을 받음을 의

미한다. 향후 타당성 검증 모듈과의 결합이 가능하다. 

 

8. 관련연구 

정적분석의 허위경보 줄이기 위한 연구는 다양한 방향 진행

되어 왔다. 

  

SHOVEL[4]은 콜그래프 기반의 실행 경로를 MAX-SAT 기반 

제약식으로 모델링하고, 경로 제약을 반복적으로 누적하며 경

로를 정제하는 방식으로 허위경보를 효과적으로 제거하는 접

근을 제안하였다. 그러나 경로가 의미적으로 타당한가의 여부

(예: sanitizer 존재 여부)는 사람이 직접 판단해야 하므로, 제

약식 계산과 의미적 판단이 분리되어 있다. 본 연구는 

SHOVEL의 MAX-SAT 기반 경로 정제 방식의 아이디어를 참

고하여, 의미적 타당성 판단을 LLM으로 자동화하고 분석 단위

를 콜그래프에서 Super Graph 기반 제어흐름으로 확장한다는 

점에서 차별성을 가진다. 

 

ZeroFalse[5]와 BugLens[6] LLM을 정적분석 경보의 진위여

부 판단자로 활용하는 접근이다.  

 

ZeroFalse는 Java 프로그램에서 발생하는 오염분석 허위경보 

분류를 목적으로 한다. 

해당 dataflow trace 정보를 이용해 인접한 두 dataflow step

이 동일 함수 내에 있으면 그 사이 구간을 전부 포함하는 방

식으로 문맥을 근사적으로 복원한다. 그렇게 만들어진 경보 

관련 코드 조각들을 LLM의 입력으로 삼아 해당 경보의 진위 

여부를 판별한다. 이때 LLM은 경보 단위에 포함되는 모든 경

로를 한 번에 추론하는 방식이다. 

ZeroFalse는 flow-sensitive dataflow에 기반한 오염 분석을 

대상으로 하며, 해당 기법을 적용하려면 분석 결과로 source–

sink에 대한 dataflow trace 정보를 제공할 수 있어야 한다. 

 

BugLens는 Linux Kernel의 메모리 안전 관련 보안 취약점을 

대상으로 하는 분석의 경보 중 실제 crash가 발생할 수 있는 

메모리 취약점의 실현 가능성(feasibility)을 판단하여 허위 경

보를 제거한다. 

해당 연구에서 LLM은 두가지 핵심 기능을 SecIA(Security 

Impact Assessor)와 ConA(Constraint Assessor)라는 역할로 

분할하여 수행한다. 먼저 SecIA는 해당 경보의 보안적 영향
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(security impact)의 존재 가능성을 visibility 관점에서 판단하

여, 보안적으로 의미 있는 경보만을 후속 단계의 분류 대상으

로 선별한다. 이후 ConA에서는 선별된 경보에 대한 source–

sink 경로의 도달 가능성을 평가한 뒤, 경로 제약을 수집 및 

해석하여 해당 경로가 실제로 악용 가능한지(exploit feasibility)

를 단계적으로 추론한다. 다만 해당 연구의 경로 제약은 형식

적 제약(formal constraints)으로 인코딩 되거나 Solver를 사용

해 검증되는 것이 아닌, 제약의 수집 및 해석이 LLM에 의해 

수행된다는 점이 특징이다. 

BugLens는 source-sink 외 trace 수준의 세부 실행 정보는 

요구하지 않지만, 해당 방법은 단순 버그가 아닌 Security im-

pact가 존재하는 취약점에 대해서만 한정적으로 적용 가능하

다. 

 

BugLens나 ZeroFalse같은 입력 프롬프트에 의존하는 LLM-

based 접근에서는 컨텍스트 윈도우 초과 및 실행 경로 오판 

등과 같은 문제에 대하여 근본적으로 취약할 수 있다. 

 

LLM4PFA[7]는 LLM과 SMT 기반의 symbolic 기법을 결합한 

Neuro-symbolic 접근을 통해 C/C++을 대상으로 한 메모리 

안전 관련 분석의 허위경보 분류를 목적으로 한다. 

해당 연구는 source–sink 구간의 call trace상 각 함수에서 

sink 도달에 영향을 주는 제약 조건을 수집 및 평가하는 과정

을 반복하여, 해당 경보의 실현 가능성을 평가한다. 

이 과정에서 LLM의 역할은 실행에 영향을 주는 변수 및 함

수 반환 값의 범위 등을 실행 제약 형태로 구성하는 것이다. 

LLM4PFA는 symbolic execution과 같이 모든 실행 경로 고려

하는 것이 아닌, call trace가 이어지기 위해 필요한 최소 제약 

만을 수집하고 검증하는 전략을 취한다. 구성된 제약은 SMT 

제약으로 인코딩 되어 Solver로 검증되며, 최종적으로 call 

trace 상 단 하나의 함수라도 UNSAT일 경우 허위경보가 된다. 

LLM4PFA는 SAT/SMT 기반 제약을 반복적으로 누적하고 이

를LLM과 결합한다는 점에서 우리 연구와 유사한 점이 존재 

하지만, 대상이 메모리 안전 분석으로 한정된다. 또한 해당 기

법을 적용하기 위해서는 분석 결과로 source–sink에 대한 call 

trace 정보를 제공할 수 있어야 한다. 

 

위에서 언급한 연구들은 요구되는 정보의 형식, 대상 언어, 

분석 유형, 적용 범위와 같은 측면에서 각자 다른 전제 조건

과 목표를 가진다.  

 

또한 본 연구에서는 보안 취약점 중심의 엄격한 오염분석으

로 정의하기보다는, source–sink 간 정보 흐름이 구조적으로 

표현될 수 있는 넓은 의미의 taint-style 분석을 대상으로 한

다. 즉, dataflow 기반 오염 분석(ZeroFalse), security impact

가 존재하는 메모리 안전 취약점(BugLens), C/C++ 메모리 안

전 value-flow 분석(LLM4PFA)에서 다루는 범주를 모두 포함

하는 보다 일반화된 형태의 정적 분석을 전제로 하며, 본 논

문의 벤치마크 역시 이러한 포괄적 정의에 따라 구성된다. 

 

9. 결론 

본 연구는 정적 오염분석에서 발생하는 허위경보 판단 문제

를 실행 경로 단위로 분해하여, LLM이 사전에 계산된 단일 실

행 경로만을 고려하도록 한다. 이를 통해 LLM의 추론 범위를 

구조적으로 축소하고, 각 경로에 대한 판단을 제약으로 누적

하는 반복 구조를 통해 경로를 점진적으로 정제하는 Neuro-

symbolic 접근을 제안한다. 또한 실험을 통해 단순 질의 기반

의 LLM-only 접근 대비 분류 정확도, 진짜경보 보존, 최종 경

보 집합 품질 측면에서 일관된 개선을 입증했다. 
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요   약 

소프트웨어가 수정됨에 따라 단위 코드의 동작이 변경되면, 기존 단위 테스트가 여전히 의도된 동작을 

검증하고 있는지 판단하기 어렵다. 단위 테스트의 적합성 여부를 확인하기 위해 개발자가 코드를 직접 분석해야 

하므로 많은 시간과 노력이 필요하다. 본 논문에서는 대규모 언어 모델(LLM)을 활용하여 단위 테스트의 적합성 

여부를 자동으로 식별하는 기법을 제안한다. 제안 기법은 수정 전후의 소스 코드와 테스트 코드를 입력으로 

받아, 선행 연구에서 정의한 변경 유형 분류 체계와 판단 기준을 프롬프트에 구조화하여 LLM이 테스트의 검증 

대상 유지 여부를 판단하고 구체적인 판단 근거를 제공하도록 설계되었다. GoogleTest 샘플을 대상으로 한 사례 

연구 결과, LLM 은 함수 대체나 재귀 변환과 같이 명확한 변경 유형에서는 테스트 적합성을 효과적으로 

식별하였으나, 복잡한 경우에는 일관된 판단에 어려움이 있었다. 본 연구는 LLM을 활용한 단위 테스트 적합성 

자동 식별의 가능성과 한계를 함께 확인하고, 이를 개선하기 위한 향후 연구 방향을 제시한다. 

1. 서 론 

단위 테스트는 소프트웨어를 구성하는 개별 기능이 

명세에 따라 올바르게 동작하는지를 검증하는 핵심 

수단이다. 그러나 소프트웨어가 지속적으로 수정되는 

상황에서 단위 코드와 테스트 코드 간의 공진화(co-

evolution)가 적절히 이루어지지 않으면, 테스트가 수정된 

코드의 동작을 더 이상 검증하지 못하는 상황이 발생할 수 

있다[1, 2]. 

선행 연구에서는 테스트 실행 시 발생하는 함수 호출과 

객체 간 상호작용을 동적으로 분석하여 시퀀스 

다이어그램으로 시각화하고, 테스트 변화 유형을 

체계적으로 분류하였다. 이를 통해 개발자는 코드 수정 

전후의 실행 흐름 차이를 시각적으로 파악하고, 테스트가 

여전히 의도된 동작을 검증하는지 판단할 수 있는 기준을 

확보하였다. 하지만, 시퀀스 다이어그램의 변화가 테스트 

검증 대상의 실질적 변경인지, 단순한 리팩토링인지를 

판단하는 과정은 여전히 개발자의 수작업에 의존한다는 

한계가 있다[3, 4]. 

본 논문에서는 대규모 언어 모델(Large Language Model, 

LLM)을 활용하여 단위 테스트의 적합성 여부를 자동으로 

식별하는 기법을 제안한다. 제안 기법은 수정 전후의 소스 

코드와 테스트 코드를 입력으로 받아, 선행 연구의 16개 

변경 유형 분류 체계와 판단 기준을 프롬프트에 구조화하여 

LLM이 테스트의 검증 대상 유지 여부를 판단하도록 한다. 

동적 실행이나 계측 없이 정적 코드 분석만으로 작동하며, 

판단 결과와 함께 구체적인 근거를 제공하여 개발자의 

의사결정을 지원한다[4]. 

본 논문의 구성은 다음과 같다. 2장에서는 테스트 적합성 

식별 기준과 LLM 기반 자동 분류 기법을 제안하며, 

3 장에서는 GoogleTest 샘플을 대상으로 한 사례 연구를 

통해 제안 기법을 평가한다. 4장에서는 연구의 한계와 향후 

연구 방향을 논의하고, 5장에서 결론을 맺는다. 
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2. LLM을 활용한 단위 테스트 적합성 자동 식별 

 단위 테스트의 적합성은 테스트가 의도한 검증 대상과 

실제 검증하는 대상의 일치 여부로 판단된다. 개발자가 

테스트를 작성할 때는 특정 함수 또는 객체의 특정 동작을 

검증하려는 명확한 의도가 존재한다. 선행 연구는 코드 

수정 후에도 통과하지만 더 이상 의도된 동작을 검증하지 

못하는 테스트를 NLT(No-Longer-Testable)로 정의하였다[3]. 

한편, 최근에는 대규모 언어 모델(LLM)을 활용하여 테스트 

생성, 테스트 오라클 지원, 테스트 유지보수 등 다양한 

소프트웨어 테스트 작업을 자동화하려는 연구가 활발히 

진행되고 있다[5, 6]. 본 연구에서는 단위 테스트의 적합성 

여부를 LLM 을 활용하여 자동으로 식별하기 위한 판단 

기준을 다음과 같이 제시한다. 

테스트 적합성 판단에는 세 가지 요소가 고려되어야 한다.  

① 테스트가 실제로 호출하는 함수나 메서드가 수정 

전후에 동일한지 확인해야 한다. 함수 이름이 같더라도 

오버로딩, 오버라이딩, 조건문 변경 등으로 다른 구현이 

실행될 수 있다.  

② 호출하는 함수가 동일하더라도 그 함수의 입출력 

관계가 변경되었는지 확인해야 한다. 내부 구현 방식만 

바뀌고 결과가 동일하다면 테스트는 여전히 

유효하지만, 같은 입력에 다른 출력을 생성한다면 

테스트는 부적합하다.  

③ 코드 변경이 명세 갱신에 따른 것인지 리팩토링에 따른 

것인지 구분해야 한다. 함수 시그니처 변경이나 메서드 

제거는 명세 변경을 시사하며, 변수명 변경이나 내부 

로직 재구성은 리팩토링을 시사한다. 

 

 
그림 1. 단위 테스트 적합성 자동 식별 과정 

 

<그림 1>은 제안 기법의 전체 과정을 보여준다. 제안 

기법은 수정 전 소스 코드, 수정 후 소스 코드, 테스트 

코드를 입력으로 받는다. 프롬프트 생성기는 이들 코드와 

선행 연구의 16 개 변경 유형 카테고리를 결합하여 

구조화된 프롬프트를 생성한다. LLM 은 테스트 적합성 

여부, 해당 카테고리, 판단 근거를 출력한다. 

프롬프트는 다음 네 부분으로 구성된다. 시스템 

역할에서는 LLM을 테스트 적합성 분석 전문가로 설정하고 

테스트 의도와 실제 검증 대상 비교에 집중하도록 지시한다. 

판단 기준에는 2절의 세 가지 요소를 명시하여 LLM이 

함수 동일성, 입출력 관계, 명세 변경 여부를 판단하도록 

유도한다. 변경 유형은 <표 1>과 같이 부적합 유형 8개와 

적합 유형 8 개로 제공한다. 각 유형에 특성과 예시를 

포함하여 LLM이 상황을 카테고리에 매칭하도록 한다. 입력 

코드는 수정 전후 소스 코드와 테스트 코드를 명확히 

구분하여 제시한다. 

LLM의 출력은 분류 결과(적합/부적합), 변경 유형, 판단 

근거로 구조화된다. 프롬프트는 증거 기반 추론을 

명시적으로 요구하여, LLM 이 어떤 함수가 어떻게 

변경되었고 변경 후에도 검증이 유지되는지를 구체적으로 

서술하도록 한다. 이를 통해 개발자는 판단 근거를 

검토하고 테스트 수정 방향을 결정할 수 있다. 

 

표 1. 단위 테스트 적합성 변경 유형 카테고리 

Type Category Description 

NLT 

Overloaded Call 테스트가 다른 오버로드된 메서드를 호출 

Overridden Call 기존 호출에서 오버라이드된 메서드로 변경 

Binding Change 가상 바인딩으로 인해 호출 대상 변경 

Hierarchy Shift 상속 계층 구조의 변경 

Condition Change 조건 로직으로 인해 호출 대상 변경 

Output Change 동일 입력에 대해 다른 출력  

Type Mismatch 입력 데이터 타입 변경 

Call Replacement 다른 동작을 가진 메서드 호출 대체 

Non-

NLT 

Variable Renaming 동일 동작의 변수명 변경 

Method Renaming 동일 동작의 메서드명 변경 

Helper Replacement 동등한 헬퍼 메서드로 대체 

Instance Switch 다른 인스턴스에 의한 동일 동작 실행 

Delegated Call 다른 객체로 호출 위임 

Recursion Replacement 반복문을 재귀 호출로 대체 

Order Change 호출 순서 변경 

Mediator Adjustment 중간 객체 변경으로 동작 영향 없음 
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3. 사례연구 

본 사례 연구는 변경 유형별 영향을 LLM이 식별하는지 

확인하기 위해 GoogleTest에서 제공하는 10개 샘플 중 변경 

유형을 명확히 적용할 수 있는 8개 샘플만을 선정하였다[7].  

나머지 2 개 샘플은 테스트 프레임워크 동작을 다루는 

예제로, 본 논문에서 정의한 코드 변경 유형을 적용하기에 

적합하지 않아 사례 연구 대상에서 제외하였다. 각 샘플에 

대해 선행 연구에서 정의한 16개 변경 유형 카테고리를 

모두 적용하여 총 128개의 테스트 케이스를 생성하였다.  

LLM으로는 GPT-4 mini를 사용하였으며, 2장에서 제시한 

프롬프트 구조를 적용하였다. 각 테스트 케이스에 대해 

LLM 이 출력한 식별 결과(적합/부적합)와 카테고리를 

정답과 비교하여 정확도를 측정하였다. 카테고리는 코드 

수정의 의도와 테스트의 원래 검증 대상을 기준으로 선행 

연구에서 사전에 정의되었다[3]. <그림 2>는 시스템 

프롬프트의 일부분이고, <그림 3>은 프롬프트에 사용되는 

카테고리 형식, <그림 4>는 LLM의 응답 예시이다. 

 
그림 2. 테스트 적합성 식별을 위한 시스템 프롬프트 

 
그림 3. 프롬프트에 사용되는 카테고리 형식 

 
그림 4. LLM 응답 결과 

<표 2>는 128 개 테스트 케이스에 대한 LLM 의 분류 

결과를 정답과 비교한 것이다. 총 128개 케이스 중 44개를 

완전히 정확하게 분류하여 34.4%의 전체 정확도를 

기록하였다. <그림 5>는 128개 케이스의 분류 결과 분포를 

시각화한 것으로, 일치 44 개(34%), 카테고리 불일치 

36개(28%), 불일치 39개(31%), 카테고리 오류 9개(7%)로 

나타났다. 

 

그림 5. 테스트 적합성 예측 결과 

표 2 LLM 예측 결과 

Type Category Accuracy 

NLT 

Overloaded Call 50% 

Overridden Call 50% 

Binding Change 25% 

Hierarchy Shift 37.5% 

Condition Change 0% 

Output Change 50% 

Type Mismatch 37.5% 

Call Replacement 50% 

Non-NLT 

Variable Renaming 12.5% 

Method Renaming 12.5% 

Helper Replacement 25% 

Instance Switch 37.5% 

Delegated Call  50% 

Recursion Replacement 50% 

Order Change 25% 

Mediator Adjustment 37.5% 

LLM 의 응답 결과는 크게 4 가지로 분류되었다. 먼저  

카테고리만 오분류한 경우이다. 36개 케이스에서 LLM은 

NLT/Non-NLT 적합성은 정확히 판단했으나 세부 

카테고리를 잘못 분류하였다. 이 중 17 개는 NLT 유형 

내에서 카테고리만 혼동한 경우이며, 19 개는 Non-NLT 

유형 내에서 카테고리만 혼동한 경우이다.  LLM은 함수 

호출 대상이 변경되는 여러 NLT 카테고리들 (Overloaded Call, 

Type Mismatch, Hierarchy Shift 등) 간의 미묘한 차이를 

구분하는 데 어려움을 보였으며, 구현 변경 방식이 유사한 

Non-NLT 카테고리들(Instance Switch, Mediator Adjustment, 

Delegated Call 등) 간에서도 혼동이 발생하였다. 또한 제시된 

카테고리내에서 분류하지 못했지만 LLM 자체적으로 
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Specification Alignment 등 카테고리를 생성하여 Non-

NLT로 성공적으로 식별하였다. 두번째로 적합성 자체를 

오판한 경우이다. 39개 케이스에서 LLM은 NLT를 Non-

NLT로 잘못 판단하였다. 주목할 점은 모든 적합성 오판이 

NLT→Non-NLT 방향으로만 발생했으며, Non-

NLT→NLT로 오판한 경우는 보이지 않았다. 이는 LLM이 

코드 변경의 심각성을 과소평가하는 경향이 있음을 보인다. 

입출력 관계의 실질적 변화, 가상 함수 바인딩 변경, 

오버로딩으로 인한 다른 함수 호출 등 실제로는 테스트의 

검증 대상이 바뀐 상황을 단순한 구현 변경으로 잘못 

인식하였다. 세번째로 판단 자체를 하지 못한 경우이다. 

9 개 케이스에서 LLM이 제시된 16 개 카테고리 내에서 

분류하지 못하고 'Specification Alignment', 'No Significant 

Change', 'Behavioral Equivalence' 등의 자체 카테고리를 

생성하였다. 주로 LLM이 조건문 변경에 따른 실행 경로의 

차이를 인식하지 못한 경우로, 코드 수준 분석의 한계를 

보여준다. 마지막으로 정확히 분류된 44개 케이스는 모두 

명확한 패턴적 특징을 공유하였다. 반복문과 재귀 호출 

간의 구조적 전환, 변수명이나 메서드명만 변경된 경우, 

동등한 헬퍼 함수로의 대체, 명시적인 위임 패턴 등 코드 

수준에서 변경의 의미를 직관적으로 파악할 수 있는 경우에 

LLM의 정확도가 높았다. 

해당 사례 연구는 몇 가지 한계를 갖는다. 첫째, 

GoogleTest 샘플만을 대상으로 하여 실험 규모가 

제한적이며, 실제 산업 프로젝트의 복잡한 테스트 케이스에 

대한 검증이 필요하다. 둘째 34.4%의 정확도는 실용적 

활용에 제약이 있다. 특히 적합성을 오판하는 30.5%의 

경우(39 개 케이스)는 개발자에게 잘못된 신뢰를 주거나 

불필요한 작업을 유발할 수 있어 위험하다. 셋째, 현재는 

정적 코드만을 입력으로 사용하였으나, 선행 연구의 실행 

로그나 시퀀스 다이어그램 정보를 추가로 활용하면 

정확도를 개선할 수 있을 것이다. 넷째, 카테고리 간 혼동 

유형을 분석한 결과 유사한 의미의 카테고리에서 빈번한 

오류가 발생하였으므로, 프롬프트 최적화를 통해 이러한 

카테고리 간 판단 기준을 더욱 구체화할 필요가 있다. 

4. 결론 

본 논문은 LLM 을 활용하여 단위 테스트의 적합성을 

자동으로 식별하기 위한 기법을 제안하였다. 선행 연구의 

16 개 변경 유형 카테고리와 판단 기준을 프롬프트에 

구조화하여, 테스트 적합성을 판단하도록 설계하였다. 

GoogleTest 샘플을 활용한 사례 연구에서 LLM은 명확한 

변경 유형에서는 효과적으로 작동하였으나, 유사 카테고리 

간 구분과 복잡한 경우에는 한계가 있음을 확인하였다. 

향후 연구는 다음 방향으로 진행할 계획이다. 첫째, 

프롬프트 최적화를 통해 유사 카테고리의 판단 기준을 더욱 

구체화하고 명확하게 예시를 제공한다. 둘째, 단위 

테스트를 직접 실행하여 실행 로그와 프롬프트를 같이 

LLM의 입력으로 활용하여 실행 수준의 변화를 더 정확히 

파악하도록 한다. 셋째, 대규모 실제 프로젝트를 대상으로 

검증하여 실용성을 평가한다. . 
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요   약 
딥러닝 기반 결함 위치 추정(Deep Learning-Based Fault Localization, DLFL)은 소프트웨어 디버깅 자동화 분야에서 

혁신적인 성과를 거두고 있으나, 학습 데이터셋 구축에 막대한 계산 비용과 공개된 데이터셋 구축 도구의 
부재로인해 실무 적용의 주요한 병목 현상으로 작용하고 있다. 본 논문은 DLFL의 실용성을 확보하기 위해 DLFL 
데이터셋 구축 과정을 최적화하는 체계적인 방법론을 제시하고, 이를 자동화하는 도구를 구현하여 실제 L사의 국방 
무기체계 소프트웨어에 적용하여 그 유효성을 입증한다. 
먼저, 데이터셋 구축 비용에 결정적인 영향을 미치는 두 가지 핵심 파라미터인 (1) ‘변이체 생성 대상 라인 선택 

비율’과 (2) ‘라인당 변이체 생성 개수’의 최적 임계값을 도출하기 위해 오픈소스 자바 벤치마크인 Defects4J를 
대상으로 탐색적 실험을 수행하였다. 실험 결과, 기존 방식 대비 계산 비용을 74.6% 단축하면서도 결함 추정 성능을 
유지할 수 있는 최적의 설정값을 확인하였다. 또한, 본 연구에서는 개발자의 디버깅 직관을 정량적으로 모델링한 (3) 
스택 트레이스(Stack Trace, ST) 관련성 특징을 최초로 설계하여 제안하였으며, 이를 학습 특징으로 추가함으로써 
결함 위치 추정 정확도를 기존 대비 6.8%~11.0% 향상시켰다. 
최종적으로, 도출된 최적 파라미터와 신규 ST 특징 추출 로직을 탑재한 자동화 도구를 L사의 6개 국방 무기체계 

소프트웨어(총 61 KLoC, 300개 인공 결함) 시스템에 탑재하여 기술의 실전 배치 가능성을 검증하였다. 그 결과, 
Top-5 기준 85.0%의 높은 탐지 정확도를 달성함과 동시에 데이터셋 구축 비용을 약 79%(9,081→1,907 CPU-
hours) 절감하였다. 이를 통해 본 연구가 개발한 자동화 도구가 고신뢰 국방 소프트웨어 분야에서 실무자가 별도의 
전문 지식 없이도 고성능 DLFL 기술을 즉각 운용할 수 있는 실질적인 기술적 토대를 마련하였음을 입증하였다. 

1. 서론 
소프트웨어 결함 위치 추정(Fault Localization, FL)은 

프로그램 실패의 원인이 되는 특정 코드 요소(파일, 함수, 
라인 등)를 식별하여 개발자의 디버깅 노력을 최소화하는 
것을 목표로 한다. 전통적인 기법으로는 테스트 커버리지 
패턴을 분석하는 스펙트럼 기반 FL(SBFL)[1]과 변이 
프로그램을 활용하여 결함의 전파 과정을 분석하는 변이 기반 
FL(MBFL)[2,3]이 존재한다. 최근에는 이런 전통적인 
기법으로부터 추출된 데이터를 신경망에 학습시킨 딥러닝 
기반 결함 위치 추정(DLFL) 기술이 기존 기법들보다 높은 
정확도를 보이며 차세대 FL 기술로 주목받고 있다[4, 5, 6]. 

그러나 기존 MBFL 기반 DLFL 연구들은 주로 모델의 
구조적 고도화에만 집중할 뿐, 모델의 성능과 비용을 
좌우하는 데이터셋 구축 방법론에 대해서는 표준화된 
절차없이 연구자의 임의적인 방식에 의존하고 있다. 따라서, 
실무 환경에서는 MBFL 기반 DLFL을 적용하는데 다음과 같은 
어려움이 따른다. 1. 공개된 도구나 방법론이 없어 적용과정에 
많은 불확실성이 생긴다. 2. 데이터셋 구축 시 막대한 계산 
자원과 시간 비용이 예상된다. 일례로, 61 KLoC 규모의 
소프트웨어에 대한 DLFL 데이터셋을 구축에 임의적인 
방법으로 시행할 시 약 9,081 CPU-hours이 소요될 것으로 
예상되며, 이는 자원이 한정된 실무 환경에서 MBFL 기반 
DLFL 기술을 도입하는 데 큰 진입 장벽이 된다. 

본 연구는 이러한 한계를 극복하고 최종적으로 L사의 실제 

국방 무기체계 소프트웨어에 DLFL 기술을 실용적으로 
적용하는 것을 목표로 한다. 이를 위해 본 논문은 자동화 
도구 개발, 탐색적 실험, 그리고 실무 사례 연구로 이어지는 
연구 방법론을 채택한다. 

본 연구의 주요 기여는 다음과 같다: 
1. 데이터셋 구축 시간 비용의 74.6% 단축: 체계적인 

실험을 통해 변이체 생성 대상 라인 선택 비율(70%)과 
라인당 변이체 생성 개수(3개)의 최적값을 도출, 기존 
방식 대비 데이터셋 구축 시간 비용을 74.6% 절감하였다. 

2. 개발자의 디버깅 직관을 정량적으로 모델링한 ‘스택 
트레이스(Stack Trace, ST) 관련성 특징 설계를 통한 
정확도 향상: 본 연구에서 최초로 고안한 ST 관련성 
특징을 수치화 하여 기존 특징(SBFL, MBFL)과 결합하여 
활용하여, DLFL 모델의 결함 탐지 성능을 기존 대비 
6.8%~11.0% 향상시켰다. 기존 연구들이 실행 경로의 
통계적 유의성에만 의존했던 것과 달리, 본 특징은 
프로그램 비정상 종료 시 발생하는 런타임 문맥 정보를 
딥러닝 모델이 직접 학습할 수 있도록 설계된 독창적인 
기술적 기여이다. 

3. 국방 무기체계 SW 적용을 통한 실무적 실효성 검증: 
탐색적 연구에서 얻은 최적 가이드라인과 신규 특징을 
바탕으로 직접 개발한 데이터셋 자동 구축 도구를 L사의 
실제 개발 환경에 통합하였으며, 6개 국방 무기체계 
소프트웨어에 적용하여 Top-5 기준 85.0%의 높은 
정확도를 달성하고, 시간 비용을 79% 단축하여 제안 
방법론의 실무적 유용성을 입증하였다. 

 
 

이 논문은 산학연주관 핵심 SW(응용연구) 연구개발 과제(계약번호 

UC210018AD)와 정부의 재원으로 한국연구재단의 지원(NRF-

2021R1A5A1021944, NRF-RS-2024-00357348)의 지원을 받아 수행된 

연구임. 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

1 45



 

2. 배경 
2.1 데이터셋 구성 요소 

MBFL 기반 DLFL 모델의 학습 데이터셋은 소스 코드의 각 
라인을 하나의 레코드(Record)로 구성한다. 기존의 일반적인 
데이터셋은 각 라인에 대하여 총 8개의 특징값을 포함하며, 
이는 6개의 서로 다른 SBFL 기법과 2개의 MBFL 기법으로 
도출된 의심도 점수로 이루어진다. 
 
2.2 특징 추출 방법 

데이터셋을 구성하는 특징들은 프로그램의 동적 실행 
정보를 바탕으로 추출된다. SBFL 특징은 결함 프로그램에 
테스트 스위트를 실행하여 얻은 라인 커버리지(Line Coverage) 
정보를 활용하는 반면, MBFL 특징은 소스 코드에 인위적인 
수정을 가하는 변이 분석(Mutation Analysis) 과정을 거쳐 
추출된다. 구체적인 산출 방법은 다음과 같다. 
 
2.2.1 스펙트럼 기반 결함위치추정(SBFL) 특징 

SBFL 특징은 각 테스트 케이스의 실행 경로와 통과/실패 
여부를 결합하여 특정 코드 라인이 결함을 포함하고 있을 
가능성(의심도)을 계산한다. 따라서, 본 연구에서는 선행 
연구들에서 성능이 검증된 6종의 SBFL 기법(DStar, GP13, 
Naish1, Naish2, Ochiai, Tarantula)을 활용하여 기본 학습 
특징을 구축한다. 
 
2.2.2 변이 기반 결함위치추정(MBFL) 특징 

MBFL 특징은 코드 라인에 미세한 변경을 가한 
변이체(Mutant)를 생성하고, 이에 대한 테스트 동작 변화를 
분석하여 도출한다. 본 연구에서는 변이체 생성 도구인 
MUSIC++[7]를 활용하여 대상 라인에 대해 M개의 변이체를 
생성한다. MBFL은 변이 적용 전후의 실행 결과 변화를 통해 
결함 위치를 추정하며, 본 연구에서는 대표적인 MBFL 기법인 
MUSE[2]와 Metallaxis[3] 공식을 활용한다. MBFL은 
SBFL보다 높은 정확도를 제공하지만, 모든 라인에 대해 
수많은 변이체를 생성하고 테스트하므로 막대한 계산 비용이 
발생한다는 한계가 있다. 
 
3. 제안 방법론: 데이터셋 최적화 및 스택 
트레이스(ST) 관련성 특징 

본 연구는 MBFL 기반 DLFL의 실효성을 확보하기 위해 (1) 
데이터셋 구축의 시간 비용 단축과 (2) 결함 추정 정확도 
향상이라는 두 가지 핵심 목표를 설정한다. 이를 달성하기 
위해 변이 분석 과정을 최적화하는 파라미터 탐색 전략을 
수립하고 (3.1장), 개발자의 디버깅 문맥을 정량적으로 
모델링한 새로운 특징 추출 방법을 제안한다 (3.2장). 

특히, 본 연구에서는 제안된 방법론을 실제 소프트웨어 
개발 현장에 즉각적으로 적용할 수 있도록 약 6,000라인의 
파이썬 스크립트로 구성된 ‘범용적 MBFL 기반 DLFL 
데이터셋 구축 자동화 도구’를 직접 설계하고 개발하였다. 이 
도구는 복잡한 변이 분석 및 특징 추출 과정을 자동화하여 
구축 비용을 절감하는 동시에, 본 연구의 핵심 기술적 기여인 
ST 관련성 특징을 생성하는 중추적인 역할을 수행한다. 
 
3.1 데이터셋 구축의 시간 비용 단축 

DLFL 데이터셋 구축 과정에서 가장 많은 연산 자원이 
소요되는 단계는 MBFL 특징 추출을 위한 변이 분석 단계이다. 
본 연구는 변이 분석 비용에 결정적인 영향을 미치는 두 가지 
핵심 파라미터를 정의하고, 개발된 자동화 도구를 통해 
모델의 성능 저하를 최소화하면서도 비용을 극대화하여 
절감할 수 있는 최적값을 탐색한다. 특히 국방 소프트웨어와 
같은 대규모 시스템에 기술을 적용하기 전, 통제된 

환경(Defects4J)에서의 탐색적 연구를 통해 보편적인 
가이드라인을 도출하는 것이 본 전략의 핵심이다. 

첫 번째 파라미터는 ‘변이체 생성 대상 라인 선택 
비율’이다. 모든 코드 라인에 대해 변이 분석을 수행하는 것은 
막대한 비용을 발생시키므로, 연산이 가벼운 SBFL(Ochiai) 
의심도 점수를 기준으로 라인을 정렬한다. 이후 상위 N%의 
라인만을 변이체 생성 대상으로 선정함으로써 분석 범위를 
전략적으로 제한하고 테스트 실행 횟수를 감축한다. 

두 번째 파라미터는 ‘라인당 변이체 생성 개수’이다. 
선정된 각 대상 라인에 대해 생성되는 변이체의 수를 
조절하여 연산량을 제어한다. 기존 연구들이 임의의 개수를 
설정했던 것과 달리, 본 연구는 변이체 개수를 단계적으로 
축소하며 DLFL 모델이 유의미한 패턴을 학습하는 데 필요한 
최소한의 변이체 수를 도출하고자 한다. 
 
3.2 결함위치추정 정확도 향상 전략 

데이터셋의 효율성뿐만 아니라 추정의 정밀도를 높이기 
위해, 기존 DLFL 연구에서 사용되던 실행 경로 기반 
특징(SBFL, MBFL) 외에 본 연구에서 최초로 설계하여 
제안하는 ‘ST(Stack Trace) 관련성 특징’을 추가한다. 해당 
로직은 본 연구에서 개발한 자동화 도구의 핵심 모듈로 
구현되어 데이터셋 생성 시 자동으로 산출된다. 
 
3.2.1 스택 트레이스(ST) 관련성 특징 

본 연구는 딥러닝 모델의 학습 성능을 고도화하기 위해, 
실제 개발자의 디버깅 직관을 수치화한 ST 관련성 특징을 
세계 최초로 제안한다. 

실무 개발자들은 프로그램 비정상 종료 시 발생하는 스택 
트레이스 정보를 가장 먼저 활용하며, 특히 최상단 프레임이 
가리키는 코드 위치가 결함과 밀접할 것이라고 판단한다. 본 
연구는 이러한 인간의 디버깅 휴리스틱을 딥러닝 모델이 학습 
가능한 형태의 정량적 특징으로 설계하였다. 각 코드 라인의 
ST 관련성 특징값은 실패 테스트 실행 시 발생하는 스택 
트레이스 정보를 바탕으로 다음과 같이 계산된다. 

𝑆𝑇𝑅𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑠) = 

           𝑚𝑎𝑥𝑓∈𝑠𝑡𝑎𝑐𝑘𝑇𝑟𝑎𝑐𝑒(𝑃,𝑠)(
1

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑓) + 1
× 𝑒−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑠,𝑓)2) 

해당 공식의 주요 구성 요소는 다음과 같다. 
• stackTrace(P, s): 프로그램 P에서 발생한 스택 트레이스 

중, 라인 s와 동일한 함수 내에 존재하는 프레임들의 집합 
• position(f): 해당 프레임의 위치 (최상단 프레임은 0이며, 

아래로 갈수록 1씩 증가) 
• distance(s, f): 소스 코드 라인 s의 번호와 프레임 f가 

가리키는 실제 라인 번호 간의 거리 
해당 공식은 비정상 종료 지점(최상단 프레임)과의 

거리(position)가 가까울수록, 그리고 프레임이 지칭하는 코드 
위치와 물리적으로 인접할수록(distance) 높은 가중치를 
부여하도록 설계되었다. 본 연구에서 최초로 제안한 ST 
관련성 특징은 런타임 오류 문맥을 직접적으로 반영한다. 

표 1: RQ1 ‘변이체 생성 대상 라인 비율’ 실험 

결과 
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기존 연구들이 Stack Trace의 단순 텍스트 정보만을 
활용했다면, 본 연구에서는 각 라인과 비정상 종료(crash) 
간의 관련성을 함수 및 라인 번호를 기반으로 수치화하여 
학습 특징으로 활용한다. 결과적으로 실행 경로와 문맥 기반 
특징을 결합함으로써, 모델이 결함의 논리적 연관성을 더욱 
정교하게 학습할 수 있도록 설계한 것이 본 연구의 주요 
기여이다. 
 
4. 탐색적 실험 설정 

본 장에서는 제안하는 데이터셋 구축 최적화 방법론과 
새롭게 설계된 ST 관련성 특징의 유효성을 검증하기 위한 
탐색적 실험 설정을 기술한다. 본 실험의 목적은 가용 자원이 
한정되고 복잡도가 높은 국방 소프트웨어에 DLFL 기술을 
적용하기에 앞서, 통제된 벤치마크 환경에서 비용과 성능 
사이의 최적 임계값을 도출하고 신규 특징의 기여도를 
확인하는 데 있다. 본 실험은, MBFL 논문들에서 가장 많이 
연구가 된 Defects4J v1.2.0의 5개 프로젝트에서 추출된 
257개의 실제 결함 버전을 활용한다. 
 
4.1 연구 질문 (Research Questions) 

본 실험은 다음 세 가지 연구 질문에 답함으로써 
효율적이고 정밀한 DLFL 모델 구축 가이드를 수립한다. 
• RQ1 (변이 라인 선택 비율): SBFL(Ochiai) 의심도를 

기반으로 변이 분석 대상 라인을 상위 N% (10%~100%)로 
제한할 때, N값의 변화가 DLFL 모델의 정확도와 데이터셋 
구축 비용에 미치는 영향은 무엇인가? 

• RQ2 (라인당 변이체 개수): 각 라인당 생성하는 변이체의 
수 M (1~10개)을 조절할 때, M값의 변화가 모델의 
정확도와 구축 비용에 미치는 영향은 무엇인가? 

• RQ3 (스택 트레이스 관련성): 본 연구에서 최초로 
설계하여 제안한 스택 트레이스(ST) 관련성 특징을 학습 
데이터셋에 추가하는 것이 DLFL 모델의 결함 위치 추정 
정확도 향상에 어느 정도 기여하는가? 

 
4.2 실험 모델 및 수행 방법 

실험 모델은 최신 DLFL 연구인 CodeHealer[6]의 구조를 
계승한 Multi-Layered Perceptron(MLP)을 사용한다. 해당 
모델은 입력층의 노드 수를 특징(Feature)의 개수와 동일하게 
설정하고, 하나의 은닉층(Hidden Layer)을 포함하도록 
설계되었다. 

실험 수행을 위해, 앞서 언급한 데이터셋 자동 추출 
도구를 활용하여 각 결함 프로그램으로부터 SBFL, MBFL 및 
ST 관련성 특징을 자동으로 산출하고 통합 데이터셋을 
생성하였다. Java 프로그램에 변이 생성 도구로는 PITest를 
활용한다. 결과의 신뢰성을 확보하고 특정 데이터셋에 대한 
과적합(Overfitting)을 방지하기 위해 10-fold cross-
validation을 적용하였으며, 변이 분석 및 학습 과정의 
비결정적 요소를 고려하여 전체 과정을 총 10회 반복 수행한 
후 평균값을 최종 결과로 사용하였다. 

4.3 평가 지표 및 통계적 검증 
본 연구는 데이터셋 구축의 시간 효율성과 모델의 

결함위치추정 정확도를 평가한다. 
• 시간 효율성: 데이터셋 구축부터 모델 학습 완료까지 

소요되는 전체 시간(CPU-hours)을 측정하여 비용 절감 
효과를 수치화한다. 

• Top-N: 모델이 예측한 의심도 상위 N개 라인 이내에 실제 
결함 코드가 포함된 결함의 총 개수를 의미한다. 

• MFR (Mean First Rank): 개발자가 결함을 발견하기 위해 
조사해야 하는 첫 번째 실제 결함 코드의 평균 순위이다. 
수치가 작을수록 디버깅 효율이 높음을 의미한다. 
또한, 서로 다른 설정 간의 성능 차이가 통계적으로 

유의미한지 확인하기 위해 Mann-Whitney U Test를 수행한다. 
본 연구에서는 유의 수준 0.05를 기준으로 각 설정 간의 성능 
변화를 엄격히 검증하여, 성능 저하 없이 최대로 비용을 
절감할 수 있는 최적의 파라미터 조합을 도출한다.  
 
5. 탐색적 실험 결과 

본 장에서는 4장에서 설정한 세 가지 연구 질문에 따라, 
앞서 개발한 자동화 도구를 통해 수행된 탐색적 실험의 
결과를 분석한다. 모든 실험 결과는 베이스라인(라인 선택 
비율 100%, 라인당 변이체 개수 10개) 대비 성능 변화와 
통계적 유의성을 기준으로 평가하였다. 
 
5.1 RQ1: 변이체 생성 대상 라인 선택 비율 (Target Line 
Selection Ratio) 

실험 결과, SBFL 의심도 상위 70%의 라인만을 변이 분석 
대상으로 선정한 설정은 베이스라인과 비교하여 통계적으로 
유의미한 성능 저하를 보이지 않았다(p-value = 0.0750). 반면, 
표 1의 60% 이하 설정부터는 정확도가 급격히 하락하는 
양상이 관찰되었다. 이를 통해 정확도 손실 없이 데이터셋 
구축 시간 비용을 약 29.8% 절감할 수 있는 최적의 임계값이 
상위 70%임을 확인하였다. 
 
5.2 RQ2: 라인당 변이체 생성 개수 (Mutant Count Per Line) 

표 2은 RQ1에서 도출된 70% 라인 선택 설정을 고정한 후, 
변이체 개수(M)를 조절하며 측정한 결과이다. 데이터 분석 
결과, 라인당 3개의 변이체만으로도 베이스라인과 통계적으로 
대등한 수준의 성능을 유지할 수 있음을 입증하였다(p-value 
= 0.0792). 최종적으로 표 3의 ‘라인 선택 비율 70%’와 
‘라인당 변이체 3개’ 조합을 통해, 베이스라인 대비 전체 구축 
시간을 74.6% (198.2시간→50.4시간) 단축하는 최적의 
효율성을 확보하였으며, 이 가이드라인은 이후 국방 SW 
적용의 기술적 근거가 된다. 
 
5.3 RQ3: 스택 트레이스 관련성 특징의 효과 

본 연구에서 설계하여 최초로 제안한 ST 관련성 특징의 
성능 향상 기여도는 그림 1의 그래프를 통해 명확히 확인할 

표 2: RQ2 ‘라인당 변이체 생성 개수’ 실험 결과 그림 1: RQ3 ‘스택 트레이스 관련성 특징’ 실험 결과 
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수 있다. 기존 특징 조합(SBFL+MBFL)에 본 연구의 ST 
특징을 추가하여 학습시킨 결과(SBFL+MBFL+ST), 모든 
지표에서 성능이 향상되었다. 구체적으로 그림 1에 나타난 
바와 같이 Top-1/Top-3/Top-5 정확도는 각각 6.8%, 9.3%, 
11.0% 개선되었으며, MFR 지표 또한 14.4% (36.2→30.9) 
향상되었다. 이는 실행 경로 중심의 기존 특징들과 본 
연구에서 새롭게 제안한 에러 문맥 기반 ST 특징이 모델의 
결함 식별력을 극대화했음을 보여준다. 
 
6. 국방 무기체계 소프트웨어 적용 

본 장에서는 Java 기반 데이터셋인 Defects4J를 통한 
탐색적 실험으로 검증된 가이드라인과 ST 관련성 특징을 실제 
C/C++ 기반 국방 무기체계 소프트웨어에 적용한 결과를 
기술한다. Java와 C/C++ 간의 구문적 차이가 존재하나, 
프로그램의 실행 경로를 변형하여 결함을 식별하는 MBFL의 
핵심 기저 원리는 동일하다. 이러한 원리적 공통성으로 인해 
Java 환경에서 도출된 최적 가이드라인은 C/C++ 분석에서도 
그 유효성이 유지된다. 본 연구에서 개발한 자동화 도구는 
L사의 실제 DLFL 운용 시스템에 성공적으로 통합되어 실무적 
타당성과 실전 배치 가능성을 입증하였다. 
 
6.1 대상 국방 무기체계 소프트웨어 및 실험 설정 

본 사례 연구는 국내 유수의 방산 기업인 L사의 항공, 
해양, 유도무기 등 실제 무기체계 시스템에 탑재되어 운용 
중인 6종의 C/C++ 미들웨어 소프트웨어를 대상으로 
수행되었다. 대상 시스템의 전체 코드 규모는 약 61 KLoC에 
달하며, 이는 높은 신뢰성과 복잡한 로직을 요구하는 국방 
소프트웨어의 특성을 고스란히 반영하고 있다. 

국방 분야의 보안 규정상 과거 결함 데이터 및 실결함 
로그에 대한 직접적인 접근이 제한됨에 따라, 본 연구에서는 
소스 코드의 각 라인에 변이를 삽입하여 소프트웨어당 50개씩, 
총 300개의 인공결함 프로그램을 구축하여 평가를 진행하였다. 
표 3는 실험에 사용된 각 시스템의 상세 지표를 보여주며, 
보안 유지를 위해 시스템 명칭은 익명화하여 기술한다. 
 
6.2 사례 연구 결과 분석 

탐색적 실험에서 도출된 최적 파라미터(라인 선택 비율 
70%, 라인당 변이체 3개)와 본 연구의 독창적 기여인 ST 
관련성 특징을 국방 SW 데이터셋에 적용한 결과, 자원 
소모를 최소화하면서도 압도적인 결함 추정 성능을 
달성하였다. 

첫째, 결함 위치 추정 정확도 측면에서 Top-1 62.7%, 
Top-3 82.6%, 그리고 Top-5 기준 85.0%라는 매우 높은 
정확도를 기록하였다. 특히, 개발자가 버그를 찾기 위해 
조사해야 하는 코드의 평균 순위를 의미하는 MFR 지표는 
18로 나타났다. 이는 수만 라인의 거대한 코드 베이스 내에서 
실무자가 상위 18줄 내외만 조사하더라도 실제 결함 위치를 
특정할 수 있음을 입증하는 것이며, 실제 무기체계 개발 
현장의 디버깅 노력을 획기적으로 절감할 수 있는 수치이다. 

둘째, 데이터셋 구축의 비용 효율성 측면에서 괄목할 만한 

성과를 거두었다. 기존의 보수적인 방식(전체 라인 대상, 
다수의 변이체 생성)을 고수할 경우 막대한 계산 자원이 
요구되지만, 본 연구의 최적화된 가이드라인을 적용한 결과 
전체 데이터셋 구축 시간을 합계 약 1,739 CPU-hours 
수준으로 억제하였다. 이는 이론적 베이스라인 대비 약 
79%의 시간 비용을 단축한 결과이다. 이러한 극적인 비용 
절감은 자원이 제한된 실무 환경에서 DLFL 모델을 
주기적으로 갱신하고 실전 배치할 수 있는 강력한 실무적 
타당성을 부여한다. 
 
6.3 L사의 사내 DLFL 시스템 구축 

본 사례 연구를 통해 확인된 성과는 이론적으로 제안된 
방법론이 실제 방산 기업의 DLFL 시스템에 성공적으로 
탑재되어 실질적인 가치를 창출했다는 점이다. 본 연구에서 
약 6,000줄 규모로 개발된 도구는 자동으로 학습 데이터를 
생성하고 정밀한 추론 결과를 도출하여, 국방 SW 개발 
과정의 자동화를 앞당겼다. 

결과적으로, L사 시스템에 탑재된 본 MBFL 기반 DLFL 
데이터셋 자동 구축 도구는 기술적 진입 장벽을 낮추어 
실무자가 별도의 딥러닝 및 자동 디버깅 기술에 대한 전문 
지식 없이도 결함 위치 추정 기술을 현업에 적용할 수 있도록 
하였다. 이는 국방 소프트웨어의 품질 보증 및 유지보수 
단계에서 발생하는 디버깅 병목 현상을 해결할 수 있는 
실질적인 기술적 토대를 마련한 것으로 평가된다. 
 
7. 결론 

본 논문은 국방 소프트웨어 분야의 딥러닝 기반 결함 
위치 추정(DLFL) 도입을 위해, 변이 기반 DLFL 데이터셋 
구축 과정을 최적화하는 체계적인 연구 방법론을 제시하였다. 
실무적 기여 측면에서는 도출된 가이드라인과 ST 특징 추출 
로직을 탑재한 자동화 도구를 L사의 DLFL 시스템에 
성공적으로 통합하였다. 해당 도구는 데이터셋 구축부터 학습 
및 추론까지의 전 과정을 자동화하여 사내 직원이 즉시 운용 
가능한 실무 인프라를 제공한다. 탐색적 실험에서 도출한 
최적의 파라미터와 ST 관련성 특징을 6개 국방 무기체계 
C/C++ 소프트웨어에 적용한 결과, Top-5 기준 85.0%의 높은 
정확도와 약 79%의 구축 비용 단축을 달성하여 그 유효성을 
입증하였다.향후 연구로는 구축된 고품질 변이 데이터셋을 
대규모 언어 모델(LLM)[8,9,10]의 의미론적 특징과 결합하여, 
실행 분석과 언어적 이해가 통합된 차세대 결함 위치 추정 
프레임워크를 개발할 계획이다. 
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표 3: 국방 무기체계 소프트웨어 
(FT: Failing Tests, PT: Passing Tests, AB: Artificial Bug) 
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요 약
심볼릭실행은프로그램입력을심볼변수로모델링한뒤, 실행경로에서마주치는분기조건을제약식으로누적하는기법이다.
SMT solver는각제약식의만족가능성을판단하며, 만족가능한경우해당경로로진입하는구체입력을생성할수있다. 그러나분기와 루프가 많은 코드에서는 상태 수가 빠르게 증가한다. 상태가 늘어나면 제약식도 커지고, 실행 step 비용과 solver 호출비용이 함께 상승하여 처리량이 떨어진다. 예산이 고정된 환경에서는 커버리지가 정체된 구간에서 자원이 소모되어 탐색이조기에종료되기쉽다.본연구는예산제약환경에서도탐색이지속되도록 ExplosionGuard를설계한다. 시작직후단기프로파일링으로폭발,비용,진전지표를수집하고, 이를 정책 파라미터로변환해초기정책을합성한다. 이후 실행 중에는스냅샷기반컨트롤러가지표변화를반영해정책을갱신한다. 폭발 및 비용신호가강해지면제약을강화해상태증가를억제하고, 일정 기간 커버리지가증가하지않으면제약을완화하며보류상태를승격해탐색다양성을회복한다. 오픈소스파서 3종실험에서휴리스틱정책은활성상태피크를낮추면서처리량과커버리지진전을개선했다.
1. 서론
심볼릭실행은입력을심볼변수로두고프로그램을따라가며,분기조건을경로별제약식으로누적한다. SMT solver로제약식의 만족 가능성을 확인하면, 만족 가능한 경로에 해당하는입력을생성할수있다. 이방식은테스트입력생성과프로그램분석에서널리활용된다.문제는현실의바이너리가복잡하다는점이다. 분기와루프가누적되면실행경로수가조합적으로증가한다. angr에서는
SimulationManager.active의 활성 상태 수가 급증하면서이현상이쉽게드러난다. 상태가늘수록제약식규모도커지고, step수행시간과 solver비용이함께상승한다. 결과적으로처리량이감소하고,커버리지증가가느려진다. 예산이제한된환경에서는정체구간에서비용만소모한채탐색이종료되기쉽다.정책의 세기를 잡는 일도 어렵다. 제약이 약하면 상태 폭증으로 예산이 빠르게 고갈된다. 반대로 제약이 강하면 유망경로가일찍잘려커버리지가빠르게정체된다. 따라서폭발을억제하면서도, 정체가발생하면탐색다양성을회복하는제어가필요하다.본연구는이를세단계로구성한다. Phase I에서단기프로파일링으로지표를수집하고초기정책을합성한다. Phase II에서는정책적용기와컨트롤러가스냅샷을기반으로정책을갱신한다. 또한 정책 적용으로 제외된 상태를 deferred에보류하고, 정체시일부를승격해탐색을확장한다.
1.1 기여
본연구의기여는다음과같다.
• 예산제약탐색에서폭발, 비용, 진전을저비용프록시지표로관측하는텔레메트리를정의한다.

• 지표를 정책 파라미터로 사상하는 규칙과 초기 정책 합성절차를제시한다.
• 제약강화및완화를파라미터의수치갱신과적용시점으로정의하여동작을명확히한다.
• deferred 보류 및 승격을 활용해 정체를 완화하는 전략을설계한다.
2. 배경및문제정의
2.1 경로폭발과예산소진
경로폭발은보통활성상태수의급격한증가로나타난다. 상태가늘어나면상태별제약식도비대해지고, solver부담이커진다. 이변화는처리량저하로이어진다. 처리량이낮아지면같은예산에서수행가능한 step수가감소하고,커버리지증가도 둔화된다. 특히 예산이 고정된 환경에서는 정체 구간에서자원만소모하고탐색이종료될가능성이높다.본 연구의 목표는 명확하다. 정해진 예산에서 커버리지를최대화하되, 상태 폭증으로 탐색이 멈추지 않도록 제어하는것이다. 이를위해 ExplosionGuard는탐색공간의크기와상태복잡도를직접제어하는파라미터를정책으로둔다.
2.2 정책제어대상
본연구에서정책은탐색공간과상태복잡도를제어하는파라미터집합이다. ExplosionGuard는다음세축을제어한다.
• 분기확장량: 한 step에서생성되는후속상태수
• 루프확장량: 루프반복으로추가생성되는상태수
• 제약식복잡도: 선택적구체화를통해제약식을단순화하는정도
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그림 1: ExplosionGuard구조. Phase I에서단기프로파일링으로초기정책을합성한다. Phase II에서정책적용기와컨트롤러가정책을적용하고갱신한다. DeferredStore는보류, 퇴출, 승격을담당하며 Reporter는정책과지표, 결정을로그로기록한다.
컨트롤러는텔레메트리스냅샷을입력으로받아, 상황에따라제약을강화하거나완화한다.
2.3 관련연구
심볼릭 실행의 확장성 문제는 오래전부터 연구되어 왔다.
KLEE는 검색 휴리스틱과 쿼리 최적화를 결합해 높은 커버리지를달성한대표적시스템이다 [1]. 실무에서는활성상태제한, 루프바운딩, 경로병합등이자주사용된다.

Driller는퍼징이정체된구간에서만심볼릭실행을호출해비용을줄이고퍼징의한계를보완한다 [2]. ExplosionGuard는예산제약을전제로단기지표수집, 초기 정책 합성, 실행 중정책갱신, 보류 상태승격을하나의제어루프로구성한다는점에서접근방식이다르다.
3. ExplosionGuard설계
3.1 정책문서와파라미터
정책은 JSON 형태의 PolicyDocument로 표현한다. 문서는세가지정책항목을담는다.

BranchCap은한 step에서분기확장으로생성되는후속상태수의상한을 k로둔다. 후속 상태수가 k를초과하면점수상위 k개만 active로유지하고, 나머지는 deferred로이동시킨다. 점수는 DeferredStore의승격점수와동일한기준으로계산한다.
LoopCut은루프헤드단위로반복상한 bound를둔다. 반복횟수가 bound를초과하면추가반복에서생성되는상태를

deferred로이동시킨다.
Selective Concretize는제약식단순화를위해일부심볼바이트를구체화한다. 구체화강도는 strategy.k와 strategy

.bytes로표현한다. 대상은최근스냅샷에서비용신호가큰상태부터선택한다.모든파라미터는 Limits로하한과상한을둔다. k는 k_mi
n..k_max, bound는 b_min..b_max, bytes는 bytes_min..b
ytes_max범위로제한한다. deferred저장소도 deferred_m
ax_states로용량을제한한다.

3.2 Phase I: 단기프로파일링
ExplosionGuard는시작직후단기프로파일링을수행한다. 프로파일링 윈도우는 ProfilingWindow(time_s,steps,max
_states)로정의하며, 세 조건중하나라도만족하면종료한다. 비용이큰계측을피하기위해다음의저비용프록시지표만수집한다.
• throughput: 초당수행되는 step수
• growth_rate: 단위시간당활성상태수증가량
• active_peak: 프로파일링구간에서관측된활성상태최댓값
• step_pressure: step 1회수행에걸리는평균시간(초)
• avg_ast_nodes: 제약식규모프록시로서AST노드수평균
• coverage_rate: 프로파일링 구간에서 새로 도달한 고유기본블록수를측정시간(초)으로나눈값
growth_rate와 active_peak는 폭발 위험 신호로, step_p
ressure와 avg_ast_nodes는 비용 위험 신호로 해석한다.
coverage_rate는탐색진전의신호로사용한다.
3.3 지표에서정책으로: 초기정책합성
Phase I지표를초기정책으로변환하는과정의재현성을확보하기위해, ExplosionGuard는등급화와사상을고정규칙으로수행한다. 폭발 위험은 growth_rate와 active_peak로, 비용 위험은 step_pressure와 avg_ast_nodes로 판단한다.진전은 coverage_rate로 평가한다. 임계값은 고정 상수로두며표 1에정리한다.폭발위험이높으면 k와 bound를낮게설정해상태증가를억제한다. 비용 위험이 높으면 bytes를 높게 설정해 제약식단순화를 강화한다. 진전이 낮고 폭발 및 비용 위험이 모두높은경우에는초기정책을한단계더보수적으로설정한다.모든값은 Limits범위로제한한다.
3.4 Phase II: 제약강화와완화
Phase II에서컨트롤러는스냅샷을기반으로정책파라미터를갱신한다. 강화는폭발또는비용신호가강할때탐색공간을줄이고제약식을단순화하는갱신이다. 완화는정체가감지될
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Algorithm 1 Phase I초기정책합성
Require: profiling metrics M , Limits L, config C, max_states
1: explode ← (M.active_peak ≥ C.peak_ratio · max_states) ∨

(M.growth_rate > C.growth_hi)
2: cost ← (M.step_pressure > C.pressure_hi) ∨

(M.avg_ast_nodes ≥ C.ast_hi)
3: stallish← (M.coverage_rate < C.coverage_lo)
4: Choose (k0, bound0) by explode and clamp to [L.kmin, L.kmax],

[L.bmin, L.bmax]
5: Choose (bytes0) by cost and clamp to [L.bytesmin, L.bytesmax]
6: if stallish and explode and cost then
7: k0 ← max(L.kmin, k0 − 1)
8: bound0 ← max(L.bmin, %0.5 · bound0&)
9: end if

10: return initial policy (k0, bound0, bytes0)

Algorithm 2 Phase II컨트롤러갱신
Require: snapshot S, policy (k, bound, bytes), config C, Lim-

its L, max_states
1: explode ← (S.growth_rate > C.growth_hi) ∨ (S.active ≥

C.peak_ratio ·max_states)
2: cost← (S.step_pressure > C.pressure_hi) ∨ (S.avg_ast_nodes ≥

C.ast_hi)
3: stall←최근 C.stall_steps step동안신규고유기본블록도달이없음
4: if explode then
5: k ← max(L.kmin, k − 1)
6: bound← max(L.bmin, %0.5 · bound&)
7: end if
8: if cost then
9: bytes← min(L.bytesmax, bytes+ C.bytes_step)

10: end if
11: if stall then
12: k ← min(L.kmax, k + 1)
13: bound← min(L.bmax, bound+ C.bound_step)
14: bytes← max(L.bytesmin, bytes− C.bytes_step)
15: Promote top-n states from deferred to active
16: end if
17: return updated policy and decisions

때 제한을 일부 풀고 deferred에서 상태를 승격하는 갱신이다. 갱신된정책은다음 step에서정책적용기에의해반영된다.강화갱신은다음과같이정의한다.
• BranchCap: k ← max(kmin, k − 1)

• LoopCut: bound← max(bmin, #0.5 · bound$)
• Concretize: bytes← min(bytesmax, bytes+∆)

완화갱신은다음과같이정의한다.
• BranchCap: k ← min(kmax, k + 1)

• LoopCut: bound← min(bmax, bound+∆b)

• Concretize: bytes← max(bytesmin, bytes−∆)

• 승격: deferred에서상위점수상태 n개를 active로이동
강화와 완화가 같은 step에서 동시에 조건을 만족할 수 있으므로 적용 순서를 고정한다. 강화를 먼저 적용한 뒤, 정체가 참이면 완화를 적용해 일부를 되돌린다. 최종 파라미터는

Limits범위로제한한다.
3.5 고정임계값및컨트롤러파라미터
본실험에서는 Phase I/II임계값과컨트롤러파라미터를고정상수로설정한다. 표 1는사용한기본설정을정리한것이다.임계값은사전실험에서폭발, 비용, 정체신호를구분할수있는범위에서선택한다. 또한제한된범위에서임계값을조정

표 1: 고정임계값및컨트롤러파라미터.
Parameter Value

growth_hi (growth_rate) 10.0 (초당활성상태증가량)
pressure_hi (step_pressure) 0.05 (step 1회평균소요시간, 초)
coverage_lo (coverage_rate) 0.02 (초당증가한고유기본블록수)
peak_ratio (활성상태과다기준비율) 0.8
ast_hi (큰 AST기준) 4096 (노드수)
stall_steps 50 (step수)
bytes_step (∆) 8 (바이트)
bound_step (∆b) 4 (반복횟수)
promotion n (deferred→active) 4 (상태수)
해도 off대비 heur의경향이크게변하지않음을확인했다.
3.6 DeferredStore: 보류, 퇴출, 승격
분기와 루프를 제한하면 탐색 다양성이 감소할 수 있다. Ex-
plosionGuard는 제한으로 제외된 상태를 즉시 폐기하지 않고
deferred에보류한다. deferred는 deferred_max_states를넘지않게관리하며, 초과분은점수하위상태부터 pruned로이동시킨다.정체가감지되면 deferred에서일부상태를 active로승격한다. 승격수 n은재폭발을피하기위해작은상수로설정한다(표 1). 승격점수는신규커버리지기여가능성을보상하고상태 복잡도를 패널티로 반영한다. 예를 들어 상태 s가 새로도달할것으로기대되는고유기본블록수를∆block(s)로두면
score(s) = ∆block(s)− λ ·AST (s) + µ · depth(s)로정의할수있다. λ와 µ는상수이며, 본실험에서는고정값을사용한다.
4. 구현
ExplosionGuard는 angr의 SimulationManager에 결합되는
ExplorationTechnique로 구현한다 [3]. 실행 루프는 다음절차를반복한다. (1) 최신 정책으로 BranchCap, LoopCut,
Concretize를 적용한다. (2) simgr.step()을 수행한다. (3)텔레메트리를 갱신하고 스냅샷을 생성한다. (4) 컨트롤러가정책을갱신하고 deferred승격을결정한다. (5) 정책과결정,지표를로그로기록한다.

Reporter는 out_dir에 policy.json, profiling_metric
s.json, policy_metrics.json, events.jsonl, controll
er_events.jsonl를기록한다.
5. 실험
5.1 대상및환경
오픈소스 파서 3종을 대상으로 평가한다. inih(v2)는 inih저장소의 major버전 v2계열을의미한다.실험은 Apple Silicon M3,메모리 36GB환경에서수행한다.각모드는동일예산에서 10회반복실행하고평균을보고한다.예산은 --max-steps200으로설정한다.비교모드는 off(정책비활성)와 heur(휴리스틱정책적용)이다. 두모드는동일한바이너리,동일한하네스및입력모델,동일한 angr옵션,동일한 step예산에서실행한다. time은 200
step을수행하는데걸린실측시간이다.본 연구에서 coverage는 실행 중 도달한 고유 기본 블록(basic block)의 누적 개수로정의한다. coverage_rate는프로파일링구간에서새로도달한고유기본블록수를측정시간(초)으로나눈값이다. 즉초당증가한고유기본블록수를의미한다.
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표 2: 오픈소스파서 3종 10회평균결과.
Mode gen coverage throughput time peak

cJSON
off base 4.724 7.663 9.536 216.0
heur heur 6.699 29.775 6.735 120.0
inih (v2)
off base 0.877 4.383 45.747 202.0
heur heur 3.692 18.455 10.854 147.0
tinyexpr (v2)
off base 1.141 5.513 36.956 211.0
heur heur 2.886 12.545 15.945 156.0

5.2 결과
표 2에서 heur는 세 대상 모두에서 활성 상태 피크를 낮추면서 처리량과 커버리지를 개선한다. cJSON에서는 처리량이 증가했고 피크가 감소했으며, 커버리지도 함께 증가했다.
inih(v2)에서도 처리량 증가와 실행 시간 감소가 동시에 관측된다. tinyexpr(v2) 역시 유사한경향을보이며커버리지가증가한다.이 결과는 다음과 같이 해석할 수 있다. 폭발이 강한 구간에서는 BranchCap과 LoopCut이 상태 증가를 직접 억제한다.그결과동일예산에서더많은 step을수행할수있고, 커버리지 증가로 이어진다. 정체 구간에서는 제한을 일부 완화하고
deferred에서 상태를 승격해 탐색 다양성을 확보한다. 이과정이커버리지진전에기여한다.
5.3 위협요인및한계
본실험은파서 3종과 --max-steps200이라는제한된예산에서수행했기때문에일반화에한계가있다. 또한비용신호를

step_pressure와 avg_ast_nodes로근사했다. solver내부시간을직접계측하면비용모델을더정교하게구성할수있다. 마지막으로 임계값과 승격 수 n 같은 하이퍼파라미터는탐색 안정성에 영향을 준다. 프로그램 특성에 따라 자동으로보정하는방법은향후과제로남긴다.
6. 결론
본연구는예산제약심볼릭실행에서경로폭발과정체를함께 다루기 위해 ExplosionGuard를 제안한다. ExplosionGuard는단기프로파일링기반지표수집,지표-정책사상에따른초기정책합성, 실행중정책갱신을결합한다. 또한 deferred보류 및 승격을 통해 정체 시 탐색 다양성을 회복한다. 오픈소스 파서 3종 실험에서 휴리스틱 정책은 활성 상태 피크를낮추면서처리량과커버리지진전도를개선했다.
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최근 Java 바이트코드 사전학습 모델은 소스코드가 부재한 환경에서도 유효한 분석 수단으로 입증받고 있다. 

그러나 기존 연구들은 바이트코드를 단순한 토큰 시퀀스로만 처리하여, 프로그램의 실행 의미를 결정하는 

명령어 간의 제어 흐름 및 데이터 의존성을 간과한다는 한계가 있다. 또한 현존하는 그래프 분석 도구들은 

대부분 중간 표현(IR)으로의 변환을 거치면서 원형 바이트코드의 고유한 16진수(Hex) 정보를 소실하는 

문제가 존재한다. 이에 본 연구는 BCEL과 WALA를 결합하여 바이트코드의 16진수 원형 정보와 의미론적 

구조를 동시에 보존하는 새로운 그래프 생성 기법을 제안한다. 

 

    

최근 Java 바이트코드의 16진수 원형을 활용한 사전학습 

모델 연구가 제안되었으며, 소스코드가 부재한 환경에서도 

소프트웨어 분석이 가능하다는 점이 입증되고 있다[1]. 

ByteTok과 같은 최신 기법들은 바이트코드를 토큰화하여 모델의 

입력으로 활용함으로써 바이너리 수준에서 유의미한 정보를 

추출할 수 있음을 보여주었다.[1] 이러한 흐름은 배포 환경의 

특성을 직접 반영할 수 있다는 점에서 바이트코드 기반 분석의 

실효성을 높이는 데 기여하고 있다. 

그러나 현재의 바이트코드 사전학습 연구들은 대부분 

데이터를 단순 토큰 시퀀스로만 취급하며, 소스코드 연구에서 

필수적으로 다루어지는 구조적 의존성 모델링을 간과하고 

있다[1]. 소스코드 레벨에서는 그래프를 통해 프로그램의 

복잡한 논리 구조를 포착하여 모델 성능을 높이는 연구[2]가 

보편적이지만, 바이트코드 레벨에서는 여전히 시퀀스 기반의 

표면적인 학습에 머물러 있는 실정이다. 프로그램의 실제 실행 

의미는 명령어의 나열이 아닌 비선형적인 관계에서 발생하므로, 

시퀀스 위주의 학습은 구조적 맥락 파악에 한계를 보일 수밖에 

없다. 

바이트코드는 개별 명령어 자체보다 명령어 간의 제어 

흐름과 데이터 의존성이라는 유기적인 관계를 통해 실행 의미를 

가진다[3]. 특히 바이트코드는 고수준 언어에 비해 추상화 

수준이 낮기 때문에, 각 인스트럭션이 어떤 경로로 분기되고 

데이터가 어떻게 전파되는지를 명시적으로 표현하는 것이 

프로그램 이해의 결정적인 단서가 된다[4]. 따라서 바이트코드 

모델의 정밀도를 높이기 위해서는 이러한 구조적 특성을 그래프 

형태로 추출하여 학습에 반영해야 한다. 

기존의 바이트코드 그래프 분석 도구들은 대부분 중간 

표현(Intermediate Representation, IR)에 기반하여 생성되므로, 

원형 바이트코드가 가진 저수준 16진수(Hex) 의미 정보를 

손실하는 한계를 지닌다[5]. Soot나 ASM과 같은 전통적인 

도구들은 분석의 편의를 위해 바이트코드를 추상화된 형태로 

변환하는데, 이 과정에서 실제 바이너리 값과 그래프 노드 

사이의 일대일 대응 관계가 깨지게 된다. 이는 결과적으로 

저수준 토큰 정보와 고수준 구조 정보를 통합적으로 처리해야 

하는 최신 딥러닝 아키텍처 적용에 큰 장애가 되고 있다. 

따라서 본 연구에서는 이러한 공백을 해소하기 위해 BCEL과 

WALA를 활용하여 16진수 바이트코드 정보를 직접 담아내는 

의미론적 그래프 추출 도구를 제안한다. 제안하는 도구는 원형 

바이트코드를 기반으로 제어 흐름 그래프 (Control Flow Graph, 

CFG), 데이터 흐름 그래프 (Data Flow Graph, DFG), 제어 

의존성 그래프 (Control Dependency Graph, CDG), 데이터 

의존성 그래프 (Data Dependency Graph, DDG)를 직접 

생성하고 저수준 바이너리 특성과 고수준 의미 흐름을 단일 구조 

내에 통합한다. 특히 본 연구에서는 기존 도구와 구별되는 두 

가지 핵심 기술을 구현하였다. 첫째, WALA와 처리하지 못하는 

바이트코드 명령어 수준의 데이터 및 제어 흐름을 BCEL을 

활용해 정밀하게 추출하였다. 둘째, 기존 도구에서 분석된 IR 

수준의 의존성 정보를, 바이트코드 명령어로 이루어진 노드 

수준으로 확장시켰다. 이에 따라 저수준 데이터와 고수준 구조 

정보 간의 의미적 불일치를 해결하였다. 이는 단일 바이트코드 

명령어를 그래프 노드로 활용하게 하여 기존 도구의 정보 손실 

문제를 근본적으로 해결한다. 따라서 향후 바이트코드 사전학습 

모델의 정밀도를 극대화하고 소스코드가 부재한 환경에서의 

고도화된 프로그램 이해를 가능하게 할 것이다. 

본 연구의 기여는 다음과 같다. 

● 16진법의 바이트코드 기반으로 그래프를 추출하는 첫 연구 

● 바이트코드 그래프를 쉽게 열람할 수 있는 시각화 도구 개발 
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● Bytecode 16진수 기반 그래프 생성 오픈소스 도구 개발 

https://github.com/ISEL-HGU/ByteGraph 

   

       

최근 대형 언어 모델의 발전과 함께 바이트코드의 정형화된 

구조에 착안하여 이를 시퀀스로 처리하는 연구가 활발하다. 특히 

Kim et al.[1]은 16진수 전용 토크나이저인 ByteTok을 개발하여 

byteT5와 byteBERT 모델을 구축하였고, 이는 바이트코드의 

물리적 원형을 보존함으로써 소스코드 부재 환경에서의 데이터 

가용성 문제를 해결하는 토대가 되었다. 

그러나 이러한 시퀀스 기반 접근은 비선형적인 제어 흐름과 

데이터 의존성을 명시적으로 표현하는 데 근본적인 제약을 

가진다[2]. 프로그램의 실행 의미는 단순한 명령어 나열이 아닌 

복잡한 구조적 인과 관계에 의해 결정되므로, 물리적으로 이격된 

명령어 간의 논리적 연결을 포착하지 못하는 시퀀스 학습은 

고수준 분석에 병목을 야기한다. 따라서 ByteTok이 제공하는 

저수준 16진수 정보와 함께, 프로그램의 실행 구조를 온전히 

담아낼 수 있는 바이트코드 그래프 표현이 필수적으로 요구된다. 

      

스택 기반 바이트코드는 연산과 데이터 흐름이 코드에 

명시적으로 드러나지 않고 타입 정보도 부족해 분석과 최적화가 

어렵다. 따라서 Soot, WALA와 같은 정적 분석 도구에서는 계산 

구조와 데이터 의존성이 명확한 중간 표현(IR)을 사용함으로써 

프로그램을 더 효율적으로 분석하였다[5]. 이러한 IR 기반 

접근을 바탕으로, 기존 연구들은 CFG, DFG와 같은 구조적 

정보를 추출하는 방식을 주로 채택해 왔다[6]. 

그러나 IR 기반 그래프는 바이트코드의 제어 흐름과 데이터 

의존성을 구조적으로 분석하는 데 효과적이지만, IR 변환 

과정에서 분석의 편의를 위해 바이트코드의 실제 16진수 값이나 

명령어 수준의 물리적 정보를 추상화하거나 생략한다[3]. 반면, 

바이트코드 학습 연구에서는 hex 기반 토큰 시퀀스를 모델 

입력으로 사용함으로써 바이트코드의 물리적 표현을 보존하고 

있다. 이로 인해 hex 시퀀스를 입력으로 사용하는 학습 모델과 

IR 기반 그래프 표현을 일관되게 결합하기 어려운 구조적 간극이 

존재한다. 이러한 배경에서, hex 표현을 유지하면서도 제어 

흐름을 구조적으로 담아낼 수 있는 바이트코드 그래프 표현의 

필요성이 제기된다. 

      

   

본 연구에서는 바이트코드 생성도구인 ByteGraph를 

제안한다. 이 도구는 자바 바이트코드의 저수준 정보와 논리적 

의존성을 통합하기 위해 Apache BCEL(Byte Code Engineering 

Library)과 IBM WALA(Watson Libraries for Analysis)를 

상호보완적으로 활용한다. WALA는 수많은 선행 연구를 통해 

학술적 신뢰성이 검증된 정적 분석 프레임워크로,  분석 결과의 

이론적 타당성을 엄격히 입증할 수 있는 환경을 제공한다.  

분석 과정은 그림 1에 표현되어 있다. 분석은 메서드 단위로 

진행한다. 명령어의 물리적 속성은 BCEL을 이용하여 추출하고, 

의미론적 의존성은 WALA를 이용해 계산한다. 두 분석 결과는 

바이트코드 오프셋으로 투영되어 융합된다. 최종적으로 이 

도구는 저수준 바이너리 정보와 정밀한 의존성 구조가 결합된 

JSON 모델을 생성한다. 

 

그림 1 : 바이트코드 기반 그래프 추출 흐름도 

    

본 도구의 분석 과정은 다음과 같이 5단계로 수행된다. 이는 

명령어 위치를 정확하게 식별하고 논리적 의존성을 추출하기 

위함이다. 

 
      

본 연구는 그래프 노드 데이터 확보를 목적으로 메서드 

단위의 Code 속성을 추출한다. 이때 BCEL 라이브러리를 

사용한다. 그림 1의 (1)에서 볼 수 있듯, 각 명령어를 순회하며 

오프셋 (Offset), 니모닉 (Mnemonic), 피연산자 (Operands) 

정보를 수집한다. 특히, 저수준 분석을 위해 원본 바이트열을 

16진수 문자열(Hex)로 변환하여 노드 정보에 포함한다. 

        

이 단계는 그림 1의 (2)에 해당하며, 제어 흐름과 물리적 

데이터 흐름을 추출한다. 제어 흐름 그래프(CFG)는 명령어 간의 

실행 경로를 나타낸다. 제어 흐름은 정상 실행 흐름과 예외 처리 

흐름으로 나누어 구축한다.  

정상 실행 흐름은 명령어의 성격에 따라 순차 

실행(Fall-through) 또는 분기로 처리된다. 분기 명령어 (Goto, 

Return, ATHROW, Select, IfInstruction)의 경우, 명령어의 

피연산자(Operand)에 기록된 목적지 주소 정보를 참조하여 

도착지를 결정한다. 예외 처리 흐름은 바이트코드 내부에 정의된 

예외 테이블(Exception Table) 정보를 활용한다. 엣지의 

출발지는 예외를 감시하는 범위(startPC부터 endPC까지) 

내에서 예외가 발생할 가능성이 있는 모든 명령어이다. 도착지는 

예외 핸들러(handlerPC) 위치이다.  

물리적 데이터 흐름은 레지스터 및 스택 수준에서 추출된다. 

먼저 BCEL을 활용하여 로컬 변수 슬롯의 LOAD-STORE 관계를 

추적한다. 그리고 스택의 생산·소비 과정을 추적하여 엣지를 

생성한다. IR을 사용한 의미적 분석 과정에서는 스택 수준의 

세밀한 데이터 흐름이 유실될 수 있다. 본 연구는 바이트코드 

명령어 수준의 분석을 통해, WALA만으로는 놓칠 수 있는 세밀한 

데이터와 제어 흐름을 추출했다.  

         

정밀한 의미적 분석을 위해 WALA를 사용하여 바이트코드를 

SSA기반의 IR로 변환한다. SSA는 모든 변수에 값이 단 한 번만 
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할당되는 표현식으로, 복잡한 데이터 흐름과 의존성 계산에 

적합하다.  

그림 1의 (3)단계에서 가장 중요한 것은 WALA의 IR 

인덱스와 바이트코드 오프셋 간의 매핑 테이블을 작성하는 

것이다. SSA 인덱스와 인접 바이트코드 오프셋을 통합하는 1:N 

매핑 기법으로 매핑 단계에서의 누락을 방지한다. 이렇게 생성된 

매핑 테이블은 이후 단계에서 산출된 데이터 흐름 및 의존성 

분석 결과를 바이트코드 단위로 연결하는 역할을 한다.  

     

앞선 3.2.3절에서 구축한 매핑 테이블을 바탕으로, 그림 1의 

(4)단계에서는 WALA를 이용해 데이터 흐름 그래프(DFG), 

데이터 의존성 그래프(DDG), 제어 의존성 그래프(CDG)를 

생성한다. 이때, JDK 표준 라이브러리가 사용된 바이트코드를 

정밀하게 분석하기 위해 해당 라이브러리 파일(rt.jar, jce.jar)을 

분석 범위 안에 포함시켰다. 

     데이터 흐름 그래프 

(DFG)는 데이터의 생성 및 소비 경로를 나타낸다. 이를 만들기 

위해 (2)단계에서 추출된 명령어 수준의 물리적 흐름과 현 

단계에서 분석하는 변수 중심의 논리적 흐름을 결합한다. 

논리적 분석은 WALA의 DefUse 객체를 활용한다. DefUse는 

변수가 정의된 명령어와 사용된 명령어 사이의 관계를 관리한다. 

모든 IR 명령어를 순회하며 정의된 위치에서 사용된 위치로 

엣지를 만든다. 이는 매핑 테이블을 통해 원본 바이트코드 

오프셋 단위로 변환된다. 

최종적으로, 두 수준의 흐름을 병합하여 데이터 흐름 

그래프를 완성한다. 다층적 결합을 통해, 단순한 SSA 

분석만으로는 놓칠 수 있는 바이트코드의 세밀한 데이터 

이동까지 모두 포함하는 고정밀 통합 DFG가 산출된다. 

     제어 의존성 그래프 

(CDG)는 특정 지점에서의 분기 결정에 의해 다른 명령어의 실행 

여부가 제어되는 관계를 나타낸다. 본 도구는 WALA의 

SSACFG를 바탕으로 Ferrante[7]가 제안한 정식 제어 의존성의 

정식 정의를 따른다. 

본 시스템은 고정점 (Fixed-point) 알고리즘으로 각 블록의 

역우세(Post-Dominator) 집합을 계산하여, 두 노드 사이에 제어 

의존성이 존재하는지 판단한다. 또한 조건문뿐만 아니라 예외 

처리 과정에서 발생하는 제어 의존성도 포함한다. 만들어진 

엣지는 매핑 테이블을 통해 바이트코드 오프셋 단위로 변환된다. 

     데이터 의존성 

그래프(DDG)는 데이터의 생성 및 참조 관계에 따른 명령어 간의 

선행 제약을 나타낸다.  

본 도구는 WALA Slicer의 FULL 옵션을 적용하여, 값이 

전달되는 Flow 의존성뿐만 아니라 선행 제약을 나타내는 Anti 및 

Output 의존성까지도 식별한다. 특히 로컬 변수를 넘어 

힙(Heap) 메모리 상의 객체 필드 간 의존성을 정밀하게 

포착하기 위해 Zero-CFA 기반의 포인터 분석과 ModRef 분석을 

병행한다. 이렇게 계산된 의존 관계는 매핑 테이블을 거쳐 

바이트코드 단위로 투영된다. 

   

그림 1의 (5)단계에서 메서드 단위로 JSON 파일이 생성된다. 

최종 결과물은 nodes와 edges 섹션으로 나뉜다. nodes에는 

명령어의 물리적 속성(Hex, Mnemonic 등)이 포함된다. 

edges에는 CFG, EX, DFG, DDG, CDG의 연결 정보가 

바이트코드 오프셋(src, dst)을 기준으로 저장된다.  

   

  

본 절에서는 제안한 도구를 통해 추출된 Json 파일의 자바 

바이트코드 그래프 결과를  제시한다. 결과를 보여주기 위한 

예시로 Inversoft Prime JWT를  사용했다. 그림 2와 3은 각각 

JWTEncoder getInstance 메서드의 노드와 엣지 예시를 

보여준다. 그림 4는 해당 메서드에서 만들어진 네 가지 그래프를 

시각화한 것이다.  

 

그림 2 : 추출된 그래프 노드 정보(JSON) 

 

 

그림 3 : 추출된 그래프 엣지 정보(JSON) 

 

그림 4 : 추출된 그래프 정보 시각화 

   

본 연구의 실험 대상으로 ANTLR 3.1.3 (Another Tool for 

Language Recognition)[8]을 선정하였다. ANTLR는 복잡한 

상태 머신과 대규모 분기 로직을 포함하여 제어 의존성 검증에 

적합하며, 오퍼랜드 스택 활용이 빈번하여 저수준의 물리적 

데이터 흐름을 평가하기에 최적의 환경을 제공한다. 

ANTLR 라이브러리에서 12개의 클래스, 총 164개의 

메서드에서 6,785개의 노드가 생성되었다. 표 1은 이에 따른 
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20,564개 엣지의 통계를 보여준다. 본 연구는 추출된 엣지를 

바이트코드에 직접 기술된 물리적(Physical) 엣지와 정밀 정적 

분석을 통해 식별된 의미적(Semantic) 엣지로 구분하여 

분석하였다. 예외 경로(EX)는 명령어 내 분기 정보가 없어 

물리적 엣지는 존재하지 않으며, 예외 테이블을 통한 의미적 

엣지로만 존재한다. 

표 1: 물리적 및 의미적 엣지 통계 

       

CFG 7,074 6,423 651  

EX 906 - 906  

DFG 2,313 1,507 806  

DDG 2,399 2,313 86  

CDG 7,872 2,707 5,165 

계 20,564 13,010 7,554 

먼저 제어 흐름(CFG) 및 예외 경로(EX) 분석 결과,  100%의 

물리적 무결성을 입증하였다. 모든 분기 명령어의 목적지 주소를 

바이트코드 오퍼랜드 값과 대조하여 계산된 타겟이 실제 그래프 

엣지와 일치함을 전수 검증하였다. 

데이터 흐름에서는, 엣지와 저수준 명령어의 정의-사용 

관계가 일치하는 비율이 84.39%였다. 고수준에서는 클래스 내 

변수에 값을 저장하고 읽는 필드 의존성(357건)과 여러 메서드 

호출이 연속될 때 스택을 통해 값이 전달되는 메서드 

체이닝(449건)이 식별되었다. 또한, DDG는 일반적인 데이터 

흐름에서 놓치기 쉬운 힙(Heap) 메모리상의 고유 의존성 86건을 

추가로 포착하여 정밀도를 보강하였다. 

제어 의존성(CDG)의 경우, 전체 엣지의 65.6%(5,165건)가 

예외 발생 가능 지점(PEI)에서 기인한 의미적 의존성으로 

나타났다. 이는 실행 중 예외가 발생할 때 후속 코드의 실행이 

중단되는 실제 런타임의 제어 구조를 정밀하게 반영한 결과이다. 

결과적으로 본 도구는 전체 엣지의 59.74%가 고수준 

의미론적 의존성으로 구성되어 있음을 확인했다. 이는 물리적 

실행 위치 정보에 불과했던 바이트코드 노드들이 풍부한 논리적 

맥락과 연결되었음을 의미한다. 본 도구는 16진수 바이트코드 

데이터와 5종 의미 구조를 단일 모델 내에 성공적으로 

통합함으로써, 프로그램의 물리적 특성과 논리적 맥락을 동시에 

학습할 수 있는 데이터셋 생성 역량을 입증하였다. 

      

본 연구는 Java 바이트코드의 물리적 정보와 논리적 

의존성을 단일 구조로 통합하는 그래프 생성 기법을 제안하였다. 

제안한 도구는 기존 IR 기반 분석의 한계인 16진수 데이터 손실 

문제를 해결했다. 또한 SSA 기반의 정밀한 의존성을 바이트코드 

오프셋 레벨로 완벽히 투영하였으며, SSA 분석만으로는 누락될 

수 있는 바이트코드 명령어 수준의 세밀한 흐름을 포함하였다. 

프로그램의 구조적 정보를 반영한 그래프 표현형은 단순 

시퀀스 모델이 포착하기 어려운 복합적인 제어 흐름과 데이터 

전파 경로를 식별하는 데 필수적이다. 이는 최근 바이너리 보안 

연구[4]와 소스코드 분석 모델인 GraphCodeBERT[2] 등의 

사례가 보여주었다. 본 도구는 예외 처리 경로와 힙(Heap) 

의존성 정보를 추출한다. 따라서 데이터의 흐름을 정밀하게 

추적해야 하는 오염 분석(Taint Analysis)[9]과 같은 보안 분석 

기법의 성능을 높이는 데 결정적인 단서를 제공할 수 있다. 이는 

기존 시퀀스 기반 모델이 간과하기 쉬운 비정상적 실행 경로상의 

취약점을 탐지하기 위한 고품질 학습 데이터셋으로서 높은 

실용적 가치를 지닌다. 

향후에는 본 도구를 활용해 대규모 바이트코드 취약점 

데이터셋을 구축하고, 실제 소프트웨어 보안 분석 환경에서 기존 

시퀀스 기반 탐지 모델 대비 구조적 그래프 정보가 취약점 식별 

정확도 및 미탐률 개선에 미치는 영향을 정량적으로 검증할 

계획이다. 

 

※ 본 연구는 2025년 과학기술정보통신부 및 

정보통신기획평가원의 SW중심대학사업(2023-0-00055)과 

정부(과학기술정보통신부)의 재원으로 한국연구재단의 

지원(RS-2024-00457866)을 받아 수행된 연구임 
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         1         
     :  “[[1,  'start',  2],  [2,  'IN_Idle',  3],  [3, 
 'IN_Idle',  3],  [3,  '![InputTask  ==  0]:  IN_Busy',  4],  [4,  'IN_Busy', 
 4], [4, '![TaskTime > Counter]: IN_Idle', 3]]” 
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 ( : 
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       . 
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     45              
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         assertion     CBMC   
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 (Time-out)   1     , 
 LLM_State_Generate                
 200     .             
       . 

  1.    
       assertion 

   [1]  42/45(93.3%)  384/394(97.5%) 
 LLM_State_Generate  21/45(46.7%)  349/447(78.1%) 

     
     LLM           

           ,     
       .    ,  LLM  
     46.7%       93.3%  
                  
 ,               
     .  ,  assertion     
     LLM     78.1%,    97.5%    
                
      . 
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   LLM             
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         ,  LLM     
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 요   약 

 본  연구는  소스코드  확보가  어려운  환경에서도  통계적  오류  탐지가  가능한지를  검증하기  위해 

 바이트코드  기반  Bugram  기법의  성능을  실험적으로  평가한다.  ASM  프레임워크를  활용하여  추출한  opcode 

 시퀀스에  n-gram  기반  Bugram을  적용하였다.  실험  결과,  해당  기법은  명령어  시퀀스  자체에  이상이 

 존재하는  오류  유형에  대해서는  소스코드  기반  모델과  유사한  탐지  성능을  보였다.  이는  바이트코드  표현이 

 제공하는  구조적  일관성이  통계적  희소성  기반  오류  탐지에  활용될  수  있음을  시사한다.  하지만  의미적 

 불일치나  제어  흐름의  의미론적  오류에  대해서는  명령어  시퀀스  수준의  통계  정보만으로는  탐지에  한계를 

 보였다.  이러한  한계를  극복하기  위해,  향후  연구에서는  제어  흐름  정보나  실행  문맥을  추가로  반영하는 

 확장된 바이트코드 표현을 고려할 수 있을 것이다. 

 Abs tract 

 This  study  evaluates  a  bytecode-based  Bugram  approach  for  statistical  bug  detection  where 

 source  code  is  unavailable.  We  applied  n-gram  models  to  opcode  sequences  extracted  via  the  ASM 

 framework.  Results  show  that  the  bytecode's  structural  consistency  enables  anomaly  detection  based 

 on  data  sparsity,  achieving  performance  comparable  to  source-code  models  for  instruction-level 

 bugs.  While  limited  in  capturing  complex  semantic  or  control-flow  errors,  this  work  suggests  that 

 bytecode-level  analysis  provides  a  stable  statistical  baseline.  Future  models  incorporating  execution 

 context could further extend these detection capabilities. 

 1. 서  론 

 오류  탐지  기법은  소프트웨어  개발  과정에서  품질과  안정성을 

 확보하기  위한  핵심  요소이다.  Wang  et  al.[1]의  연구에서는 

 정적  분석,  동적  분석,  테스트  기반  탐지,  로그  기반  탐지  등 

 다양한  오류  탐지  기법이  제안되어  왔으며,  이  중  규칙  기반  버그 

 탐지  방식은  비교적  손쉽게  적용할  수  있다는  장점으로  널리 

 활용되고  있다.  그러나  이러한  방식은  사전에  정의되지  않은 

 오류를 탐지하는 데 한계를 가진다. 

 이러한  한계를  보완하기  위해  Bugram  기법은  프로그램의  토큰 

 시퀀스를  기반으로  한  통계적  오류  탐지  접근  방식을 

 제안하였으며[1],  기존  규칙  기반  방법으로는  탐지하기 

 어려웠던  오류를  효과적으로  검출할  수  있음을  보였다.  한편, 

 Choi와  Nam[2]의  연구에서는  바이트코드  명령어  시퀀스  역시 

 통계적으로  구별  가능한  자연스러움  특성을  지님을  보임으로써, 

 프로그램 표현 수준에 따른 오류 탐지 가능성을 시사하였다. 

 그러나  Wang  et  al.[1]의  연구는  소스코드  기반  분석에  초점을 

 맞추고  있어  바이트코드  수준에서도  동일한  오류  탐지  특성을 

 유지할 수 있는지에 대한 실증적 검증은 이루어지지 않았다. 

 이에  본  연구에서는  Bugram  기법을  바이트코드  기반으로  확장 

 적용하고,  Wang  et  al.[1]의  연구에서  사용된  실제  오류  사례를 

 대상으로  바이트코드  기반  Bugram의  탐지  가능성과  한계를 

 유형별로 분석한다. 

 본 연구의 주요 기여는 다음과 같다. 

 ●  바이트코드  기반  통계적  버그  탐지의  최초  성능  평가  : 

 소스코드  기반  Bugram  기법을  바이트코드  수준으로 

 확장  적용하고,  실제  오류  사례를  대상으로  탐지  성능을 

 실증적으로 분석하였다. 

 ●  데이터  희소성  (Data  Sparsity)[2]  완화  가능성  제시  : 

 바이트코드가  제공하는  특성이  식별자  수준의 

 가변성으로  인한  데이터  희소성  문제를  완화할  수 

 있음을 확인하였다. 

 ●  오류  탐지  기법의  실용적  활용  범위  :  바이트코드  기반 

 Bugram이  명령어  수준의  이상  탐지에는  효과적이나, 

 의미론적 오류에는 한계가 있음을 실증하였다. 

 2. 관련 연구 및 배경 

 2.1 Bugram 기반 오류 탐지 

 Wang  et  al.은  프로그램의  토큰  시퀀스에  n-gram  모델을 

 적용하여  각  토큰의  출현  확률을  계산하고,  통계적으로  희귀한 
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 패턴을  잠재적인  오류로  간주하는  Bugram  기법을 

 제안하였다[1].  이  기법은  프로그램  내부의  반복적인  패턴을 

 학습하여,  빈도수가  높은  시퀀스를  정상적인  코드로,  빈도수가 

 낮은 시퀀스를 오류 가능성이 높은 코드로 판단한다. 

 해당  연구에서는  실제  오픈소스  프로젝트를  대상으로  Bugram 

 기법을  적용하여  총  25개의  오류를  발견하였으며,  이  중  23개는 

 기존의  정적  분석  도구(FindBugs  등)가  탐지하지  못한  새로운 

 오류로  보고되었다.  이러한  결과는  통계적  패턴  분석이  기존 

 규칙  기반  접근  방식의  한계를  보완할  수  있음을  보여주며, 

 Bugram 기법의 실효성을 입증하였다. 

 2.2 바이트코드 자연성 기반 오류 분석 

 한편,  Choi  et  al.은  바이트코드  수준에  n-gram  모델을 

 적용하여  명령어  시퀀스의  통계적  빈도  분포를  분석한  결과, 

 소스코드나  AST  표현과는  구별되는  특성을  보임을 

 확인하였다[2].  특히,  컴파일러에  의해  생성된  바이트코드는 

 제한된  명령어  집합과  정형화된  구조를  가지므로,  소스코드에 

 비해  안정적이고  일관된  빈도  분포를  나타낸다.  이는  프로그램 

 표현  수준에  따라  자연성  기반  분석이  오류  탐지에  활용될  수 

 있음을 시사한다. 

 2.3 연구의 교차 지점 

 Bugram  기법은  프로그램  토큰  시퀀스에  기반한  통계적  오류 

 탐지라는  새로운  접근  방식을  제시하였으나,  분석  대상이 

 소스코드  수준에  한정되어  있다는  한계를  가진다.  첫째, 

 개발자마다  상이한  명명  규칙이나  코딩  스타일로  인해  토큰 

 분포의  가변성이  커질  경우,  모델의  민감도가  증가할  수  있다. 

 둘째,  Java  기반  프로젝트에서도  Native  Method(C/C++)와  같이 

 소스코드  형태가  상이한  구성  요소가  포함될  경우,  통합적인 

 분석이 어렵다. 

 반면,  바이트코드  기반  분석은  컴파일러에  의해  정제된  명령어 

 시퀀스를  사용함으로써  프로그램의  통계적  특성을  보다 

 간결하고  일관되게  표현할  수  있다는  장점을  가진다.  또한, 

 소스코드의  가용성이나  개발  환경에  의존하지  않고도  동일한 

 품질의 분석 데이터를 확보할 수 있다. 

 본  연구는  두  연구  흐름의  교차  지점에서  Bugram의  통계적  오류 

 탐지  알고리즘을  바이트코드  도메인으로  확장한다.  Bugram은 

 코드  생성이나  의미  이해를  목표로  하는  최근의  신경망  기반 

 접근과  달리,  통계적으로  극히  희귀한  시퀀스를  이상치로 

 식별하는  데이터  희소성(Sparsity)  기반의  이상  탐지에  초점을 

 둔다.  이러한  접근은  PR-Miner[3]로  대표되는  비정상  패턴 

 마이닝  계보에  속하며,  바이트코드와  같이  구조적  일관성이  높은 

 도메인에서는 여전히 효과적인 전략이다. 

 3. 제안 방법 

 본  장에서는  Bugram  기법을  바이트코드  도메인으로  확장 

 적용한 방법을 설명한다. 

 3.1 바이트코드 기반 Bugram 설계 개요 

 Wang  et  al.[1]의  방법론을  계승하여,  본  연구에서는  trigram 

 언어  모델을  학습  모델로  사용하고,  5-gram  길이의  토큰 

 시퀀스에  대해  로그  확률(log-probability)을  계산하였다.  각 

 시퀀스에  대해  계산된  평균  로그  확률  값이  낮을수록  통계적으로 

 자연스럽지  않은  패턴으로  간주되며,  본  연구에서는  이러한 

 시퀀스  중  상위  K개를  최종  버그  후보로  선정한다.  그림  1은  본 

 연구에서  사용한  시퀀스별  로그  확률  계산  알고리즘의 

 의사코드를 나타낸다. 

 Input  : Method tokens  , Window size  𝑇  𝐿 
 Output  : Bug candidates sorted by average 
 log-probability 

 1.  𝑛𝑜𝑟𝑚  _  𝑡𝑜𝑘𝑒𝑛𝑠    ←  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ( 𝑇 )
 2.  for each  window  of length  in  𝑠𝑒𝑞  𝐿 

 :  𝑛𝑜𝑟𝑚  _  𝑡𝑜𝑘𝑒𝑛𝑠 
 3.  𝑠𝑢𝑚  _  𝑙𝑜𝑔  _  𝑃    ←     0 .  0 
 4.  //initialize  𝑡 

 𝑖 − 2 ,   
 𝑡 

 𝑖 − 1 
   ←     𝐵𝑂𝑆 ,     𝐵𝑂𝑆    

 triagram context 

 5.  for each  token  in  :  𝑡 
 𝑖 

 𝑠𝑒𝑞 

 𝑃 ( 𝑡 
 𝑖    
 |     𝑡 

 𝑖 − 2    
,  𝑡 

 𝑖 − 1 
)   

         ←  𝑔𝑒𝑡  _  𝑡𝑟𝑖𝑎𝑔𝑟𝑎𝑚  _  𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (    𝑡 
 𝑖 − 2    

,  𝑡 
 𝑖 − 1 

,  𝑡 
 𝑖 
)

 6.           𝑠𝑢𝑚  _  𝑙𝑜𝑔  _  𝑃    ←  𝑠𝑢𝑚  _  𝑙𝑜𝑔  _  𝑃    +  𝑙𝑜𝑔 ( 𝑃 ( 𝑡 
 𝑖    
 |     𝑡 

 𝑖 − 2 
,    

 ))           𝑡 
 𝑖 − 1 

 7.  // Update context  𝑡 
 𝑖 − 2    

,  𝑡 
 𝑖 − 1 

   ←     𝑡 
 𝑖 − 1 

,  𝑡 
 𝑖 
   

 for next token 

 8.  𝑎𝑣𝑔  _  𝑙𝑜𝑔  _  𝑃    ←     𝑠𝑢𝑚  _  𝑙𝑜𝑔  _  𝑃  /  𝐿 
 9.  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 .  𝑎𝑑𝑑 ( 𝑎𝑣𝑔  _  𝑙𝑜𝑔  _  𝑃 ,     𝑠𝑒𝑞 )
 10.  return  sorted by  in  𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠  𝑎𝑣𝑔  _  𝑙𝑜𝑔  _  𝑃 

 ascending order 

 그림 1: Bugram 지수 산출을 위한 시퀀스별 로그 

 확률(Log-probability) 계산 과정[1] 

 3.1.1 Bugram 적용 지점에서의 바이트코드 자연성 반영 

 본  연구와  Wang  et  al.[1]의  핵심적인  차이점은  분석  대상 

 입력  데이터의  표현  수준에  있다.  기존  연구에서는  JavaParser 

 등을  활용하여  소스코드  기반의  토큰  시퀀스나  추상  구문 

 트리(AST)를  분석  대상으로  삼은  반면,  본  연구에서는  컴파일된 

 결과물인 Java 바이트코드(.class 파일)를 직접 분석한다. 

 바이트코드  명령어  추출을  위해  자바  바이트코드  조작 

 프레임워크인  ASM을  사용하였다.  ASM의  MethodVisitor를 

 활용하여  각  메서드  내부의  명령어를  순회하고,  이  과정에서 

 피연산자(operand)를  제외한  순수  명령어(opcode)  시퀀스만을 

 토큰화하여  추출하였다.  그림  2는  ASM  라이브러리를  이용해 

 opcode를 추출하는 구현 예시를 보여준다. 

 @Override 

 public void visitInsn(int opcode) 

 {    tokens.add(Printer.OPCODES[opcode]);    } 

 그림2. ASM 라이브러리를 통해 opcode를 추출하는 구현 예시 

 4. 실험 설계 

 본  실험에서는  제안하는  바이트코드  기반  Bugram의  성능을 

 평가하기  위해  표  1과  같은  환경에서  실험을  진행하였다.  실험은 

 Windows  OS  기반의  환경에서  수행되었으며,  대규모 

 바이트코드  데이터  파싱  및  통계  모델  연산을  처리하기  위해 

 고성능 프로세서와 충분한 메모리 자원을 활용하였다. 
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 구분  상세 사양 

 사용 언어  Java (JDK 11 이상), Python 3.12.3 

 분석 도구  ASM Framework (Bytecode Parsing) 

 표 1. 실험 환경 

 4.1 Bugram 수치 계산 

 본  장에서는  해당  알고리즘에  사용된  주요  파라미터를 

 기술한다.  또한,  Wang  et  al.[1]의  실험과  바이트코드로  확장된 

 제안 방법의 실험 결과를 비교 분석한다. 

 4.1.1 Bugram 기법 알고리즘 파라미터 

 본  연구에서  Bugram의  성능  평가를  위해  설정한  세부 

 파라미터는  표2와  같다.  이  수치들을  버그  후보군을  추출할때  그 

 범위와 정교함을 결정하는 요소로 작용한다. 

 파라미터명  설정값  비고 

 Language Model  Trigram (n=3)  모델 학습 단위 

 Sequence Length  5  자연스러움 측정 

 단위 

 Min Token Freq  3  희귀 토큰 처리 

 기준 

 Top-K Candidates  1000  최종 분석 대상 수 

 표 2. Bugram 기법 알고리즘 파라미터 

 4.2 실험 대상 및 오류 사례 

 본  연구는  바이트코드  기반  Bugram  기법의  오류  탐지 

 특성을  분석하기  위해  Nutch와  ProGuard  두  오픈소스  프로젝트 

 전체  코드를  실험대상으로  사용하였다.  실험에서는  Wang  et 

 al.[1]에서  사용된  것과  동일한  Nutch  2.3.1과  ProGuard  5.2 

 버전의 소스코드를 사용하였다. 

 본  실험의  목적은  전체  코드  중에서  이미  알려진  실제  오류 

 사례들이  제안한  기법에  의해  이상치  후보로  효과적으로 

 탐지되는지를  확인하는  데  있다.  검증을  위해,  Wang  et 

 al.[1]에서  실제  오류로  검증된  세  가지  오류  사례를 

 사용하였으며, 각 다음과 같은 특성을 가진다. 

 ●  NUT CH-2256  :  로그  레벨  사용  오류로,  의미적 

 불일치(semantic bug)에 해당 

 ●  NUT CH-2076  :  예외  처리  구조의  의미론적 

 오류(control-flow semantics bug) 

 ●  PROGUARD-582  :  자원  관리  및  예외  처리와  관련된 

 명령어 수준 오류(instruction-level) 

 4.3 제안 방법 적용 전 실험 

 본  장에서는  제안하는  바이트코드  기반  Bugram의  효과를 

 비교  분석하기  위해  Wang  et  al.[1]의  기법을  비교 

 기준선(Baseline)으로 설정하여 실험을 수행하였다 . 

 ●  토큰  추출  및  정규화  :  IfStmt,  TryStmt  등  주요  제어 

 구조와  메서드  호출을  의미론적  토큰(예  :  <IF>)으로 

 변화하였다.  기본적으로  제공하지  않는  특수  패턴이나 

 예외처리 구문은 수동으로 구분하였다. 

 ●  통계  모델  구축  :  추출된  토큰  시퀀스를  바탕으로 

 n-gram  확률을  계산하기  위해  유니그램(Unigram), 

 바이그램(Bigram),  트라이그램(Trigram)의  빈도를 

 각각  산출하였다.  희소성  방지를  위해  3회  미만  토큰을 

 <RARE>로 치환하였다. 

 ●  로그  확률  산출  :  학습된  통계  모델을  바탕으로 

 라플라스  스무딩(Laplace  Smoothing)이  적용된 

 트라이그램  조건부  확률을  계산하였으며,  이를  로그 

 스케일로  합산하여  시퀀스별  평균  로그  확률(Average 

 log-probability)을  산출하였다.  해당  수치가  낮을수록 

 통계적으로  '이상(Abnormal)'인  코드로  간주하며,  이를 

 최종 버그 후보 추출의 기준으로 사용하였다. 

 4.4 제안 방법 적용 후 실험 

 본  연구의  제안  방법을  적용하여  오류를  탐지한  결과는 

 표3과  같다.  바이트코드  기반  Bugram  기법의  유효성을 

 평가하기  위해,  소스코드  대신  컴파일된  클래스  파일(.class)을 

 분석 대상으로 하여 실험을 수행하였다. 

 ●  토큰  추출  및  정규화  :  Wang  et  al.[1]의  방법과 

 다르게  ASM이  제공하는  MethodVistor와  Printer를 

 이용하여  컴파일된  바이너리에서  직접  opcode 

 시퀀스를 추출하여 분석의 기초 데이터로 사용하였다. 

 5. 결과 

 5.1 n-gram 시퀀스 길이에 따른 탐지 결과 

 표  3은  n-gram  시퀀스  길이를  2부터  9까지  변화시키며  각 

 오류  사례가  Top-K  후보  내에서  검출된  순위를  나타낸다. 

 표에서  값이  작을수록  해당  오류가  상위  후보로  검출되었음을 

 의미하며,  각  값은  이상치로  분류된  Top  1000개의  후보군  중에 

 상위  몇  번째에  랭크되었는지  표현한다.  ‘X’는  Top-K  내에서 

 검출되지 않았음을 의미한다. 

 오류  2  3  4  5  6  7  8  9 

 NUTCH- 

 2256 

 884  X  X  884  X  X  X  X 

 NUTCH- 

 2076 

 X  X  X  X  X  X  X  X 

 PROGUA 

 RD-582 

 X  21  27  24  53  44  277  234 

 표 3. n-gram 시퀀스 길이에 따른 오류별 검출 순위 변화 

 실험  결과,  PROGUARD-582는  다양한  시퀀스  길이  설정에서 

 일관되게  검출된  반면,  NUTCH-2076은  모든  설정에서  검출되지 

 않았으며,  NUTCH-2256은  일부  설정에서  매우  낮은  순위로만 

 검출되었다.  이는  바이트코드  기반  Bugram이  명령어  수준의 

 실행  흐름  이상에는  민감하게  반응하는  반면,  의미적  오류나 

 제어 흐름의 의미론적 오류에는 반응하지 않음을 보여준다. 

 5.2 MIN_TOKEN_FREQ 민감도 분석 

 표  4는  MIN_TOKEN_FREQ  값을  변화시키며  각  오류 

 사례의  검출  순위를  비교한  결과를  나타낸다.  표에서  값이 

 작을수록  해당  오류가  상위  후보로  검출되었음을  의미하며, 
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 ‘X’는 Top-K 내에서 검출되지 않았음을 의미한다. 

 MIN_TOKEN 

 _FREQ 

 NUTCH-2256  NUTCH 

 -2076 

 PROGUARD 

 -582 

 1  X  X  99 

 3  884  X  24 

 5  X  X  21 

 표 4. MIN_TOKEN_FREQ 값 변화에 따른 오류 검출 민감도 

 분석 결과 

 PROGUARD-582의  경우  MIN_TOKEN_FREQ  값이  증가함에 

 따라  검출  순위가  점진적으로  향상되는  경향을  보였다.  이는 

 해당  오류가  통계적으로  드문  opcode  조합과  밀접하게 

 연관되어  있음을  시사한다.  반면,  NUTCH  계열  오류는  희귀 

 토큰  처리  기준의  변화와  관계없이  검출되지  않거나  일부 

 설정에서 매우 낮은 순위로만 검출되었다. 

 5.3 Wang et al.[1]의 기법과 비교 

 표  5는  Wang  et  al.[1]와  본  연구에서  제안한  바이트코드 

 기반 Bugram 기법의 오류 검출 결과를 비교한 것이다. 

 오류이름  기존기법  제안기법 

 NUTCH-2256  45  884 

 NUTCH-2076  8  X 

 PROGUARD-582  11  24 

 표 5. Wang et al.[1]의 기법과 바이트코드 기반 Bugram의 오류 

 검출 순위 비교 

 비교  결과,  Wang  et  al.[1]은  의미적  오류인  NUTCH-2256에 

 대해  상대적으로  높은  순위로  오류를  검출한  반면,  바이트코드 

 기반  Bugram은  해당  오류를  탐지하지  못하였다.  반대로, 

 PROGUARD-582와  같은  명령어  수준  오류에  대해서는 

 바이트코드  기반  Bugram이  안정적인  검출  성능을  보였다.  이는 

 두  접근  방식이  서로  다른  오류  유형에  대해  상보적인  탐지 

 특성을 가짐을 의미한다. 

 6. 논의 

 연구  결과,  바이트코드는  소스코드에  비해  식별자(identifier)  및 

 표현  방식의  가변성이  낮아,  보다  일관된  분석  환경을  제공함을 

 확인하였다.  이러한  특성은  n-gram  모델이  코드의 

 자연스러움을  학습하는  데  있어  노이즈를  줄이고  안정적인  통계 

 분포를 형성하는 데 기여한다. 

 그러나  이러한  장점에도  불구하고,  바이트코드  기반  Bugram의 

 탐지  성능은  오류  유형에  따라  차이를  보였다.  명령어  수준의 

 실행  흐름이나  자원  관리와  관련된  오류에  대해서는  소스코드 

 기반  Bugram과  유사한  탐지  경향을  유지하였으나,  의미적 

 불일치나  제어  구조의  의도된  의미가  핵심인  오류에  대해서는 

 탐지  성능이  제한적이었다.  이는  바이트코드  표현이  프로그램의 

 고수준 의미 정보를 충분히 반영하지 못하기 때문으로 해석된다. 

 본  연구는  바이트코드  기반  Bugram의  동작  가능성을  검증하기 

 위한  탐색적  단계로서,  대표적인  3개의  주요  오류  사례를 

 중심으로  분석을  수행하였다.  상위  랭킹  내  다수의  이상치 

 후보에  대한  전수  조사  및  사실  검증은  향후  연구에서  다룰 

 예정이다. 

 종합하면,  바이트코드  기반  Bugram은  Wang  et  al.[1]에서 

 제안된  기법을  전면적으로  대체하기보다는,  명령어  수준  오류 

 탐지에  특화된  보완적  기법으로  활용될  수  있으며,  향후 

 operand  정보나  제어  흐름  구조를  결합한  확장  모델을  통해 

 탐지 범위를 확장할 수 있을 것으로 기대된다. 

 7. 결론 및 향후 연구 

 본  연구에서는  Wang  et  al.[1]의  기법을  바이트코드  수준으로 

 확장하여,  opcode  기반  바이트코드  자연성(bytecode 

 naturalness)이  오류  탐지에  효과적으로  활용될  수  있는지를 

 실험적으로  분석하였다.  실험  결과,  바이트코드  기반  Bugram은 

 명령어  시퀀스  자체에  이상(anomaly)이  존재하는  오류  유형에 

 대해서는  효과적인  탐지  성능을  보였으나,  의미적  불일치나  제어 

 흐름의  의미론적  오류들은  통계적으로  자연스러운  패턴을 

 유지하여  탐지되지  않았다.  이를  통해  본  연구는  바이트코드 

 기반  Bugram이  모든  오류  유형을  포괄적으로  대체하기보다는, 

 적용 가능한 오류 범위를 명확히 규명하는 데 의의가 있다. 

 한편,  본  연구는  제한적인  데이터셋과  정량적  평가 

 지표(Precision,  Recall)의  미비함이라는  한계를  가진다.  이는 

 바이트코드  도메인  적용  가능성을  확인하는  초기  단계  연구의 

 특성에  기인한다.  따라서  향후  연구에서는  Jira  이슈  트래커를 

 활용하여  추가  오류  사례를  확보하고(Dataset  augmentation), 

 False  Positive  분석을  포함한  정량적  성능  지표를  산출할 

 예정이다.  또한,  기존  연구[2,  4]를  바탕으로  복합  시퀀스  모델 

 및  심층  학습  기반  모델을  도입하여  탐지  성능을  개선하고자 

 한다. 
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옢 씤

밡 넡묡육 먡렡씡섡 뤡눡씢윢 윣댡윤렢 팡숡픡씣 씤씡섢븡뜡 켡됡뤢 쀡섣픡눢 밢밣윢 젡씥픢눣. 긡젢 씤씡섢븡뜡눢 뤡
눡씢윢 갡밤윣갢 숢윥씦윤렢 괡혡픡눢 밢숣씧 윦젢픡씣 옡뤣 밤쀡 갢눤섣갣 혢윧섣 픢갤뤢 줡눥눣. 젡씥 긡밣육 Pow-
erPC(PPC)씨퀡턡찡뤢댢쀢윤렢뤡눡씢윦먡렡씡젣윦뤢괡젤혣됢 JSON혤숣윤렢촡촢픡갥,율뤢긡밥윤렢씤씡섢븡뜡
팡설뤢 윣댡 쀡섣픢눣. coreutils 밦율넢뤤뤢 댢쀢윤렢 픢 숤픣 갦갣, 윣댡 쀡섣됢 씤씡섢븡뜡갢 숤젡 밦율넢뤤씧 댢픤
넣육젣혢댣렢댡윥픥윢혢윩픡옢눣.

1. 섣렡

밦율넢뤤 봡섥씧설 씤씡섢븡 갦갣윦 젣혢댣눢 봡섥 숥렣댣씧

줢젥젦윩옣픦윢묢측눣. 괢뜡뀡긡젢 (씤)씡섢븡뜡1눢먡렡씡섡

뤡눡씢윢 쀣뜢율 숢윥씦윤렢 픤섥픡씣 괡혡픡눢 밢숣씧 윦젢픡

갥윪씡, 밧윫픢먡렡씡괣츢율뀡오옥윬려찡뤤갣젣씧설갦픥
율 밤쀡픡긡 숦눣. 숤젡렢 눣씩픢 씤씡섢븡뜡 댣괡씧설 윭혥픡
줡 씪육 먡렡씡뀡 오옥 윬려 찡뤤 줣 퀢뜣숧뀡 옡댡윥율 밤쀡픢

쀣력갢밥밧젦윤렢밨갥됣씡옦눣[1, 2, 3, 4].
긡젢 씫괡눢 젧렢 씡섢븡뜡 방괢 퀣줡[5]씧 촣젨윢 됤씬윤먢,

씤씡섢븡뜡뤢윣댡윤렢쀡섣픡눢젥괤육먣숥켡됡씧댢픢젣혤

혣됢먡섦봢윮렢윩픤촤봡휡눣렦씡줡줡씪씭눣.
밡넡묡육 RISC괡젤윩 PowerPC(PPC)씨퀡턡찡윦먡렡씡븢

툡 픧됡 툢섣윢 혦옧픡씣, 뤡눡씢윢 윣댡윤렢 팡숡픡갥 씤씡섢
븡뜡뤢 쀡섣픡눢 밢밣윢 젡씥픢눣. 먡렡씡 팢턢윢 윣댡 촡촢 밪
젣괣혣픡눢댣괡뤢괡혡픡갥, Coreutils[6]밦율넢뤤 10젩윢댢쀢
윤렢숤픣윢숢픨픡씣쀡섣됢팡설윦젣혢댣온윭혥섣윢갧줤픡

옢눣.

2. 젢씥밢밣

씤씡섢븡뜡윣댡쀡섣육뤡눡씢씧설촡촢픢먡렡씡괡젤뤢괡

젤혣픢 됥 율뤢 긡밥윤렢 씤씡섢븡 켡됡뤢 쀡섣픡눢 됤 눦갤렢

율렦씡줥눣.
PPC32밪 PPC64뤢팣픥픢눣숢윦씨퀡턡찡씧설먡렡씡섡뤡

1) 씡섢븡뜡온 씤씡섢븡뜡눢 갡네젦윤렢 쀢혧 댢윯 괥갤씧 윪윤뀡, 밡 씫괡윦 넡
윦밫윰씧설눢옧씡뤢턣윱픡씣댣묣뤤갢씮윤묤렢씤씡섢븡뜡렢윱괦픡씣쀣

옧픢눣.
*율 넡묡육 2025넥댣 젣봢(갣픩긡숨젣밨턣숥봢)윦 윮옩윤렢 젣밨턣숥긡혨팤갢
옩윦 줡옩(No. RS-2025-02263143, 윩갨윰섣 줡쀢괧 쀣율방밨씥 윰혩 댢윯 긡
숨 갡밤)갣 2025넥댣 젣봢(갣픩긡숨젣밨턣숥봢)윦 윮옩윤렢 픢괧윩턤넦줥휢옩
(KISA) 젣밨밨혧젪묡윩려씩섣(젣밨밨혧툢섣혣댢픩) 쀣씦윦 줡옩윢 밬씨 숢픨
됢씫괡윲

눡씢육 PDF혤숣윤렢젡갨됣먢, 밡넡묡씧설눢 Power ISA 3.0C
방젪 PDF 뤡눡씢윢 쀣옧픢눣. PDF눢 줢젥 찡뤤픡긡 씡렧옪묤
렢, AI긡밥 OCR댢숥턡숩툡긡밥 PDF팡숡댣괡윩 pdfplumber
[7]뤢 혦옧픡씣 뤡눡씢윢 턡숩툡렢 밭혪픡옢눣. 율혫 턡숩툡씧
설 먡렡씡 윰츣뤢 툢젣픡긡 윰픤 픧됡 옡픪섡 뀡씯윢 퀣쀤픡눢

댤, PPC 씨퀡턡찡눢 먡렡씡 긢율갢 픫쀢 32븢툡율갥 찢 픧됡갢
6븢툡렢 갥젣됣씡 윪씡, 0, 6윤렢 숧윥픡씣 31렢 뀢뀡눢 옡픪섡
팢턢윢턣픤먡렡씡뤢혥갣젦윤렢숣밮픬숢윪눣.

{
"opcode": "addi",
"operands": ["RT", "RA", "SI"],
"fields": [

{"name": "RT", "field range": [6, 10]},
{"name": "RA", "field range": [11, 15]},
{"name": "SI", "field range": [16, 31]}

],
"equal conditions": [

{"value": 14, "field range": [0, 5]}
]

}

괢뤥 1: ADDI먡렡씡윦 JSON괡젤

먡렡씡뤢 괡젤혣됢 혤퀤렢 젫윧픬 딡씧눢 씤씡섢븡씧 픧옫픢

먤됦 젣밨뤢 팣픥픤씰 픡먢, 율뤢 윰픤 밡 넡묡씧설눢 괢뤥 1갣
갩육 JSON괡젤뤢쀣옧픢눣. 갪먡렡씡눢 opcode, operands,
fields, equal conditions윦넧갢줡옫섧렢퐡혡됣먢,갪
갪먡렡씡율뤦,픭씫쀥윣먥련,픧됡옡픪섡젣밨,괢뤤갥밦율툡
켡됡뤡츤젤갫윢젫윧픢눣. 율괡젤눢 PPC윦먤됦먡렡씡팢턢
윢 퐡혡픬 숢 윪윤먢, 턡숩툡 팡윱렢봢턤윦 밭혪육 묡윣씯 팡숡
윢턣픤괡혡됢눣.
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2.1 씡씢섡븡뜡켡됡윢댡쀡섢

갪 먡렡씡윦 JSON 괡젤갢 젧씡줡먦 씤씡섢븡뜡윦 윣댡

쀡섣육 븢괨젦 줢괥젦율눣. 윬려됢 밦율툡켡됡눢 equal

conditions뤢 턣픤 먡렡씡뤢 팥밮픡갥, operands온

fields 젣밨뤢 율옧픤 픭씫쀥윣 갬윢 촡촢픢눣. 윱봢 먡렡

씡씧설눢 픡뀡윦 픭씫쀥윣갢 씣뜡 픧됡뤢 젤픮픤 갤쀥됣줡뤧,
율뜡픢 갭옪눢 픭씫쀥윣 율뤦씧 딢뜤 갬 촡촢 밢숣율 젣픤젬

윪눣. PPC 씨퀡턡찡씧설 율뜡픢 오옥젦윩 픭씫쀥윣눢 섧숢씧
봣갣픡묤렢,갡밮젦윤렢찡뤤픡눢댤퀥씡렧올육씮눣.

3. 숣픣

Power ISA 3.0C 뤡눡씢윢 긡밥윤렢 씤씡섢븡뜡 윣댡 쀡섣윢
숢픨픢갦갣,젪찣 1,169갡먡렡씡줣 1,139갡씧댢픤씤씡섢븡뜡
켡됡뤢 섣갨젦윤렢 쀡섣픡옢눣. 뀡먣줡 30갡 먡렡씡눢 뤡눡씢
뀣옡퀦,븢젣혤젦윩설숨밢숣,똡눢 PDF팡숡갣젣씧설윦갨밯
찡뤤묡젡렢윩픤윣댡쀡섣씧숤팢픡옢눣. 율눢윣댡쀡섣긡밣
윣찣윦픢갤뜤긡밨눣눢뤡눡씢퐡긡쀢윦묡젡씧긡윩픢갮윤렢,
픤눧먡렡씡뤢젡옥픡먦윣댡쀡섣육씥젣젦윤렢댡윥픡옢눣.

3.1 팡섣젡혢댣팢갢

윣댡쀡섣됢씤씡섢븡뜡윦젣혢섣윢갧줤픡긡윰픤 PPC64씨
퀡턡찡뤢 댢쀢윤렢 씤씡섢븡뜡뤢 괡혡픡갥, coreutils씧 팣픥됢
10갡 밦율넢뤤씧 댢픤 숤픣윢 숢픨픡옢눣. 윣댡 쀡섣씧 숤팢픢
윱봢 먡렡씡눢 숢댡윤렢 밨옭픡옢윤먢, 씤씡섢븡 갦갣뤢 GNU
Assembler뤢 쀣옧픡씣 눣숧 씡섢븡픡씣 옩뜣 밦율넢뤤온 븢괨
픡눢 밢숣윤렢 젣혢섣윢 갧줤픡옢눣(괢뤥 2). 숤픣 갦갣 댢봢봡
윦밦율넢뤤씧댢픤옭젪픢씤씡섢븡율갢눤픯윤먢,윱봢오옥눢
Power ISA 뤡눡씢씧 젣윦됣줡 씪육 괡혡 젩섨 먡렡씡씧 픤눧픡
옢눣. 율눢뤡눡씢긡밥윣댡쀡섣밢숣윤렢 RISC씨퀡턡찡윦씤
씡섢븡뜡뤢젣혢픡갯괡혡픬숢윪윳윢밨씣줦눣.

3.2 팡섣섢눡팢갢

숤픨 섣눤 팤갢 갦갣, 윣댡 쀡섣됢 팡설눢 숢윥씦윤렢 괡혡됢
팡설온븢괨픡씣젪밥젦윤렢윭쀣픢숢줦윦섣눤윢윭줡픡옢눣.
눦윱 뤡츣 괡젤뤢 쀣옧픡눢 툢섣쀢 윱봢 갭옪씧설 눣섧 눨뤨 갭

픦율괥찤됣씬윤뀡,윣댡쀡섣밢숣윲씧댣봣괡픡갥섣눤찥율눢
젡픢젦윩 숢줦씧 먣묥렩눣. 율눢 팡설 윣댡 쀡섣율 괡혡 윣댡혣
씧딢뤩율젨윢젡갨픡먦설댣숤픨섣눤츥먦씧설눢숤옧젦윩밫

괢뤥 2: 팡설젣혢댣갧줤밢밣

윰 뀣씧 윪윳윢 밨씣줦눣. 갡밤 혥윴섣갣 혢윧섣윢 픥긣 갥렧픬
딡,젡씥긡밣육촤봡픢혦옧갢눤섣윢갰눢눣.

3.3 씡씢섡븡뜡괡혣밢숤씣딡뤢툡섢봡설

괡혡 밢숣씧 딢뤩 갡밤 혥윴윢 븢괨픢 갦갣, 숢댡 괡혡육 씱 3
갡옮율섧옫됢밥먦, 윣댡쀡섣밢숣육뤡눡씢봡섥갣팢턢젣윦
뤢 팣픥픡씣 씱 1젧윱 뀣씧 괡혡율 갢눤픡옢눣. 댡윱픢 숢줦윦
갡밤윣갢 숢픨픡옢눣눢 젨씧설, 밡 갦갣눢 윣댡 쀡섣 젥괤율 씤
씡섢븡뜡갡밤윦혥윴섣갣혢윧섣윢퀢갯픦쀢숧퀧숢윪윳윢젣

섣젦윤렢밨씣줦눣.

4. 갣렡

밡씫괡눢 PPC씨퀡턡찡뤢댢쀢윤렢먡렡씡섡뤡눡씢윢윣댡
윤렢 팡숡픡씣 JSON 혤숣윤렢 젣괣혣픡갥, 율뤢 긡밥윤렢 씤씡
섢븡뜡팡설뤢윣댡쀡섣픡눢밢밣윢젡씥픡옢눣. 젡씥됢젥괤육
뤡눡씢 긡밥 괣츢윢 찣갤젦윤렢 젣혤혣픥윤렢쌡 숢윥씦 괡혡씧

댢픢윦젢댣뤢줧율갥, coreutils밦율넢뤤뤢댢쀢윤렢픢숤픣윢
턣픤쀡섣됢팡설윦젣혢섣윢갧줤픡옢눣.
픦혫씧눢 밡 긡밣윢 눣뤩 RISC 씨퀡턡찡렢 혢윧픡갥, 뤡눡씢

긡숨 밢숣갣 괡젤젦 툢섣윢 갥렧픡씣 CISC 먡렡씡 찣갤씧 댢픢
젦옧 갢눤섣댣 퀣쀤픬 갤혨율눣. 밡 씫괡윦 젥괤육 댢괣먤 밦율
넢뤤봡섥혪갭씧설씤씡섢븡갣젣윦숥렣섣갣윭줡밨숢섣윢픦

쀢숧퀡눢댤긡씣픬숢윪눣.
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Robustness Testing of Offline Reinforcement Learning 
based on State Space Models 

Taehyun Han, Janghwan Kim, R. Young Chul Kim 
Software Engineering Laboratory, Hongik University 

요   약 
 최근 오프라인 강화학습이 실제 환경에 도입됨에 따라, 예측 불가능한 외부 노이즈에 대한 안전성 및 
강건성 검증이 필수적이다. 그러나 기존 무작위 노이즈 방식은 취약 시점을 식별하지 못해 비효율적이며, 
적대적 공격 기법은 높은 연산 비용으로 인해 실시간 검증에 적용하기 어렵다. 이러한 문제를 해결하기 
위해, 상태 공간 모델 기반 Mamba 아키텍처를 활용한 효율적인 블랙박스 테스팅 기법을 제안한다. 본 
연구는 노이즈의 주입 시점이 시스템의 생존 및 강건성에 결정적임을 실험적으로 입증하였다. 이를 통해 
제안하는 Mamba 기반 노이즈 주입 기법이 효율적인 블랙박스 테스팅 기법으로서 활용될 것을 기대한다. 

1. 서론 
최근 로보틱스와 같은 복잡한 제어 문제에서 사전에 수집된 
데이터를 활용하는 오프라인 강화학습이 핵심 기술로 
부상하고 있다. 특히 Decision Transformer (DT)는 강화학습을 
시퀀스 모델링으로 재해석하여 탁월한 성과를 거두었다 [1]. 
그러나 이러한 모델이 안전 필수 환경에 배포되기 위해서는 
예측 불가능한 외부 노이즈에 대한 강건성 검증이 선행되어야 
한다 [2]. 
현재 강건성 평가 방법론은 크게 무작위 노이즈 주입과 
적대적 공격 기법으로 나뉜다. 무작위 방식은 구현이 
간단하나, 에이전트의 실패를 유발하는 결정적 원인을 
파악하기 어렵고 효율이 낮다 [3]. 반면, 적대적 공격 기법들은 
탐지 성능은 우수하나, 높은 연산 비용과 학습 복잡도로 인해 
실시간 진단 도구로 활용하기에는 제약이 존재한다 [4]. 
본 논문에서는 이러한 한계를 극복하기 위해 상태 공간 
모델(SSM)인 Mamba 아키텍처를 활용한 효율적인 강건성 
테스팅 프레임워크를 제안한다 [5,6]. 우리는 Mamba 가 환경의 
동역학을 학습하는 과정에서 내부 파라미터인 델타 (∆)  값이 
급증하는 구간이 곧 정보량이 높고 노이즈에 취약한 불안정한 
상태라는 가설을 제시한다. 제안 기법은 Mamba 의 델타 
파라미터 지표를 모니터링하여 불안정한 시점의 상태를 
식별하고, 선택적으로 노이즈를 주입하여 모델의 취약점을 
효율적으로 진단한다. 
 
2. 상태 공간 모델 기반 강건성 테스팅 메커니즘 
SSM 은 연속적 시간의 시스템을 이산화하며, 이때 이산화 
파라미터 델타 (∆) 는 데이터를 얼마나 반영할지 결정하는 

역할을 한다 [5]. 기존 SSM 과 달리 Mamba 는 입력 𝑥에 따라 
∆가 동적으로 변하는 선택적 메커니즘을 도입하였다 [6]. 

∆𝑡= 𝑆𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑊∆𝑥𝑡 + 𝑏∆) (1) 

수식 1 과 같이 ∆𝑡 는 고정된 값이 아닌 매 시점 입력 
데이터와 학습된 파라미터의 조합에 의해 결정되는 동적 
행렬이다. 본 연구는 이러한 ∆가 급격히 변하는 시점이 곧 
모델이 예측하기 어려운 불안정 상태라는 가설에 기반한다. 

 

그림 1. 제안하는 Mamba 기반 강건성 테스트 프레임워크 

그림 1 은 제안하는 전체 프레임워크의 구조를 보여준다. 
제안 기법은 에이전트의 정책과 무관하게 환경의 특성을 
분석하기 위해 Mamba 아키텍처를 관측 모델로 활용한다. 
오프라인 데이터셋을 사용하여 관측 모델은 현재 시점까지의 
상태 𝑠1:𝑡를 입력 받아 다음 상태 𝑠𝑡+1을 예측하도록 학습한다 
[8,9]. 학습된 관측 모델은 테스팅 단계에서 실시간으로 
입력되는 상태 𝑠𝑡에 대해 내부 파라미터 ∆𝑡를 산출한다. 이를 
지표로서 활용하기 위하여 다음 수식 2 와 같이 L2-Norm 을 
적용하여 단일 스칼라 값인 중요도 점수 (𝑆𝑡)로 변환한다. 

𝑆𝑡 = ||∆𝑡||2 = √∑ (∆𝑡,𝑖)
2𝐷

𝑖=1
(2) 

Current State 

Mamba  bserver
    

                        

Target RL  gent
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여기서 𝑆𝑡 값이 클수록 현재 상태가 미래 예측에 중요한 
정보를 담고 있음을 의미한다. 제안 기법은 𝑆𝑡 가 사전에 
설정된 임계치 (𝜏)를 초과하는 경우 시스템의 취약 시점으로 
판단하여 가우시안 노이즈를 주입하고 강건성을 검증한다. 
 
3. 상태 공간 모델 기반 강건성 테스팅 메커니즘 적용 사례 
제안 기법의 유효성을 검증하기 위해 D4RL 벤치마크의 

MuJoCo 환경(Hopper, Walker2d, HalfCheetah)을 사용하였으며 
검증 대상 모델로는 Medium 데이터셋으로 학습된 DT 모델을 
사용하였다 [1,7]. 이때 Mamba 관측 모델의 하이퍼 파라미터는 
임베딩 차원 𝐷 = 64 , 상태 차원 𝑁 = 16으로 설정하여 대상 
모델과 동일한 데이터셋으로 학습시켰다. 노이즈 주입 임계치 
(𝜏)는 사전 에피소드 수행을 통해 수집된 ∆값의 분포의 상위 
10%로 결정하였다. 
 
3.1 실험 결과 및 분석 

표 1. 환경 별 성능 하락률 결과 

Noise Performance Drop 
Scale Method HalfCheetah Hopper Walker2d 

0.1 
Random 6.0% 6.5% 8.3% 
Mamba 9.5% 24.3% 8.3% 

0.2 
Random 8.1% 14.3% 11.9% 
Mamba 17.8% 39.8% 5.5% 

0.3 
Random 10.8% 16.6% 14.0% 
Mamba 34.6% 53.5% 19.9% 

0.4 
Random 10.0% 23.6% 29.9% 
Mamba 26.3% 60.6% 40.2% 

0.5 
Random 10.0% 22.8% 22.9% 
Mamba 37.8% 61.7% 46.8% 

표 1은 각 환경에서의 제안 기법 적용 결과이다. 실험 결과, 
로봇의 물리적 구조에 따라 제안 기법의 효과가 뚜렷한 
차이를 보였다. 구조적으로 가장 불안정한 Hopper 에서는 제안 
기법의 효용성이 극대화되었다. 최소 노이즈 스케일만으로도 
무작위 방식이 최대 스케일을 가했을 때보다 더 큰 성능 
하락을 유발하며 취약 시점의 중요성을 입증하였다. 이족 
보행 로봇인 Walker2d 에서는 노이즈 강도가 높아질수록 두 
방식 간의 격차가 벌어졌다. 최대 스케일에서 제안 기법은 
무작위 방식 대비 2 배 이상의 성능 저하를 기록하였다. 
마지막으로 가장 안정적인 HalfCheetah 에서도 무작위 방식은 
성능 저하가 미미했던 반면, 제안 기법은 약 4 배에 달하는 
효과를 보였다. 종합적으로 제안 기법은 모든 환경에서 
무작위 방식 대비 월등한 성능 하락을 유도하여, 효율적인 
강건성 테스팅 도구임을 증명하였다. 
 
3.2 선택적 메커니즘과 불안정 상태의 상관관계 
본 연구는 Mamba 의 내부 파라미터인 델타(∆)가 급증하는 
구간이 곧 에이전트의 불안정 상태라는 가설을 검증하였다. 
선택적 메커니즘에서 ∆는 정보 반영률을 결정하므로, 높은 
중요도 점수(𝑆𝑡)는 해당 상태가 미래 예측에 핵심적인 정보를 

담고 있음을 의미한다. 실험 결과, ∆ 값이 높은 시점에 
노이즈를 주입했을 때 무작위 방식 대비 치명적인 성능 
하락이 발생하여 이 가설의 유효성이 입증되었다. 이는 
복잡한 연산이나 모델 내부의 기울기 정보 없이도, 관측 
모델의 내부 지표만으로 시스템의 취약 시점을 효율적으로 
식별할 수 있음을 시사한다. 
 
4. 결론 
본 논문에서는 오프라인 강화학습 모델의 강건성을 

효율적으로 평가하기 위해, SSM 기반 Mamba 아키텍처를 
활용한 테스팅 프레임워크를 제안하였다. 우리는 Mamba 의 
내부 지표인 델타 (∆)를 활용하여 에이전트가 외부 노이즈에 
민감하게 반응하는 불안정한 상태를 식별하고, 해당 시점에 
선별적으로 노이즈를 주입하였다. 실험 결과, 제안 기법은 
무작위 방식과 동일한 빈도의 노이즈 주입만으로도 최대 4 배 
이상의 보상 하락을 유도하였다. 이는 제안 기법이 
에이전트의 제어 실패를 유발하는 결정적 순간을 효과적으로 
식별했음을 시사하며, 효율적인 블랙박스 강건성 테스팅 
도구로서의 활용 가능성을 보여준다. 본 연구는 무작위 
방식과의 비교를 통해 제안 기법의 기초적인 타당성을 
확인하였으며, 향후 연구에서는 단순 휴리스틱 및 기존 
적대적 공격 기법과의 연산 비용 및 탐지 성능에 대한 정량적 
비교를 수행하여 Mamba 내부 지표의 고유한 효용성을 더욱 
정밀하게 검증하고자 한다. 
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 ABSTRACT 
 Complex  dependencies  in  AI/ML  projects  are  a  major  barrier  to  research  reproducibility.  While  Docker  is  the  standard  for 

 deployment,  its  steep  learning  curve  and  repetitive  image  builds  make  it  unsuitable  for  rapid  experimentation,  leading 
 researchers  to  prefer  Conda.  However,  existing  tools  only  support  Docker.  We  propose  EnvAgent,  a  hybrid  agent  system 
 that  automatically  generates  executable  Conda  environments  from  GitHub  repositories.  EnvAgent  reduces  token  costs 
 through  AST-based  static  analysis  and  automatically  recovers  from  failures  via  a  self-healing  mechanism.  Experiments  on  9 
 AI/ML projects achieved a 77.8% success rate. 
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   .  torch,  tensorflow         
   OS        ,  Apple  Silicon  
 Linux GPU     . 

 EnvAgent   77.8%         Conda     
 . 

 4.3.2  RQ2:        EnvAgent      
    ? 

   ,  EnvAgent   ·       66.7%(2/3)  
   ,        100%(3/3)  
  . 

         ,           
     .  keras-team/autokeras    
         ,  microsoft/LightGBM   C++ 
      . 

         . 

 5.   
        . 

 ,  Monorepo          .   
                    
 ,                 
 . 

 ,          .       
         ,  Unit  Test         
   environment.yml     2        
  . 

 ,          .  LightGBM     
   C++          ,     
 (CMakeLists.txt  )     Conda     
 ( : gxx_linux-64)      . 

 6.   
     AI/ML             

   Conda        ,         
 (LLM)           EnvAgent  
 .  EnvAgent   AST          LLM    
           ,    8  
                
       . 

   GitHub            , 
 EnvAgent   77.8%            
 .    10   (LOC)         
              
 .                LLM 
                  
         .     
   ,  2       ,  C++           
    . 

    GitHub   #LOC  Success 

  
 #LOC<15,000 

 ageitgey/face_recognition[18]  3,653   
 scikit-learn-contrib/DESlib[19]  8,743   
 keras-team/autokeras[20]  10,748  X 

  
 #LOC<100,000 

 ultralytics/yolov5[21]  18,587   
 scikit-learn-contrib/imbalanced-le 
 arn[22]  20,666   

 microsoft/LightGBM[23]  97,348  X 

  
 #LOC>100,000 

 pytorch/vision[24]  100,426   
 Netflix/metaflow[25]  120,096   
 scikit-learn/scikit-learn[26]  296,096   
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Abstract 

 AI systems increasingly operate in dynamic, evolving environments where models must adapt 

continuously. Traditional testing, however, assumes static architectures and fixed correctness, leaving 

post-deployment evolution unverified. We suggest that testing must itself become adaptive, evolving 

alongside the system it evaluates. We identify three critical gaps—conceptual (what counts as testable 

evolution), methodological (how to verify during runtime), and data-related (how to maintain relevance 

under drift). We propose an adaptive runtime testing framework structured around three dimensions: 

the evolution boundary (safe adaptation limits), test memory (preservation of verified behaviors), and 

acceptance threshold (criteria for trustworthy updates). Integrated across the edge–cloud hierarchy, the 

framework supports continuous monitoring and adaptive safety assurance throughout system evolution. 

Adaptive runtime testing transforms verification from a static audit into an ongoing process, ensuring 

that learning systems remain safe, interpretable, and accountable as they evolve. 

 

1. Introduction 

AI-enabled autonomous systems such as autonomous 

driving system (ADS) have reached a level of complexity 

where pre-deployment testing alone is no longer sufficient 

[1]. Traditional testing pipelines are designed under assum-

ptions that the system being tested remains static, where 

model parameters, operating environment, and behavioral 

logic are all fixed during evaluation as shown in Figure 1 (a) 

[2, 3]. However, these assumptions break down once an 

ADS is released into the real world [3]. As demonstrated in 

Figure 1 (b), an agent operates in dynamic environments, 

experiences continual sensor drift, and faces unforeseen 

road conditions that were never represented in the training 

data. As a result, decision-making models must update and 

adapt over time to maintain reliability. Yet every adaptation 

introduces new uncertainty: the system tested yesterday is 

no longer identical to the system driving today [1, 4]. 

Runtime testing emerges as a response to this challenge 

[5, 6]. Instead of verifying the system only before 

deployment, runtime testing embeds the evaluation process 

directly into the operation of the agent itself [7]. The goal is 

not only to detect errors, but to continuously monitor 

whether the system remains safe and predictable as it 

evolves. This means that testing becomes an ongoing, 

adaptive process that is tightly coupled to the system’s 

  
Figure 1 Static versus adaptive testing paradigms. Adapti-

ve runtime testing embeds evaluation within system opera-

tion, enabling continuous assurance for evolving agents. 

 

perception, decision, and control loops. Such a paradigm 

shift transforms testing from an external quality check into 

an intrinsic function of autonomy [6]. 

However, applying runtime testing introduces unique 

difficulties. Unlike static models, an evolving agent 

continuously modifies its internal state and decision 

boundaries in response to changing data [8, 9]. 

Conventional regression tests quickly lose relevance, as 

each new model version may interpret inputs differently [10]. 
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Moreover, there is no definitive standard to distinguish 

whether a model’s evolution represents a safe and valid 

adaptation or an unsafe deviation from its intended behavior. 

In this context, the boundaries of what is “tested” must 

evolve alongside the system itself. 

Adaptive runtime testing requires mechanisms for defining 

and validating the limits of safe evolution. Specifically, we 

suggest that three dimensions become central: the evolution 

boundary, which defines how far the system is allowed to 

change while remaining within safety constraints; the test 

memory, which ensures that new adaptations do not erase 

previously verified behaviors; and the acceptance threshold, 

which quantifies when an evolved model can be trusted to 

replace its predecessor. 

We propose that AI testing must evolve into an adaptive, 

runtime process, capable of dynamically validating self-

updating models that operate in the real world. Specifically, 

we stress that testing for self-evolving autonomous driving 

systems should be structured around three interdependent 

concepts: (1) Evolution Boundaries, (2) Test Case Forgetting 

(Memory), and (3) Acceptance Thresholds. These concepts 

form the foundation of an adaptive runtime testing 

framework that maintains trust in evolving systems. 

By re-conceptualizing testing as a dynamic, in-operation 

process, we can enable self-evolving autonomous systems 

that adapt intelligently without compromising safety. This 

paper aims not to explain technical details, but to analyze 

the necessity of adaptive runtime testing and to present its 

conceptual framework. This paper contributes (i) an analysis 

of why static testing paradigms fail under continuous 

evolution, (ii) a definition of adaptive runtime testing 

principles grounded in boundary monitoring and dynamic 

validation, and (iii) a synthesis of unsolved gaps in current 

testing methodologies. The goal is to transform testing from 

a one-time certification procedure into an ongoing safety 

assurance loop, as shown in Figure 1 (c), so that 

autonomous systems can not only learn, but learn safely. 

 

2. Gaps: Limits of Static Testing 

As learning agents begin to evolve, an entity being tested 

becomes a moving target, and static validation no longer 

guarantees safety or reliability [2]. The failure of current 

approaches reveals three fundamental gaps that prevent 

existing methodologies from supporting self-evolving agents. 

2.1. Conceptual Gap 

Defining Testable Evolution. Traditional testing presumes a 

stable definition of correctness. Once an ADS begins to 

change autonomously, this notion breaks down. There is no 

shared framework for defining what constitutes “safe” or 

“testable” evolution. If an adaptive model modifies its 

internal decision boundaries, should success be judged by 

its original specification or by its updated objectives? 

Without clear criteria for acceptable evolution, post-

deployment learning cannot be distinguished from system 

drift. This lack of conceptual clarity prevents testing 

frameworks from defining clear boundaries for safe evolution. 

2.2. Methodological Gap 

Testing During Runtime. Even if acceptable evolution 

could be defined, there remains no method to verify it in real 

time. Static testing is inherently episodic. It validates a 

snapshot of system behavior at discrete points in time. In 

contrast, self-evolving agents continuously update in 

response to feedback, rendering traditional regression tests 

obsolete. Once the model changes, earlier test cases may 

no longer measure equivalent functionality. Current practices 

provide no mechanism to generate adaptive test cases or 

validate model updates under live conditions. As a result, 

model evolution proceeds without synchronized verification. 

2.3. Data and Environment Gap 

Self-evolving systems operate in open, non-stationary 

environments [11]. Sensor degradation, seasonal variation, 

and interactions constantly reshape the data distribution on 

which the system relies [12, 13]. Static validation datasets 

quickly become outdated to represent the system’s evolving 

operational domain. This leads to data drift, where the real-

world context diverges from the training and test conditions, 

producing unmeasured failure modes. Without continuous 

adaptation of test data and contextual evaluation, even well-

trained systems may degrade silently while appearing valid 

under obsolete benchmarks. In other words, current testing 

paradigms are structurally misaligned with evolving systems. 

They lack conceptual clarity about what constitutes testable 

evolution, methodological capacity to perform testing during 

runtime, and data adaptability to reflect shifting environmen-

ts. These gaps underscore the need for new testing 

paradigms for adaptive runtime testing. 

 

3. Position: Adaptive Runtime Testing 

3.1. Addressing the Conceptual Gap 

Adaptive testing for self-evolving autonomous systems 

requires more than monitoring runtime performance: it 

demands a structured framework to constrain, preserve, and 

evaluate system evolution. We identify three interdependent 

dimensions that together define how an evolving system can 

remain trustworthy throughout the life-cycle of adaptation. 

Evolution Boundary: Constraining How Far a System May 

Evolve. The evolution boundary defines the permissible 

range of behavioral or model changes that an autonomous 

system can undergo without compromising safety or core 

functionality. It acts as a set of predefined safety corridors 
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that specify how far the system may adapt while still being 

considered valid. Boundaries are not single numerical limits 

but multi-dimensional envelopes encompassing perception 

accuracy, decision latency, control stability, and other 

safety-critical metrics. For instance, an ADS may be allowed 

to adjust its perception model to handle new weather 

conditions as long as detection accuracy does not drop 

below a defined margin and reaction time remains within 

certified limits. By explicitly setting these evolution boundar-

ies before runtime adaptation, developers establish a 

measurable zone of safe learning and change. Crossing a 

boundary indicates that the system’s adaptation has entered 

unsafe or unverified territory, triggering intervention. 

Test Memory: Preserving What Must Not Be Forgotten. The 

test memory mechanism ensures that, as the system evolves, 

it retains competence on previously verified scenarios. Self-

evolving models risk “catastrophic forgetting”, where 

learning new patterns causes the loss of established 

capabilities [14]. In the context of adaptive testing, test 

memory functions as a continuous regression safeguard that 

automatically re-validates old test cases alongside new 

adaptations. For an evolving functional model, this may 

involve rerunning key perception and control tests from 

previously validated datasets each time the model updates. 

If the updated model fails cases that were once passed, it 

indicates functional regression rather than safe adaptation. 

Acceptance Threshold: Deciding When Evolution is Safe 

Enough. The acceptance threshold quantifies whether an 

evolved model has achieved a sufficient balance of 

improvement and stability to be trusted for deployment. It 

operates as a decision rule that integrates both the evolution 

boundary and test memory: the system must remain within 

boundary constraints and retain past capabilities before any 

update. In practice, acceptance thresholds may be defined 

as numerical margins or composite scores across safety and 

performance metrics. For example, a new control model may 

be accepted if it improves trajectory stability by at least 5% 

in new conditions while maintaining at least 98% success on 

prior safety tests. If the new model fails to meet these 

thresholds, the adaptive testing framework rejects the update 

or flags it for further verification. Acceptance thresholds thus 

serve as operational gatekeepers that translate adaptive 

testing results into deployable decisions. 

3.2. Addressing the Methodological Gap 

Runtime Testing in the Distributed Service Hierarchy. The 

second challenge lies in how to perform testing during 

operation. Since static regression frameworks cannot verify 

models that adapt on short timescales, any re-validation lag 

immediately undermines real-time safety and performance 

goals. We propose a distributed testing framework that splits 

verification responsibilities across the edge-cloud service 

hierarchy. At the edge, the AI agent works alongside 

lightweight, co-located monitoring modules that perform 

continuous, real-time safety checks. These local systems 

continuously monitor inputs and outputs for immediate 

unsafe drift and are equipped to trigger instantaneous safety 

interventions or service rollbacks on the individual instance. 

The cloud layer serves as the central hub for long-term 

governance, performing asynchronous large-scale verificati-

on through the ingestion and analysis of aggregated 

operational data. Within this centralized pipeline, comprehe-

nsive offline validation is conducted across diverse simulat-

ed scenarios to ensure global consistency over time and to 

update the acceptance rules. The edge–cloud architecture 

balances fast, local responsiveness at the edge with reliable, 

large-scale oversight in the cloud, integrating testing as a 

built-in function across both layers of the AI service pipeline. 

3.3. Addressing the Data and Environment Gap 

Co-Evolving Test Data. A third challenge arises from 

environmental and data drift. As real-world conditions 

change, fixed test datasets quickly lose representativeness, 

leading to unmeasured degradation. The adaptive testing 

process must therefore evolve its data basis in tandem with 

the system and its surroundings. In the proposed edge–

cloud architecture, the edge continuously collects contextual 

data and flags segments where model confidence or 

consistency deteriorates. These data streams are 

aggregated by the cloud, which detects distribution shifts 

and synthesizes updated test suites. The resulting drift-

aware test cases are periodically redeployed to the edge for 

localized revalidation. In this way, testing data evolve along 

with the operating environment, maintaining relevance as 

conditions change. We consider testing not as a static audit, 

but as a living process that adapts in space and time. 

Conceptually, it redefines correctness as bounded evolution; 

methodologically, it enables runtime verification through 

edge–cloud distribution; and environmentally, it ensures 

representativeness through adaptive data flow. Together, 

these principles constitute the foundation of adaptive 

runtime testing, a paradigm where learning systems can 

evolve safely, transparently, and continuously. 

 

4. Alternative Views 

The necessity of adaptive runtime testing for evolving AI 

systems contrasts with several established positions in AI 

safety and system engineering. Reviewing these views 

clarifies the boundaries and rationale of our proposal. 

Runtime testing may add operational overhead. Critics 

argue that runtime validation conflicts with real-time 

constraints. Adaptive runtime testing, however, relies on 
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lightweight runtime checks combined with deferred offline or 

cloud-based analysis, enabling continuous assurance 

without full in-situ verification. 

Continuous evolution challenges regulatory compliance. 

Regulatory frameworks typically assume static system 

configurations. We argue that adaptive runtime testing 

enables certifiable evolution by enforcing explicit boundaries 

and acceptance criteria, allowing controlled adaptation 

rather than uncontrolled drift. 

Static retraining may be safer than runtime adaptation. 

Limiting learning to offline retraining may suffice in closed 

environments but fails in open, dynamic settings. Adaptive 

runtime testing supports bounded and monitored adaptation 

when static models become unreliable. 

Self-validating systems risk circular assurance. Concerns 

about circular assurance overlook that runtime testing can 

be externally grounded through predefined oracles and audit 

mechanisms, complementing human and regulation. 

 

5. Conclusion 

Adaptive runtime testing redefines how we assure safety in 

learning systems. As AI agents evolve beyond their original 

specifications, static validation can no longer guarantee 

reliability. Embedding testing into runtime operation allows 

systems to adapt while remaining verifiable, accountable, 

and safe. By integrating evolution boundaries, test memory, 

and acceptance thresholds within an edge–cloud hierarchy, 

we enable continuous assurance throughout system 

evolution. Ultimately, adaptive runtime testing transforms 

verification from a one-time audit into an enduring safety 

loop that ensures autonomous systems not only learn but 

also learn responsibly. 
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요   약 

 최근 엣지 컴퓨팅 환경에서 드론 등을 활용한 실시간 객체 탐지 수요가 증가함에 따라 제한된 하드웨

어 자원에서 추론 속도를 높이기 위한 모델 경량화 기술이 중요해지고 있다. 그중 INT8 양자화

(Quantization)는 널리 사용되는 기법이나, 소형 객체 탐지(Small Object Detection, SOD)와 같이 시각적 

정보가 희소한 작업에서는 심각한 성능 저하를 유발하는 경향이 있다. 본 연구는 엣지 컴퓨터인 NVIDIA 

Jetson Orin Nano 에서 YOLOv11n 모델을 이용해 이러한 성능 저하의 원인을 분석하고 효율적인 해결책

을 제안한다. 분석 결과, SOD 데이터셋(UAVDT)은 일반 데이터셋(PASCAL VOC)에 비해 초기 레이어에서 

활성값(Activation)의 동적 범위가 넓게 형성되며, 이로 인해 양자화 오차가 증폭되어 탐지 성능이 하락함

을 확인하였다. 이를 해결하기 위해 본 논문은 모델 전체를 고정밀도로 연산하는 대신, 양자화 민감도가 

높은 초기 특징 추출 구간의 레이어만을 선별하여 FP16 정밀도를 유지하는 선택적 혼합 정밀도

(Selective Mixed Precision) 전략을 제안한다. 실험 결과, 제안된 기법은 INT8 기반 엔진 모델 대비 추론 

지연시간의 증가는 최소화하면서도 mAP50 성능을 약 2.5%p 향상시켜, 엣지 디바이스 기반 SOD 작업

에서 정확도와 효율성의 균형을 효과적으로 달성함을 입증하였다. 

 

1. 서  론 

최근 드론, 자율주행 차량, 로봇 등 소형·경량·저전력 

컴퓨팅을 필요로 하는 엣지(Edge) 컴퓨팅 환경에서 

딥러닝 기술의 활용이 급증하고 있다. 특히 드론을 

활용한 감시 정찰이나 조난자 수색과 같은 응용 

분야에서는 원거리에서 촬영된 영상 내의 객체가 매우 

작게 나타나는 소형 객체 탐지(Small Object Detection, 

SOD) 능력이 필수적이다. 이러한 환경에서는 대상이 

빠르게 이동하거나 관측 조건이 수시로 변화하므로 

실시간 탐지가 요구되며, 통신 지연이나 보안 문제를 

방지하기 위해 서버 의존도를 줄인 엣지컴퓨터에서의 

온디바이스(On-device) 추론이 선호된다. 그러나 엣지 

컴퓨터는 연산 자원과 메모리가 제한적이기 때문에, 

탐지 정확도를 유지하면서도 추론 지연시간을 

최소화해야 하는 Trade-off를 해결하는 것이 중요한 

과제이다. 

제한된 자원 내에서 추론 속도를 가속화하기 위해 

일반적으로 INT8 양자화(Quantization) 기법이 널리 

사용되지만, 이는 필연적으로 정밀도 감소를 동반하며 

특히 SOD 작업에서 그 성능 저하가 두드러지게 

나타난다. 일반적인 객체 탐지와 달리 SOD 환경에서 

양자화로 인한 정보 손실이 치명적인 이유는 다음과 

같다. Figure 1에서 확인할 수 있듯이, 일반적인 객체 

탐지 데이터셋인 PASCAL VOC[1]에 비해 UAVDT[2] 

데이터셋의 객체들은 이미지 내에서 차지하는 영역이 

극히 작다. 이러한 시각적 정보의 희소성으로 인해 첫째, 

소형 객체는 이미지 내에서 차지하는 픽셀 수가 적어 

시각적 정보가 희소하므로, 양자화 과정에서 발생하는 

미세한 수치 오차에도 특징(Feature)이 쉽게 소실되거나 

왜곡될 수 있다. 둘째, 본 연구의 분석에 따르면 SOD 

특성이 강한 데이터셋(UAVDT 등)은 일반 

데이터셋(PASCAL VOC 등)에 비해 초기 레이어에서 

활성값(Activation)의 동적 범위(Dynamic Range)가 넓게 

형성되는 경향이 있다. 넓은 활성값 범위는 고정된 8-

bit로 매핑될 때 표현 간격(Scale)을 넓혀 양자화 

오차(Quantization Error)를 증가시키며, 초기 

레이어에서 발생한 이러한 오차는 후속 레이어로 

전파되어 최종 탐지 성능에 악영향을 미친다. 

기존의 연구들은 주로 일반적인 객체 탐지나 분류 

문제에 집중되어 있어, 이러한 SOD 특유의 양자화 

민감도와 레이어별 특성을 고려한 최적화 논의는 

부족한 실정이다. 이에 본 연구에서는 Jetson Orin Nano  
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환경에서 엣지 실시간 추론을 위한 경량모델인 

YOLOv11n을 대상으로, SOD 수행 시 발생하는 INT8 

양자화 성능 저하의 원인을 레이어별 Activation 분포 

관점에서 분석한다. 분석 결과를 바탕으로, 본 연구는 

모델 전체를 고정밀도로 연산하거나 일괄적으로 

양자화하는 대신, 양자화 오차에 민감한 초기 특징 추출 

구간의 일부 레이어만을 선별하여 FP16 정밀도를 

유지하는 선택적 혼합 정밀도(Selective Mixed Precision) 

전략을 제안한다. 제안하는 방법은 전체 연산 비용을 

크게 증가시키지 않으면서도, 초기 레이어의 정보 

손실을  방지하여 INT8 추론의 효율성과 탐지 정확도 

사이의 균형을 효과적으로 달성함을 실험적으로 

입증하고자 한다. 

 

2. 관련 연구 

딥러닝 모델의 엣지 디바이스 배포를 위한 경량화 기법 

중, 양자화는 메모리 대역폭과 연산 비용을 획기적으로 

절감할 수 있는 핵심 기술이다. 특히 훈련 후 

양자화(Post-Training Quantization, PTQ)는 재학습 없이 

모델을 변환할 수 있어 실용적이나, 

활성값(Activation)의 분포 특성에 따라 성능 편차가 

크게 발생한다. 본 절에서는 Activation 분포가 

야기하는 양자화 난이도 문제와 이를 해결하기 위한 

혼합 정밀도(Mixed Precision) 연구들을 고찰하고, 소형 

객체 탐지 환경에서 본 연구가 갖는 차별성을 논의한다. 

 

2.1 Activation 분포와 양자화 난이도 

양자화 오차는 가중치보다 활성값의 분포에 더 큰 

영향을 받는 경향이 있다. 최근 Xiao et al.의 

SmoothQuant[3] 연구나 LLM.int8()[4] 연구 등은 

모델의 규모가 커지거나 특정 데이터 입력에서 

Activation 내에 극단적인 이상치가 발생할 경우, 

고정된 INT8 범위로의 선형 매핑이 큰 양자화 손실을 

유발함을 지적하였다. 이러한 연구들은 주로 수학적 

평활화기법을 통해 Activation의 난이도를 가중치 

쪽으로 이관하거나, 이상치 채널만 분리하여 연산하는 

방식을 제안하였다. 하지만 이러한 기법들은 주로 

대규모 언어 모델(LLM)이나 트랜스포머 구조에 

집중되어 있으며, 엣지 디바이스상의 실시간 객체 탐지 

모델(YOLO 등)에 그대로 적용하기에는 연산 

오버헤드가 발생하거나 하드웨어 지원 제약이 따를 수 

있다. 본 연구는 복잡한 변환 없이, SOD 데이터셋이 

갖는 고유한 특성을 분석하여 레이어 단위의 정밀도 

조절만으로 문제를 완화한다는 점에서 차이가 있다. 

 

2.2 민감도 기반 혼합 정밀도(Mixed Precision) 양자화 

모든 레이어를 동일한 비트 수(예: INT8)로 양자화할 때 

발생하는 성능 저하를 방지하기 위해, 레이어 별 

민감도를 분석하여 비트 폭을 차등 할당하는 혼합 

정밀도 기법이 활발히 연구되었다. 대표적으로 Dong et 

al.의 HAWQ[5]는 헤시안행렬의 고윳값을 기반으로 각 

레이어가 손실 함수에 미치는 영향을 측정하고, 민감한 

레이어에 높은 비트 수를 할당하는 프레임워크를 

제안하였다. 그러나 헤시안 기반 접근법은 민감도 

계산에 추가 계산을 요구하며, 파라미터의 곡률 지표로 

계층별 bit를 배분한다. 반면, 본 연구는 소형 객체 

탐지라는 구체적 도메인에서 입력 데이터의 특성(작은 

객체, 복잡한 배경)이 초기 레이어의 Activation 

Range를 확장시킨다는 현상적 원인에 집중한다. 이를 

통해 복잡한 민감도 탐색 과정 없이 초기 레이어의 

정밀도 보존이 성능 회복의 핵심임을 규명하고, 

실용적인 설계 가이드를 제시한다. 

 

3. 제안 방법 

본 연구는 SOD 환경에서 INT8 양자화 성능 저하가 

두드러지는 원인을 레이어별 activation range 관점에서 

분석하고, 이를 완화하기 위한 선택적 혼합 

정밀도(selective mixed precision) 추론 전략을 

제안한다. 먼저 동일한 모델 조건에서 데이터 특성에 

따른 activation 분포 차이를 확인하기 위해, 학습된 

Figure 1 PASCAL VOC 2007 데이터셋(좌) 과 UAVDT 데이터셋(우)의 예시 이미지 
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YOLOv11n 모델을 FP32 ONNX로 변환한 뒤 추론 

과정에서 레이어별 activation 값을 출력하여  

통계적으로 분석하였다. 분석에는 일반 객체 탐지에서 

널리 사용되는 기준 데이터셋인 PASCAL VOC-2007 

validation dataset[1]과 항공/원거리 촬영으로 소형 

객체 비중이 높은 SOD 조건을 대표하는 UAVDT 

validation dataset[2]을  사용하였으며, 두 데이터셋을 

비교한 결과 초기 레이어 구간에서 activation range가 

서로 다르게 나타나는 현상을 확인하였다(Figure 2). 

특히 UAVDT는 원거리 객체가 빈번해 작은 객체 비중이 

상대적으로 높기 때문에, 초기 특징 추출 구간에서 

activation 값의 동적 범위가 더 넓게 형성될 수 있음을 

시사한다. SiLU 활성화의 하한(≈-0.278)때문에 

레이어별 min 값이 거의 수렴하므로, Figure 2는 0–max 

기준으로 activation 범위를 표시하였다.  

이러한 관찰은 INT8 양자화에서 중요한 의미를 

갖는다. INT8은 제한된 8-bit 표현 범위 내에 값을 

매핑하므로, activation range가 넓어질수록 동일 

비트폭에서 표현 간격이 커져 근사 오차가 증가할 수 

있다. 초기 레이어는 저수준 특징을 추출하는 

단계이므로, 이곳의 정보 손실은 후속 레이어 전체에 

악영향을 미친다. 초기 고해상도 특징 추출 구간에서 

발생한 양자화 오차가 소형 객체의 경계, 텍스처 정보를 

먼저 훼손한 뒤 후속 레이어로 누적 전파되므로, 본 

연구는 오차 전파 시작점인 초기 일부 레이어만 

FP16으로 유지한다. 실수값 𝑥 의 INT8 선형 양자화를 

𝑞 = 𝑟𝑜𝑢𝑛𝑑 (𝑥
𝑠
) + 𝑧 , 역양자화를 𝑥′ = (𝑞 − 𝑧)𝑠 로 두고 

오차를 𝛿𝑥 = 𝑥′ − 𝑥 로 정의한다. 선형 연산 𝑦 =
 ∑ 𝑎𝑖𝑤𝑖𝑖 에 대해 양자화된 출력 오차는  

∆𝑦 =  𝑦′ − 𝑦 ≈  ∑ 𝑎𝑖𝛿𝑤𝑖 + ∑ 𝑤𝑖𝛿𝑎𝑖
𝑖𝑖

 

로 근사할 수 있다. 즉 가중치/활성값의 양자화 오차가 

입력 활성값 𝑎  또는 가중치 𝑤 에 의해 증폭되어 출력 

오차로 전파된다. 또한 활성값의 동적 범위가 커질수록 

스케일 𝑠 가 커지고, |𝛿𝑎| 가 증가할 수 있어 초기 

레이어에서의 오차가 누적적으로 성능저하로 이어질 수 

있다. 이에 따라 본 연구는 초기 특징 추출의 일부 

컨볼루션 레이어만 FP16으로 유지하고 나머지는 

INT8로 수행하는 선택적 혼합 정밀도 전략으로 초기 

구간의 오차 전파를 완화한다. 

 

4. 실  험 

4.1 실험 환경 

본 연구의 실험은 UAVDT 데이터셋으로 YOLOv11n을 

학습한 뒤, valid best 모델을 기준으로 TensorRT 기반 

추론 엔진을 구성하여 수행하였다. 비교 정밀도는 FP32, 

FP16, INT8이며 성능 평가는 IoU=0.5에서 계산한 

클래스별 AP의 평균 (mAP50)을 기준으로 진행하였다. 

여기서 기본 INT8 엔진은 INT8 양자화를 적용하되, 

TensorRT의 레이어 지원 및 정밀도 선택에 따라 일부 

연산이 FP16/FP32로 수행되는 혼합 정밀도 형태로 

구성되었다. 본 연구의 제안 설정은 이 기본 엔진을 

기준으로, SOD에서 민감할 수 있는 초기 구간의 일부 

컨볼루션 레이어 정밀도를 FP16으로 명시적으로 

유지하도록 조정한 변형 엔진을 구성하여 비교하였다. 

 

4.2 결과 및 논의 

 FP32 FP16 INT8 

mAP50(Pascal) 54.4% 54.4% 53.8% 

mAP50(UAVDT) 27.1% 27.1% 23.9% 

Table 1 Pascal VOC 2007 및 UAVDT 데이터셋에 대한  

YOLOv11n 정밀도별 mAP50 성능 비교. 

 

 mAP50 Mean Latency(ms) 

INT8(base) 23.9% 7.039 

INT8(ours) 26.4% 7.141 

Table 2 초기 레이어 혼합 정밀도(Ours) 적용 시 기본 

INT8 모델(Base)대비 mAP50 및 지연시간 비교. 

Figure 2 PASCAL VOC 2007(좌)-UAVDT(우)에서 FP32 레이어별 activation 범위 비교. 
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Figure 3 Layer #0-#2의 연산 구조와 합성곱 연산에 대

한 FP16 정밀도 적용 위치 

 

정밀도 설정에 따른 기본 성능 비교 결과를 표 1에서 

볼 수 있다. FP32/FP16 대비 INT8에서 mAP50이 

감소하는 경향이 관찰되었으며, 특히 small object 

비중이 높은 SOD 조건에서는 정밀도 감소에 따른 성능 

저하가 더 두드러질 수 있음을 확인하였다(Table 1). 

이는 엣지 추론에서 INT8 가속이 유효하더라도, 

SOD에서는 정확도 손실이 무시하기 어려운 문제가 될 

수 있음을 시사한다. 

INT8 성능 저하를 완화하기 위해 초기 3개 컨볼루션 

레이어만 FP16으로 유지하고 나머지는 INT8으로 

수행하는 선택적 혼합 정밀도 엔진을 

구성하였다.(Figure 3) 이때 해당 레이어들은 

TensorRT의 레이어별 정밀도 설정을 통해 가중치와 

활성화값 모두 FP16 정밀도로 연산되도록 

강제하였으며, 그 결과 기준 엔진 대비 mAP50이 

23.9%에서 26.4%로 향상되어 +2.5%p의 성능 개선을 

보였다(Table 2). 한편, 추론 속도 측면에서는 초기 

레이어의 고정밀도 연산으로 인해 평균 지연시간이 

7.039ms에서 7.141ms로 약 1.4%(0.1ms) 소폭 

증가하였다. 그러나 이는 실시간성을 해치지 않는 

미미한 수준으로 제안하는 방식이 2.5%p의 정확도 

향상을 위해 지불하는 비용으로서 충분히 효율적인 

Trade-off임을 보여준다. 즉, 전체 정밀도를 상향하지 

않고도 초기 구간의 제한적 정밀도 보존만으로 INT8 

성능 저하를 유의미하게 완화할 수 있음을 확인하였다. 

이러한 개선은 초기 레이어에서 관찰된 activation 

range 확대가 양자화 민감도를 높일 수 있다는 분석과 

일관된 결과로 해석된다. 즉, activation range가 넓게 

형성되는 초기 구간을 FP16으로 수행하여 해당 구간의 

양자화 근사오차를 완화하고, 소형 객체 탐지에 중요한 

미세 특징 정보의 손실을 줄였기 때문에 mAP50 개선에 

기여했을 가능성이 있다. 결론적으로 SOD 조건에서 

INT8 성능 저하가 실제로 관찰됨을 보았고, 초기 

구간의 선택적 FP16 적용만으로도 그 저하를 

부분적으로 회복할 수 있음을 볼 수 있다. 이는 혼합 

정밀도 설계가 모델 전체를 상향하는 방식이 아니라, 

오차가 발생하기 쉬운 구간을 좁혀 조정하는 최소 

변경접근으로도 의미 있는 개선을 얻을 수 있음을 

시사한다. 따라서 제안 방식은 엣지 배치 상황에서 

정확도 개선과 효율 유지 사이의 균형을 맞추기 위한 

실무적 설계 선택지로 해석될 수 있다. 

 

5. 결  론 

본 연구는 Jetson Orin Nano에서 YOLOv11n 기반 

SOD 수행 시 INT8 양자화로 인한 성능 저하 문제를 

다루고, 일부 레이어만 FP16으로 유지하는 선택적 혼합 

정밀도를 적용해 정확도–지연시간 절충을 개선했다. 그 

결과 INT8(base) 대비 mAP50을 +2.5%p 향상시키면서 

지연시간 증가는 약 0.1ms로 제한되어, SOD 엣지 

추론에서 정밀도 선택이 단순 가속 옵션이 아니라 

성능에 직접 영향을 주는 설계요소임을 시사한다.  

다만 본 결과는 단일 디바이스, 단일 모델, 제한된 

데이터셋 조건에 기반하며, 초기 레이어 선택의 

타당성은 확인했으나  레이어 수 및  

적용구간(Backbone/Neck/Head)에 따른 민감도 특성은 

보다 체계적인 분석이 필요하다. 향후에는 다양한 

모델/엔진에서 재현성 검증 및 PTQ/QAT 결합을 통한 

자동 정밀도 배치로 확장할 필요가 있다. 
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요� � �약�

모델체킹은� 시스템의� 성질을� 자동으로� 검증하는� 기법이지만,� 일반적으로� 모델체킹에서� 반복적으로� 검증을� 수

행하는� 경우에� 기존의� 검증� 결과를� 재활용하는� 기술이� 널리� 연구되지� 않았다.� 본� 연구는� 강화학습을� 활용하여�

모델체킹의�휴리스틱을�자동으로�학습하는�프레임워크를�제안한다.� 술어�요약을�통해�구체적�상태를�고정된�차

원의� 요약� 상태로� 변환하고,� 이� 요약� 공간에서� 테이블� 기반� Q-learning� 및� DQN을� 적용하여� 오류� 상태� 도달�

가능성을�예측하는�휴리스틱을�학습한다.�Dining�Philosophers� 벤치마크에�대한�실험�결과,�Q-table�기반�휴리

스틱은�임의�탐색�대비�최대� 5.6배,�DQN�기반�휴리스틱은�최대� 48배의�탐색�효율�향상을�보였다.�

1.�서론�

모델체킹(model� checking)은� 시스템이� 주어진� 성질을�

만족하는지�자동으로�검증하는�기법으로,� 하드웨어�및� 소프트웨어�

시스템의� 신뢰성� 확보에� 널리� 활용되어� 왔다� [1].� 예를� 들어,�

Amazon� Web� Services는� 분산� 시스템의� 핵심� 알고리즘� 검증에�

모델체킹을�적용하여�설계�오류를�발견한�바�있다.�

시스템� 검증� 과정에서� 오류가� 발견되면� 이를� 수정하고� 다시�

검증해야�하며,� 시스템이�변경될�때마다�기존�오류의�재발�여부를�

확인해야�한다.� 이러한�반복적�검증�상황에서�매번�시스템의�모든�

가능한� 상태를� 처음부터� 탐색하는� 것은� 비효율적이지만,� 기존�

검증�결과를�재활용하는�기술은�널리�연구되지�않았다.�

모델체킹의� 탐색� 효율을� 높이면� 이러한� 반복� 검증의� 부담을�

줄일� 수� 있다.� 지향성� 모델체킹(directed� model� checking)은�

휴리스틱을� 통해� 오류� 상태에� 가까운� 상태를� 우선� 탐색하여�

효율을� 높이는� 기법이다� [2].� 기존� 지향성� 모델체킹� 연구들은�

대부분� 도메인� 지식에� 기반한� 휴리스틱을� 직접� 설계하거나,� 특정�

유형의�시스템에�특화되어�있다.�

본� 연구는� Q-learning� 기반의� 강화학습(reinforcement�

learning)을� 활용하여� 휴리스틱을� 자동으로� 학습하는�

프레임워크를� 제안한다.� 강화학습에서는� 목표� 상태� 도달� 시�

보상을� 부여함으로써,� 각� 상태에서� 목표까지� 도달하는� 경로의�

가치를� 학습할� 수� 있다.� 오류� 상태를� 목표로� 설정하면,� 학습된� Q�

함수는� 각� 상태가� 오류� 상태에� 얼마나� 가까운지를� 나타내므로�

휴리스틱으로�활용될�수�있다.�

이러한�접근을�모델체킹의�휴리스틱�학습에�적용하는�데에는�두�

가지� 어려움이� 있다.� 첫째,� 모델체킹에서는� 상태� 수가� 방대하여�

모든� 상태의� 가치를� Q-table� 등에� 개별적으로� 저장하기� 어렵다.�

또한� 학습에�사용한� 시스템보다�큰� 시스템을� 검증할� 때,� 학습�중�

 
*
이�논문은� 2024년도�정부(과학기술정보통신부)의�재원으로�한국연구재단의�지원(No.NRF-2021R1A5A1021944,�No.RS-2024-00413202)과�정보통신

기획평가원의�지원(No.RS-2024-00439856)을�받아�수행된�연구임�

방문하지� 않은� 상태에� 대해서는� 휴리스틱을� 제공하지� 못한다.�

둘째,�Q�함수를� Q-table로�명시적으로�저장하는�대신�DQN(Deep�

Q-Network)와� 같은� 신경망으로� 근사하더라도,� 시스템의� 상태를�

신경망� 입력으로� 표현하는� 방식이� 시스템마다� 달라� 일반적인�

적용이�어렵다.�

본�연구는�술어�요약(predicate�abstraction)을�활용하여�이러한�

문제를� 해결한다.� 술어� 요약은� 구체적� 상태를� 미리� 정의된�

술어들의�만족�여부를�나타내는�불리언�벡터로�변환하는�기법이다.�

이를� 통해� 방대한� 상태� 공간을� 고정된� 차원의� 요약� 공간으로�

변환하여,� 시스템의� 크기가� 달라지더라도� 동일한� 차원의� 표현을�

사용할�수�있다.�

본� 연구는� 술어� 요약과� Q-learning을� 결합한� 휴리스틱� 학습�

프레임워크를�제안한다.� 요약� 상태�공간에서� Q-table을� 학습하고,�

이를�최선�우선�탐색(best-first� search)의�휴리스틱으로�활용한다.�

또한� DQN� 기반� 휴리스틱으로의� 확장을� 통해� 학습� 중� 방문하지�

않은�요약�상태에�대해서도�휴리스틱�값을�예측할�수�있게� 하였다.� �

Dining� Philosophers� 벤치마크� 실험� 결과,� Q-table� 기반�

휴리스틱은� 임의� 탐색� 대비� 최대� 5.6배,� DQN� 기반� 휴리스틱은�

최대� 48배의�탐색�효율�향상을�보였다.�
�

2.�관련�연구�

지향성� 모델체킹은� 휴리스틱을� 활용하여� 오류� 상태에� 가까운�

상태를� 우선� 탐색함으로써� 검증� 효율을� 높이는� 기법이다� [2].�

구체적� 상태� 공간에� 대한� 지향성� 모델체킹� 연구로,� [3]에서는�

명시적� 상태� 모델체킹에� A*� 알고리즘과� FSM� 거리,� Hamming�

거리� 등의� 휴리스틱을� 적용하여� 통신� 프로토콜� 검증에서� 효과를�

보였다.� 이러한� 연구들은� 도메인� 지식에� 기반하여� 휴리스틱을�

직접�설계해야�한다는�한계가�있다.�

요약된� 상태� 공간에서의� 지향성� 모델체킹� 연구도� 존재한다.�
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[4]에서는� BDD� 기반� 심볼릭� 모델체킹에� 지향성� 탐색을�

적용하였다.� [5]에서는� 거리� 보존� 요약(distance-preserving�

abstraction)을� 제안하여� 요약� 공간에서� 오류� 상태까지의� 거리를�

휴리스틱으로� 활용하였다.� [6]에서는� 술어� 요약을� 사용하여�

휴리스틱� 함수를� 생성하는� 방법을� 제안하였다.� 이러한� 연구들도�

휴리스틱을�직접�설계하거나�계산한다.�

한편,� TSP,� Max-Cut,� Bin� Packing� 등� NP-hard� 조합� 최적화�

문제에� 강화학습을� 적용한� 연구들이� 활발히� 진행되어� 왔다� [7].�

이러한� 연구들은� 조합� 최적화� 문제에� 초점을� 맞추고� 있으며,� 본�

연구에서와� 같이� 강화학습을� 통해� 모델체킹의� 휴리스틱을�

학습하는�연구는�거의�없었다.�
�

3.�배경�지식�

3.1.�모델체킹�

모델체킹(model� checking)은� 시스템의� 모든� 도달� 가능한�

상태를� 탐색하여� 주어진� 성질의� 만족� 여부를� 검증하는� 정형�

기법이다� [1].� 모델체킹에서� 검증� 대상� 시스템은� 상태� 전이�

시스템(transition� system)� 𝒮 = (𝑆, Act, →) 로� 표현되며,� 이때�
상태�집합� 𝑆 ,� 행동�집합� Act,�전이�관계�→ ⊆ 𝑆 × Act × 𝑆이다.�
전이�관계� 𝑠 →𝑎 𝑠′는�상태� 𝑠에서�행동� 𝑎를�통해�상태� 𝑠′로�전이할�
수� 있음을� 의미한다.� 검증하고자� 하는� 성질은� 불변성(invariant),�

도달� 가능성(reachability)� 등� 다양하며,� 본� 연구에서는� 오류�

상태에�도달�가능한지에�대한�성질을�다룬다.�

시스템의� 구성� 요소가� 증가하면� 상태� 공간이� 기하급수적으로�

증가하는� 상태� 폭발� 문제가� 발생한다.� 이를� 완화하기� 위해� 부분�

순서�축소(partial� order� reduction),�추상화,� 심볼릭� 모델체킹�등�

다양한�기법이�연구되어�왔다.�
�

3.2.�재작성�논리�

재작성� 논리(rewriting� logic)는� 동시성� 시스템의� 명세에� 널리�

활용되는� 명세� 기법이다� [8].� 시스템의� 상태를� 대수적�

항(term)으로�표현하고,�상태�전이를�재작성�규칙으로�기술한다.�

다음은� Dining� Philosophers�문제에� 대한� 재작성�논리�명세의�

예이다.�𝑁명의�철학자가�원형�테이블에�앉아� 있고�인접한�철학자�
사이에�포크가� 있다.� 각�철학자는� 대수적�항� 𝑝(𝑖, 𝑠𝑡)로� 표현되며,�𝑖는� 철학자� 위치,� 𝑠𝑡는� 상태( think ,� hungry ,� single ,� eat )를�
나타낸다.�포크� 𝑐(𝑖)는�철학자� 𝑖의�왼쪽에�위치한다.�전체� 상태는�∥를�구분자로�가지는�철학자들과�포크들의�집합으로�표현된다:�𝑝(0, 𝑠𝑡0) ∥ 𝑝(1, 𝑠𝑡1) ∥  ⋯  ∥ 𝑝(𝑁 − 1, 𝑠𝑡𝑁−1) �∥ 𝑐(0) ∥ 𝑐(1) ∥  ⋯  ∥ 𝑐(𝑁 − 1)�
각� 철학자는� 초기에� think 의� 상태를� 가지며,� 다음의� 4개의�

재작성�규칙으로�표현되는�행동을�할�수�있다:�[th]: 𝑝(𝑖, think)  ⇒  𝑝(𝑖, hungry) �[hs]: 𝑝(𝑖, hungry) ∥ 𝑐(𝑗)  ⇒  𝑝(𝑖, single) if 𝑎𝑑𝑗(𝑖, 𝑗)�[se]: 𝑝(𝑖, single) ∥ 𝑐(𝑗)  ⇒  𝑝(𝑖, eat) if 𝑎𝑑𝑗(𝑖, 𝑗)�[et]: 𝑝(𝑖, eat)  ⇒  𝑝(𝑖, think) ∥ 𝑐(𝑙𝑐(𝑖)) ∥ 𝑐(𝑟𝑐(𝑖))�
이때,� th, hs, se, et는� 각� 규칙의� 레이블이며,� 𝑎𝑑𝑗(𝑖, 𝑗)는� 포크�𝑖가�철학자� 𝑗와� 인접함을,� 𝑙𝑐(𝑖)와� 𝑟𝑐(𝑖)는�각각�철학자� 𝑖의�왼쪽과�
오른쪽�포크를�나타낸다.�

재작성� 규칙은�� 왼쪽� 패턴이� 현재� 상태의� 임의의� 부분에�

매치되면� 적용될� 수� 있다.� 예를� 들어,� 상태� 𝑝(0, think) ∥𝑝(1, think) ∥ 𝑝(2, think) ∥ 𝑐(0) ∥ 𝑐(1) ∥ 𝑐(2) 에는� th �규칙이�

적용될� 수� 있는� 세� 가지� 가능성이� 있으며,� 만약� 철학자� 0에�

적용되면� 다음� 상태는� 𝑝(0, hungry) ∥ 𝑝(1, think) ∥ 𝑝(2, think) ∥𝑐(0) ∥ 𝑐(1) ∥ 𝑐(2)가�된다.�
�

3.3.�강화학습�

강화학습(reinforcement� learning)은� 에이전트가� 환경과�

상호작용하며� 누적� 보상을� 최대화하는� 행동� 정책을� 학습하는�

기계학습� 기법이다� [10].� 에이전트는� 현재� 상태에서� 행동을�

선택하고,�환경은�그에�따른� 보상과�다음�상태를�반환한다.�

Q-learning은�상태-행동�쌍� (𝑠, 𝑎)의�가치를�나타내는� Q�함수를�
학습하는� 강화학습� 알고리즘이다.� Q� 함수� 𝑄(𝑠, 𝑎)는� 상태� 𝑠에서�
행동� 𝑎를� 취하고� 이후� 최적� 정책을� 따를� 때� 얻을� 수� 있는� 기대�
누적� 보상을� 나타낸다.� 학습� 과정에서는� 학습된� Q� 함수에� 따라�

최적� 행동을� 선택하는� 활용(exploitation)과� 새로운� 상태-행동�

쌍을� 탐색하는� 탐험(exploration)� 사이의� 균형이� 필요하며,� 이를�

위해� 𝜖-greedy� 정책이�널리�사용된다.� �
테이블� 기반(tabular)� Q-learning� 방식은� 모든� 상태-행동� 쌍에�

대한� Q�값을� 테이블에�저장하여,� 학습을� 통해� Q�값을�갱신한다.�

그러나� 시스템의� 크기에� 따라� Q-table의� 크기가� 급격히� 커지는�

문제가� 있다.� DQN(Deep� Q-Network)은� Q-table을� 신경망으로�

근사하여� 테이블� 기반� 방식의� 한계를� 극복한다.� DQN은� 상태의�

특징� 벡터를� 입력받아� 각� 행동에� 대한� Q� 값을� 출력하며,�

신경망의� 일반화� 능력을� 통해� 학습� 중� 방문하지� 않은� 상태에�

대해서도�Q�값을�예측할�수�있다.�
�

4.�제안�방법�

본�연구는�강화학습�기반�휴리스틱�학습�프레임워크를�제안한다.�

서론에� 설명한� 바와� 같이,� 먼저� 사전에� 정의된� 술어를� 통해�

구체적� 상태를� 요약� 상태로� 변환하고,� 이� 요약� 공간에서� Q-table�

또는� DQN� 기반� 휴리스틱을� 적용하여� 오류� 상태� 도달� 가능성을�

예측하는�휴리스틱을�학습한다.� 학습된�휴리스틱은�반복적인�검증�

과정에서�오류�상태를�빠르게� 탐색하는�데�활용된다.�

이하에서는� 술어� 요약(4.1장),� Q-table� 기반� 휴리스틱�

학습(4.2장),� DQN� 기반� 휴리스틱� 학습(4.3장),� 그리고� 학습된�

휴리스틱을�활용한�탐색(4.4장)에�대해�설명한다.�
�

4.1.�술어�요약� �

술어� 요약(predicate� abstraction)은� 구체적� 상태를� 술어들의�

만족� 여부로� 요약하는� 기법이다� [11].� 술어� 집합� Π = {𝑝1, …  , 𝑝𝑛}이�주어졌을�때,� 𝑠 ⊨ 𝑝𝑖는�상태� 𝑠가�술어� 𝑝𝑖를�만족하는지를�참�
또는�거짓으로�나타낸다.� 요약� 함수� 𝛼: 𝑆 → Bool𝑛는�구체적�상태�𝑠 를� 각� 술어의� 만족� 여부로� 구성된� 𝑛 차원� 불리언� 벡터로�
변환한다:� 𝛼(𝑠) ≔ ⟨𝑠 ⊨ 𝑝1, 𝑠 ⊨ 𝑝2, …  , 𝑠 ⊨ 𝑝𝑛⟩�
상태� 전이� 시스템� 𝒮 = (𝑆, Act, →)에� 술어� 요약을� 적용하면�
요약� 전이� 시스템� 𝒮/Π = (𝑆 ,̂ Act, →̂) 를� 얻는다.� 여기서� 𝑆 ̂ =Bool𝑛이고,� 요약� 전이� 𝑠 ̂ →𝑎 𝑠′̂는� 𝛼(𝑠) = 𝑠 ̂,� 𝛼(𝑠′) = 𝑠′̂ ,� 𝑠 →𝑎 𝑠′를�
만족하는�구체적�상태� 𝑠, 𝑠′ ∈ 𝑆가�존재할�때� 정의된다.� 이를� 통해�
구체적� 상태� 공간의� 크기와� 무관하게� 최대� 2𝑛개의� 요약� 상태를�
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갖는� 시스템을� 구성할� 수� 있다.� 본� 연구에서� 학습하는� Q� 함수는�

요약�상태에서�정의되며,� 𝑄̂: 𝑆 ̂× Act → ℝ로�표기한다.�
재작성� 논리� 명세에서는� 각� 규칙의� 왼쪽� 패턴이� 현재� 상태와�

매치되는지� 여부로� 술어를� 정의할� 수� 있다.� 본� 연구에서는�

3.2장에서� 설명한� Dining� Philosophers의� 네� 가지� 규칙� 각각에�

대해�적용�가능�여부를�나타내는�술어를�정의하였다.�
�

4.2.�Q-table�기반�휴리스틱�학습�

그림� 1은� Q-table� 기반� 휴리스틱� 학습� 알고리즘을� 보여준다.�

일반적인�Q-learning�기반으로�요약�전이�시스템� 𝒮/Π을�활용하여�
Q� 함수� 𝑄̂를�학습하는� 알고리즘이다.� 오류� 상태� 도달� 시� 보상� 1,�
그� 외� 상태에서� 보상� 0을� 부여한다.� 따라서� 높은� Q� 값은� 해당�

상태-행동�쌍에서�오류�상태에�도달할�가능성이�높음을�의미한다.�

에이전트는� 학습� 시스템에서� 에피소드를� 반복� 수행하며,� 각�

전이를� 경험할� 때마다� Q� 값을� 갱신한다.� 각� 에피소드는� 초기�

상태에서� 시작하여� 오류� 상태에� 도달하거나� 최대� 스텝� 수에�

도달하면� 종료된다.� 학습� 과정에서는� 𝜖 -greedy� 정책을� 사용하여�
탐험과�활용의�균형을�유지한다.� 이때�상태는�구체적�상태가�아닌�

요약� 상태� 𝛼(𝑠) 가� 사용된다.� 학습이� 완료되면� 상태의� 가치를�𝑉̂ (𝑠) = max 𝑎 𝑄̂(𝛼(𝑠), 𝑎)로�정의하여�탐색�휴리스틱으로�활용한다.�
�

Input: 학습 시스템 𝒮/Π, 에피소드 수 𝐸, 학습률 𝛽, 할인율 𝛾 
Output: Q-table 𝑄̂ 

Initialize 𝑄̂(𝑠,̂ 𝑎) ← 0 for all 𝑠 ̂ ∈ 𝑆 ,̂ 𝑎 ∈ Act 
for 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 =  1 to 𝐸 do 𝑠 ← initial state 

while 𝑠 is not terminal do 𝑎 ← select action (𝜖-greedy based on 𝑄̂) 𝑠 ← execute action 𝑎 from 𝑠 𝑟 ← 1 if 𝑠′ is error state, 0 otherwise 𝑄̂(𝛼(𝑠), 𝑎) ← 𝑄̂(𝛼(𝑠), 𝑎) + 𝛽⋅ (𝑟 + 𝛾 ⋅ max𝑎′ 𝑄̂(𝛼(𝑠′), 𝑎′)  − 𝑄̂(𝛼(𝑠), 𝑎)) 𝑠 ← 𝑠′ 
return 𝑄̂ 

그림� 1.�Q-table�기반�휴리스틱�학습�알고리즘�
�

4.3.�DQN�기반�휴리스틱�학습�

Q-table� 기반� 방식은� 학습� 중� 방문한� 요약� 상태에� 대해서만�

값을� 저장한다.� 술어� 수가� 증가하면� 가능한� 요약� 상태� 수가�

기하급수적으로� 증가하며,� 학습에서� 방문하지� 않은� 요약� 상태에�

대해서는�유의미한�휴리스틱을�제공하지�못한다.�

이러한� 한계를� 해결하기� 위해� DQN을� 도입한다.� DQN은� 요약�

상태� 벡터� 𝛼(𝑠)를� 입력받아� 각� 행동에� 대한� Q� 값을� 출력하는�
신경망이다.�네트워크는� 𝑛차원�불리언�벡터�입력층,� 64개�뉴런과�
ReLU� 활성화� 함수를� 갖는� 은닉층,� |Act|개� 뉴런의� 출력층으로�
구성된다.� 학습은� experience� replay와� target� network를�

사용하는�표준� DQN�알고리즘을�따른다.�

DQN은� 신경망의� 함수� 근사� 능력을� 통해� 학습� 중� 방문하지�

않은�요약�상태에�대해서도� Q�값을�예측할�수� 있다.� 술어�요약이�

고정된� 𝑛차원� 특징� 공간을� 제공하므로,� 학습된� DQN은� 유사한�
요약�상태들에�대해�합리적인�가치를�예측할�수�있다.� �
�

4.4.�휴리스틱�탐색�

그림� 2에� 보인� 알고리즘과� 같이,� 학습된� 𝑄̂ � 함수를�

휴리스틱으로� 활용하여� 상태� 전이� 시스템� 𝒮 의� 구체적� 상태�
공간에서� 최선� 우선� 탐색을� 수행한다.� 각� 상태� 𝑠를� 방문할� 때�
술어� 요약을� 우선� 적용한� 뒤,� 𝑉̂ (𝑠) = max 𝑎 𝑄̂(𝛼(𝑠), 𝑎) 를�
계산하여� 가치가� 높은� 상태를� 우선� 탐색한다.� 𝑉̂ (𝑠)가� 높을수록�
해당� 상태에서� 오류� 상태에� 도달할� 가능성이� 높으므로,� 탐색은�

오류�상태를�향해�유도된다.�
�

Input: 탐색 시스템 𝒮, 초기 상태 𝑠0, 학습된 𝑄̂ 
Output: 오류 상태 또는 탐색 실패 𝑞𝑢𝑒𝑢𝑒 ← {(𝑠0, 𝑉 ̂ (𝑠0))}  𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← {𝑠0} 
while 𝑞𝑢𝑒𝑢𝑒 is not empty do 𝑠 ← pop state with highest 𝑉 ̂  from 𝑞𝑢𝑒𝑢𝑒 

if 𝑠 is an error state then return 𝑠 
for each (𝑎, 𝑠′) such that 𝑠 →𝑎 𝑠′ do 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑠′} 

insert (𝑠′, 𝑉 ̂(𝑠′)) into 𝑞𝑢𝑒𝑢𝑒 
return "No error state found" 

그림� 2.�휴리스틱�기반�최선�우선�탐색�알고리즘�
�

5.�실험�

본� 논문에서� 제안된� 기법의� 효과를� 평가하기� 위하여,� 재작성�

논리�기반�명세� 분석� 도구인�Maude� [9]를�사용하여�제안�기법을�

구현하고� 실험을� 수행하였다.� 본� 실험은� 다음� 두� 가지� Research�

Question에�대해�답하고자�한다.�

(i) 제안한� 강화학습� 기반� 휴리스틱이� 기존� 탐색� 방법� 대비�
얼마나�효과적으로�오류�상태를�탐색하는가?� �

(ii) 학습된� 휴리스틱이� 학습에� 사용되지� 않은� 더� 큰�

인스턴스에서도�효과적으로�동작하는가?�
�

5.1.�실험�설정�

벤치마크로� 3.2장에서� 설명한� Dining� Philosophers� 문제를�

사용한다.� 이� 문제는� 𝑁 이� 증가함에� 따라� 상태� 공간이�

기하급수적으로� 증가하므로� 휴리스틱의� 효과를� 평가하기에�

적합하다.� 검증�목표는�모든�철학자가�한쪽�포크를�들고�대기하는�

교착� 상태�도달�여부이다.�

술어는� 4.1장에서� 설명한� 방법에� 따라� 네� 가지� 규칙� 각각에�

대해� 철학자� 0,� 철학자� 1,� 나머지� 철학자들의� 적용� 가능성을�

나타내는� 술어를� 정의하고,� 교착� 여부를� 나타내는� 술어를�

포함하여� 총� 13개의� 술어를� 사용하였다.� 이를� 통해� 다양한�

크기의�인스턴스가�동일한� 13차원�불리언�벡터로�표현된다.�

Q-table� 기반� 및� DQN� 기반의� 휴리스틱� 학습을� 𝑁 = 3�
인스턴스에서� 500� 에피소드� 동안� 수행하였다.� 두� 방법� 모두� 𝜖 -
greedy의� 𝜖을� 1에서� 시작하여� 0.05까지� 지수적으로�감소시켰다.�
Q-table� 학습에는� 학습률� 0.7,� 할인율� 0.95를�사용하였다.� DQN�

학습에는�학습률� 0.02,� 할인율� 0.95를�사용하였으며,� experience�

replay의� 배치� 크기는� 32,� target� network� 갱신� 주기는� 50�

에피소드로�설정하였다.�

학습된� 휴리스틱의� 일반화� 성능을� 평가하기� 위해� 𝑁 = 4부터�𝑁 = 10 까지의� 인스턴스에서� 테스트하였다.� 비교를� 위한�
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기준선으로� 너비� 우선� 탐색(BFS)과� 임의� 탐색(Random)을�

사용하였다.� Random은� 각� 상태에� 무작위� 우선순위를� 부여하여�

최선�우선�탐색을�수행하며,�10회�독립� 실행의�평균을�사용하였다.�
�

5.2.�실험�결과�

표� 1과� 표� 2는� 각� 방법의� 탐색� 결과를� 비교한다.� BFS와�

Random은� 기준선,� Q-table과� DQN은� 학습� 기반� 휴리스틱을�

나타낸다.�표� 1은�오류�상태�도달까지�탐색한�상태�수를�나타내며,�

Hit� ratio는� Q-table에서� 학습된� 요약� 상태가� 테스트� 시� 등장한�

비율이다.�표� 2는�탐색에�소요된�시간을�나타낸다.�
�

표� 1.�오류�상태�도달까지�탐색한�상태�수�𝑁 � BFS� Random� Q-table�(Hit�ratio)� DQN�

4� 268� 40.5� 29�(38.3%)� 8�

5� 1,230� 147.1� 41�(24.1%)� 10�

6� 5,453� 314.0� 62�(15.6%)� 32�

7� 23,692� 1,336.7� 273�(5.6%)� 86�

8� 102,043� 5,432.9� 824�(2.4%)� 203�

9� 435,878� 15,925.9� 3,632�(0.8%)� 965�

10� 1,852,361� 92,759.7� 16,513�(0.2%)� 1,937�

�
표� 2.�오류�상태�도달까지�소요된�시간(ms)�𝑁 � BFS� Random� Q-table� DQN�

4� 10.1� 2.4� 4.5� 77.0�

5� 53.3� 13.6� 8.8� 74.6�

6� 308.3� 35.0� 18.9� 79.1�

7� 1,533.8� 196.6� 84.9� 96.1�

8� 8,413.3� 936.2� 268.7� 140.8�

9� 46,225.5� 3,807.6� 1,210.1� 364.5�

10� 559,782.9� 27,783.1� 6,448.5� 867.4�

�

Q-table� 기반� 휴리스틱은� BFS� 및� Random� 대비� 모든�

인스턴스에서�탐색�상태�수를�크게� 줄인다.�𝑁 = 10에서� BFS가�약�
185만�개,� Random이� 약� 9.3만�개의� 상태를� 탐색하는� 반면,� Q-

table은�약� 1.7만�개로�각각� 112배,�5.6배�감소하였다.�

DQN� 기반� 휴리스틱은� Q-table� 기반� 대비� 추가적인� 효율�

향상을� 보인다.� 𝑁 = 10 에서� DQN은� 약� 1,900개의� 상태만�
탐색하여� BFS� 대비� 956배,� Random� 대비� 48배,� Q-table� 기반�

대비� 8.5배의�개선을� 보였다.� 특히� 𝑁이� 1� 증가함에�따라� BFS의�
탐색�상태�수는�약� 4.3배씩� 증가하는�반면,�DQN�기반�휴리스틱의�

증가율은� 평균� 약� 2.7배로� 상대적으로� 완만하다.� 이는� 술어�

요약이� 서로� 다른� 크기의� 인스턴스를� 동일한� 특징� 공간으로�

표현하고,� DQN의� 일반화� 능력이� 학습되지� 않은� 인스턴스에도�

유효한�휴리스틱을�제공하기�때문이다.�

Q-table� 기반� 및� DQN� 기반� 휴리스틱의� 성능� 차이는� 일반화�

능력에서� 기인한다.� Q-table� 기반� 휴리스틱은� 학습� 중� 방문한�

요약� 상태에� 대해서만� 유의미한� 값을� 가지는데,� 𝑁 = 3 에서�
학습한� Q-table의� 상태가�테스트�인스턴스에서�등장하는�비율(hit�

ratio)은� 𝑁이� 증가함에� 따라� 급감한다.� 𝑁 = 4에서� 38.3%이던�
hit� ratio는� 𝑁 = 10에서� 0.2%까지� 감소한다.� 반면� DQN� 기반�
휴리스틱은� 술어� 요약이� 제공하는� 고정된� 특징� 공간에서�

학습하므로,� 학습에서� 방문하지� 않은� 요약� 상태에� 대해서도�

합리적인�휴리스틱�값을�예측할�수�있다.�

탐색� 시간� 측면에서� DQN� 기반� 휴리스틱은� 신경망� 추론�

비용으로� 인해� 작은� 인스턴스에서는� Q-table� 기반보다� 느리다.�

그러나�𝑁 ≥ 8� 에서는�탐색�상태�수�감소가�추론� 비용을�상쇄하여�
DQN�기반이�더�빠르다.�𝑁 = 10에서� BFS는�약� 9.3분이�소요되는�
반면,�DQN�기반�휴리스틱은� 1초�미만으로�완료된다.�
�

6.�결론�

본� 연구는� 강화학습을� 활용하여� 모델체킹의� 휴리스틱을�

자동으로� 학습하는� 프레임워크를� 제안하였다.� 술어� 요약을� 통해�

구체적� 상태를� 고정된� 차원의� 요약� 상태로� 변환하고,� 이� 요약�

공간에서� Q-learning� 및� DQN을� 적용하여� 오류� 상태� 도달�

가능성을�예측하는�휴리스틱을�학습하였다.�

Dining�Philosophers�벤치마크에�대한�실험�결과,�Q-table�기반�

휴리스틱은� BFS� 및� Random� 대비� 각각� 최대� 112배와� 5.6배,�

DQN� 기반� 휴리스틱은� 각각� 최대� 956배와� 48배의� 탐색� 효율�

향상을� 보였다.� 또한� 𝑁 = 3 에서� 학습한� 휴리스틱이� 𝑁 =10 까지의� 인스턴스에서도� 효과적으로� 동작하여,� 학습된�

휴리스틱이�유사한�시스템에�일반화될�수�있음을�확인하였다.� �

향후� 연구로는� 다양한� 벤치마크에� 대한� 적용을� 통한� 일반성�

검증,� 교착� 외의� 성질� 검증으로의� 확장,� 그리고� 술어� 자동� 생성�

방법�등을�고려한다.�
�
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1. Introduction 

Fault localization accuracy fundamentally determines automated 
program repair (APR) effectiveness [1-4]. The challenge lies in 
transforming diverse natural-language issue descriptions into precise 
buggy code locations. Existing approaches fall into two categories: 
agent-based and procedural methods. Agent-based [5] methods use 
LLM-driven agents to navigate codebases through predefined action 
sequences such as entity extraction, file or symbol search, and 
refinement. They perform well when issue descriptions explicitly 
mention structural elements but struggle when such cues are missing 
or ambiguous, as agents lack a reliable starting point and cannot 
adapt their navigation strategy. Procedural approaches [6] employ 
fixed, non-interactive pipelines that rank candidate files using lexical, 
structural, and LLM-assisted relevance signals, followed by function 
or symbol selection within top-ranked files. In procedural 
approaches, a wrong file chosen at an early stage can send the entire 
localization process in the wrong direction, with no way to correct it 
later. A key limitation shared by both categories is their reliance on 
fixed localization strategies that do not adapt to the structural 
variability of issue descriptions. Figure 1 highlights this variability 
using real-world examples. Some issue descriptions provide explicit 
file paths and line references (Fig. 1(a)), others mention only partial 
structural information such as a file name (Fig. 1(b)), while many 
rely solely on semantic hints without any concrete code references 
(Fig. 1(c)). These differences imply fundamentally different 
localization requirements, yet existing approaches treat them 
uniformly. We address this limitation with a classification-based 
fault localization architecture that dynamically selects localization 
strategies based on issue classification. First, using LLM-driven 
analysis, our method extracts location cues (e.g., files, classes, 
functions, stack traces, keywords) from issue description and 
resolves them against the project structure. The extracted data and 

issue description are used to classify the issue into one of the three 
categories: Full Location, Partial Location, and Hint. Each category 
activates a tailored localization path with appropriate computational 
effort and inference depth. Our method targets symbol-level code 
units, functions, class-level elements, and file-level module symbols, 
rather than individual lines. By focusing on logical code units rather 
than arbitrary line boundaries, we enable more effective downstream 
repair. Our contributions are: 

• A classification-based localization framework that selects 
strategies based on issue characteristics. 

• Symbol-level targeting that yields stable, context-rich repair 
locations. 

• Experimental validation demonstrating improved localization 
accuracy and reduced cost compared to fixed-strategy 
baselines. 

 이슈 설명과 심볼 수준의 목표를 활용한 분류 기반 결함 위치 식별 
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Abstract 

  Automated program repair methods require accurate fault localization to identify buggy code regions from natural-
language issue descriptions. Existing approaches, including agent-based navigation and procedural methods, apply fixed 
strategies regardless of the specificity and structure of the input, leading to inconsistent performance across diverse bug 
reports. We present a classification-based fault localization architecture that classifies issue descriptions into three categories 
based on available location cues, Full Location, Partial Location, and Hint, and selects appropriate localization strategies 
accordingly. Our study targets symbol-level abstractions (functions, class-level elements, and file-level symbols) rather than 
individual lines, providing stable repair contexts suitable for complex, multi-line bugs. Experimental evaluation on 
benchmark dataset demonstrates that classification-based strategy selection significantly improves localization accuracy 
compared to fixed-strategy baselines, particularly for issues with partial or missing location information.  

Keywords: Fault Localization, Issue Classification, Symbol-Level Target, Large Language Models 

 

Figure 1. Examples of issue descriptions (ID), where (a) full 
information, (b) partial information, and (c) hint about buggy 
locations are mentioned.  
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2. Related Work 

AutoCodeRover [5] and SWE-agent [8] employ LLM agents that 
navigate codebases through structured actions (file browsing, 
function inspection, cross-reference following). These methods 
excel when issues explicitly mention code entities, enabling agents 
to follow predetermined navigation sequences. However, when 
descriptions lack structural cues, agents cannot adapt their search 
strategy, leading to early termination or misrouting. The iterative 
exploration also incurs high computational costs. Procedural and 
retrieval-based approaches, such as Agentless [6], apply 
deterministic pipelines that perform repository-wide file and 
function retrieval using lexical, structural, or embedding-based 
similarity signals. Because these methods do not classify issue 
descriptions or exploit explicitly provided locations, they apply the 
same full-project search regardless of input specificity. As a result, 
even when a bug location is clearly stated, large projects incur 
unnecessary search over many files and functions, leading to wasted 
computation and token usage. Graph-based method RepoGraph [7] 
exhibits a similar limitation: call-graph or data-flow construction and 
traversal are performed uniformly, even when precise structural cues 
are available. Our work differs by introducing classification-based 
localization that dynamically selects strategies based on issue 
characteristics. 

 
3. Methodology 

3.1 Symbol-Level Representation 
We represent buggy locations at symbol granularity rather than 

line granularity. A buggy location is one of three types: (1) Buggy 
Function-Level: The defect lies within a function or method body. 
The method identifies the complete function including its signature 
and full implementation. (2) Buggy Class-Level Element: The defect 
resides inside a class but outside any function, such as field 
declarations, class attributes, property definitions, or class-level 
decorators. (3) Buggy File-Level Symbol: The defect exists outside 
all classes and functions, such as module-level constants, global 
variables, import statements, or file-level executable code. 
 
3.2 Issue Classification  

Our classification pipeline consists of three components that 
analyze issue descriptions to determine available location 
information (Fig. 2). 
Location Cue Analyzer (LLM-Based): This component extracts 
structural and semantic cues from issue text using a specifically 
designed prompt. It identifies explicit references such as file paths, 
class names, function names, and qualified identifiers. It also 
extracts implicit cues including stack trace fragments, error message 
patterns, and keywords indicating code regions. 
Project Structure Analyzer: This component resolves extracted 

cues against the actual codebase structure. It maintains a symbol 
table mapping all functions, classes, and file-level symbols to their 
file locations and hierarchical positions within the project. For each 
extracted cue, the analyzer validates file paths against the repository 
structure, matches symbol names to their definitions while resolving 
ambiguity when multiple entities share names, disambiguates partial 
references using contextual keywords, and assesses whether the 
combination of resolved cues uniquely identifies a code symbol. 
Classifier (LLM-Based): Based on the resolution results and issue 
description, the classifier assigns the issue to one of three categories: 

(1) Full Location: The issue provides a complete, unambiguous 
location reference that resolves to a unique symbol, as illustrated in 
Fig. 1(a). The method directly extracts the referenced symbol 
without inference. 

(2) Partial Location: The issue contains structural information 
that partially constrains the search space but is insufficient for unique 
identification, as illustrated in Fig. 1(b). The method performs 
constrained inference within the referenced scope. 

(3) Hint: The issue contains only indirect signals without direct 
structural references, as illustrated in Fig. 1(c). The method performs 
semantic retrieval to identify relevant code regions. 

This classification enables adaptive strategy selection: 
computational effort scales with the amount of inference required, 
from minimal computation for Full Location to comprehensive 
exploration for Hint. 

 
3.3 Handlers 

Each classification category activates a tailored localization 
strategy designed for its information availability level. 

1) Full Location Handler. When complete location information 
is available, the handler performs direct extraction. It retrieves the 
referenced symbol (function, class-level element, or file-level 
symbol) from the resolved file location and extracts its complete 
code using AST parsing.  
Acceptance: The LLM analyzes the suspected location's code body 
to determine whether it is truly the buggy location. The validation 
checks: (1) whether the code's functionality aligns with the described 
buggy behavior, (2) whether the code handles the inputs, outputs, or 
conditions mentioned in the issue, and (3) whether modifying this 
location could reasonably fix the reported problem. If the suspected 
location is rejected, the issue is escalated to the Partial Location 
Handler for broader search. 

2) Partial Location Handler. When the issue description 
provides partial structural information, such as a file name, class 
name, or unqualified function name, the handler performs 
hierarchical localization inspired by the Agentless approach [6], but 
with a structure-aware and LLM-driven selection process. The 
localization process proceeds in three stages. (1) File-path level 
localization. Given the project’s file structure, the LLM directly 

Figure 2. Fault localization architecture 
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selects the top-n candidate files by jointly analyzing the issue 
description and the repository structure. This selection is performed 
without explicit cue extraction or embedding-based retrieval; instead, 
the LLM reasons over the semantic alignment between the problem 
description and file-level responsibilities inferred from file names, 
paths, and structural organization. (2) Symbol-level localization. 
Within the selected files, the handler constructs a skeleton 
representation consisting of class and function signatures, or global 
variables/import statements, etc. The LLM analyzes this structural 
skeleton together with the issue description to identify candidate 
symbols that are most likely related to the reported behavior. (3) 
Fine-grained localization. The handler extracts the full 
implementations of the identified symbols and applies LLM-based 
reasoning to determine which symbols most likely contain the defect, 
based on control flow, data usage, and consistency with the 
described failure mode. 
Acceptance: The LLM analyzes each candidate location's code body 
to determine whether it is truly the buggy location. The validation 
considers whether the code's implementation could cause the 
reported behavior. If no candidates are confirmed as buggy locations, 
the issue is escalated to the Hint Handler for exploratory search. 

3) Hint Handler: When the issue description provides only 
indirect signals (e.g., symptoms, error messages, or keywords) and 
lacks explicit structural references, the method activates the Hint 
handler, which employs agent-based search similar to 
AutoCodeRover [5]. The LLM agent iteratively navigates the 
codebase using a set of search APIs: search_class(name) to locate 
class definitions, search_method_in_class (method, class) to find 
specific methods, and search_code(snippet) to locate code patterns. 
At each iteration, the agent analyzes the current context and decides 
which search APIs to invoke based on the issue description and 
previously collected information. This iterative exploration 
continues until the agent determines that sufficient context has been 
gathered or a maximum iteration limit is reached. The agent then 
identifies candidate buggy locations from the collected context by 
reasoning about which symbols' implementations most likely 
explain the described behavior. 
Acceptance: The LLM analyzes each candidate location's code body 
to determine whether it is truly the buggy location by verifying 
semantic relevance to the described symptoms or error behavior. 
Candidates that are not confirmed are still included in the output with 
lower confidence scores, allowing downstream repair processes to 
attempt fixes on best-effort locations. 
 
3.4 Output Representation and Multi-Location Support 

Across all localization paths, our method outputs a ranked list of 
buggy location candidates. Each candidate is represented by a tuple 
consisting of (i) symbol type (function, class-level element, or file-
level symbol), (ii) file path (absolute or repository-relative), and (iii) 
complete symbol code extracted via AST parsing. This 
representation naturally supports multi-location bugs. When a defect 
spans multiple files or functions (common in real-world bugs), 
multiple symbols are identified. The downstream repair module 
receives complete code for each candidate location, enabling 
coordinated patches across components. 

 

4. Experimental Evaluation  

4.1 Experimental Setup 
Dataset: SWE-bench Lite [10] benchmark containing 300 real-
world GitHub issues from popular Python repositories. Each issue 
includes natural-language description, buggy project codebase, and 
a repair patch. 
Baselines: AutoCodeRover (agent-based navigation) [5], Agentless 
(procedural retrieval) [6], and SWE-agent [8] (LLM agents to 
navigate repositories via shell commands). 
Implementation: We use gpt-4o-2024-05-13 for fair comparison. We 
use the same model for classification, cue extraction, and acceptance 
validation with distinct prompts for each stage (temperature=0.2), 
Python AST library for symbol extraction. For the Partial Location 
Handler (hierarchical search), n=3 for file-path-level and no limit for 
symbol-level retrieval. For the Hint Handler (agent-based search), 
maximum iteration=5. The acceptance validation uses a dedicated 
prompt that determines whether the suspected location is truly the 
buggy location based on its code body. 
Metrics: We consider a prediction correct if the set of predicted 
locations includes locations that were modified in the developer 
patch. This definition follows the location accuracy criterion used in 
the Agentless, where a buggy location was considered correct when 
its final patch modified all locations modified in the developer patch. 
The experimental results and prompts are available at: 

https://github.com/soft7197/cbfl.git. 
 
4.2 Results 

RQ1: Localization Accuracy. RQ1 evaluates whether the 
proposed classification-based fault localization approach improves 
localization accuracy at both file and symbol level. Table 1 reports 
localization accuracy on the SWE-bench Lite benchmark. Our 
approach achieves 74.6% file-path-level accuracy and 52.3% 
symbol-level accuracy, which are higher than Agentless (69.7% / 
50.3%), AutoCodeRover (69.0% / 49.7%), and SWE-agent (58.0% / 
42.3%) under the same GPT-4o configuration. Symbol-level 
correctness is conditioned on correct file-path localization. A 
predicted symbol is considered correct only when it is identified in 
the correctly localized file, symbol-name matches occurring in 
incorrectly localized files are not counted as correct. The 
improvement is observed consistently at both granularity levels, 
indicating that the proposed framework more accurately identifies 
relevant files and symbols than existing agent-based and procedural 
baselines. These results confirm that adapting localization behavior 
through issue classification leads to measurable gains in fault 
localization accuracy. 

RQ2: Efficiency. RQ2 examines the efficiency of the proposed 
approach in terms of average fault localization cost per issue. As 
shown in Table 2, our method incurs an average total localization 
cost of $0.05 per issue, compared to $0.08 for Agentless. At the file-
path-level, our approach requires $0.02, substantially lower than 
Agentless’s $0.06, while symbol-level localization costs $0.03, 
slightly higher than Agentless’s $0.02. Despite this modest increase 
at the symbol level, the overall cost remains lower because file-path-
level localization is more efficient. These results indicate that the 
proposed approach reduces total fault localization cost while 
simultaneously achieving higher localization accuracy. 

Table 2. Average Fault Localization Cost per Issue 

          Level  
 Approach 

Avg. File-path ($) Avg. Symbol ($) Avg.  
Total FL ($) 

 Agentless  0.06 0.02 0.08 

 Ours 0.02 0.03 0.05 

 

Table 1. Fault Localization Accuracy on SWE-bench Lite 

         Level  
 Approach 

LLM File-path (%) Symbol (%) 

 Agentless GPT-4o 69.7 (209/300) 50.3 (151/300) 
 AutoCodeRover GPT-4o 69.0 (207/300) 49.7 (149/300) 
 SWE-agent  GPT-4o 58.0 (174/300) 42.3 (127/300) 
 Ours GPT-4o 74.6 (224/300) 52.3 (157/300) 
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RQ3: Category-based Classification and Localization 
Accuracy. RQ3 evaluates classification and localization accuracy 
across issue categories. Table 3 presents classification recall and 
localization accuracy for our method, Agentless, and 
AutoCodeRover. For classification ground-truth, we checked 
whether the buggy symbol from the developer patch appears in the 
issue description. Classification recall is 21% (Full), 63% (Partial), 
and 52% (Hint). The relatively low recall occurs because issue 
descriptions often contain false-positive code references, and buggy 
symbols are rarely explicitly identified as faulty. For localization, all 
methods achieve 100% on Full Location issues. On Partial issues, 
Agentless achieves slightly higher accuracy (85.9%/55.9% file-
path/symbol) than ours (84.7%/54.8%) due to embedding-based 
retrieval, however, we avoided this additional cost. On Hint issues, 
our method (56.6%/44.2%) outperforms Agentless (41.6%/37.2%). 
Conversely, AutoCodeRover achieves slightly higher Hint accuracy 
(58.4%/46.0%) than ours, but ours outperforms AutoCodeRover on 
Partial (84.7%/54.8% vs 74.0%/49.2%). This reveals that Agentless 
excels with structural cues but struggles without them, while 
AutoCodeRover shows the opposite pattern. Our method achieves 
balanced performance through classification-based routing, 
resulting in the highest overall accuracy (74.6%/52.3% vs 
69.7%/50.3% vs 69.0%/49.7%). 
 

5. Discussion 

The experimental results demonstrate that no single fixed 
strategy achieves optimal performance across all issue categories. 
The key advantage of our method is not that its handlers outperform 
baselines in every category, but that classification-based routing 
avoids each baseline's weak category. By not using embedding-
based retrieval, we trade a small accuracy reduction on Partial issues 
for lower computational cost. This design also enables cost-efficient 
resource allocation: Full Location issues require minimal 
computation through direct extraction, Partial Location issues incur 
moderate cost for constrained search, and Hint issues require higher 
cost for exploratory search. On average, the number of predicted 
symbols per issue was 4. Table 4 compares fault localization 
approaches across navigation style, strategy selection, and cost 
allocation. Agentless and AutoCodeRover rely on hierarchical or 
agent-driven navigation with fixed strategy selection, whereas our 
approach incorporates issue-level classification to guide navigation 
behavior and distribute localization cost accordingly. 

Threats to validity are as follows. Dataset scope: Evaluation is 
limited to Python projects in SWE-bench Lite; cross-language 
generalization requires further validation. Classification accuracy: 
Misclassification may cause suboptimal strategy selection, though 
the fallback mechanism mitigates this by escalating failed 
localizations to broader search strategies. Limited efficiency 
comparison: AutoCodeRover and SWE-agent do not report FL-
specific costs, limiting direct efficiency comparison to Agentless. 
LLM dependency: Performance depends on the capabilities of GPT-
4o and may vary across different models or API versions. 
 

 
6. Conclusion 

This paper presented a classification-based fault localization 
framework that adapts localization strategies to the amount of 
location information available in issue descriptions. By moving 
away from fixed pipelines and targeting symbol-level code units, the 
approach aligns localization behavior with issue characteristics and 
provides stable, context-rich repair locations. The findings suggest 
that explicitly modeling issue structure enables more effective and 
efficient localization without increasing system complexity. Future 
work includes refining the classification scheme to capture finer-
grained issue types and integrating classification-based localization 
more tightly with multi-location automated program repair methods. 
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Table 4. Feature Comparison of Fault Localization Approaches 

Feature  Agentless AutoCodeRover Ours 

 Navigation Hierarchical Agent-driven Classification-based 
 Strategy selection Fixed Fixed Adaptive 
 Input analysis None Entity extraction Classification 
 Cost allocation Uniform Variable Proportional 

 

Table 3. Accuracy by Issue Classification Category (TP: True Positive, GT: Ground Truth). 

         Level 
 Category 

Classification 
Localization Acc. 

Ours Agentless AutoCodeRover 

Count Recall (%) 
(TP/GT) 

File path  
Accuracy (%) 

Symbol 
Accuracy (%) 

Avg. 
Cost ($) 

File path  
Accuracy (%) 

Symbol 
Accuracy (%) 

File path  
Accuracy (%) 

Symbol  
Accuracy (%) 

 Full Location 10 21 (10/48) 100 (10/10) 100 (10/10) 0.01 100 (10/10) 100 (10/10) 100 (10/10) 100 (10/10) 
 Partial Location 177 63 (81/128) 84.7 (150/177) 54.8 (97/177) 0.04 85.9 (152/177) 55.9 (99/177) 74 (131/177) 49.2 (87/177) 
 Hint 113 52 (65/124) 56.6 (64/113) 44.2 (50/113) 0.05 41.6 (47/113) 37.2 (42/113) 58.4 (66/113) 46 (52/113) 
 Total 300 - 74.6 (224/300) 52.3 (157/300) 0.05 69.7 (209/300) 50.3 (151/300) 69.0 (207/300) 49.7 (149/300) 
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요   약 
 딥러닝 라이브러리는 현대 인공지능 응용의 핵심 소프트웨어 인프라로서, 내부 계산의 정확성은 모델
의 성능과 시스템 신뢰성에 직접적인 영향을 미친다. 딥러닝 라이브러리의 계산 오류를 자동으로 탐지하
기 위해 차등 테스팅이 널리 활용되고 있으나, 기존 차등 테스팅 기법은 부동소수점 수치 연산의 특성으
로 인해 허위 양성이 빈번하게 발생하여 실질적인 활용에 한계를 가진다. 본 논문에서는 이러한 한계를 
극복하기 위해, 딥러닝 라이브러리의 계산 오류 탐지를 위한 차등 테스팅 기반 퍼징 파이프라인을 제안
한다. 제안 기법은 동일한 의미를 갖는 API 실행 결과를 비교하여 계산 오류를 식별하되, 비결정적 API
를 사전에 제거하고, 수치적으로 불안정한 입력 텐서를 실행 중에 필터링하며, 데이터 타입을 고려한 결
과 비교 기법을 통합함으로써 허위 양성을 체계적으로 감소시킨다. PyTorch 라이브러리의 781개 API를 대
상으로 수행한 실험 결과, 제안 기법은 기존 차등 테스팅 기법 대비 다수의 허위 양성을 제거하면서도 
실제 계산 오류를 효과적으로 탐지함을 확인하였다. 

 
1. 서  론 

PyTorch와 TensorFlow와 같은 딥러닝 라이브러리(deep 
learning library)는 텐서 연산, 자동 미분, 신경망 구성 
요소 등을 API(application programming interface)로 
추상화하여, 복잡한 딥러닝 모델의 구현과 학습을 
지원하는 핵심 소프트웨어 인프라이다 [1,2]. 이러한 
라이브러리는 다양한 인공지능 응용에서 모델의 학습 
및 추론 과정 전반을 담당하므로, 내부 연산의 정확성은 
곧 모델의 성능과 직결된다. 특히 안전 중요 응용(safety-
critical application) 분야에서는 딥러닝 연산 결과의 
정확성과 일관성이 시스템 신뢰성을 좌우한다. 

API의 본래 의미와 다른 값을 계산하는 딥러닝 
라이브러리의 계산 오류(computation bug)는 모델의 예측 
정확도를 저하시켜 시스템 전반의 신뢰성을 떨어뜨린다. 
이러한 계산 오류는 명시적인 크래시(Crash)를 동반하지 
않는 경우가 많아, 기존의 크래시 중심 테스트 
기법으로는 효과적으로 탐지하기 어렵다. 그 결과, 
오류는 장기간 잠복한 채 실제 응용 환경에서 잘못된 
예측이나 의사결정을 유발할 위험이 있다. 따라서 
딥러닝 라이브러리에서 발생하는 계산 오류를 자동으로 
식별하고 검증할 수 있는 효과적인 테스트 기법이 
필요하다. 
본 연구에서는 딥러닝 라이브러리에서 발생하는 계산 

오류를 자동으로 탐지하기 위한 테스트 기법으로서, 
차등 테스팅(differential testing)에 기반한 퍼징(fuzzing) 

파이프라인을 제안한다. 제안 기법은 동일한 의미를 
갖는 API 실행 결과를 상호 비교함으로써, 크래시 없이 
발생하는 계산 오류를 효과적으로 식별하는 데 목적이 
있다. 특히 비결정적 동작을 보이는 API를 사전에 
제거하고, 수치적으로 불안정한 입력을 실행 중에 
필터링하며, 데이터 타입을 고려한 결과 비교를 
수행함으로써 기존 테스트 기법에서 빈번하게 발생하던 
거짓 양성(false positive)을 체계적으로 감소시킨다. 이를 
통해 본 연구는 딥러닝 라이브러리 내부 계산에 대한 
신뢰성 있는 자동 검증 방법을 제시한다. 
 
2. 연구 배경 
다양한 딥러닝 라이브러리 API의 계산 오류를 

자동으로 탐지하기 위한 전형적인 방법으로 차등 
테스팅(differential testing)이 널리 활용된다 [3,4,5]. 차등 
테스팅은 동일한 입력에 대해 CPU와 GPU에서 각각 
계산을 수행하고, 그 결과를 비교함으로써 잠재적인 
계산 오류를 식별하는 방식이다. 동일한 입력에 대해 두 
환경에서의 계산 결과가 유의미하게 상이한 경우, 이는 
어느 한쪽 구현에 오류가 존재할 가능성이 있음을 
시사하며, 해당 사례를 잠정적인 계산 오류로 분류할 수 
있다. 이러한 접근법은 별도의 테스트 오라클(oracle)을 
구축할 필요가 없다는 장점이 있어, 수많은 API로 
구성된 대규모 딥러닝 라이브러리의 계산 오류 탐지에 
적합하다. 
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그림 1 차등 테스팅 파이프라인 개요 

 

그러나 기존 차등 테스팅 기법은 높은 허위 양성(false 
positive) 문제로 인해 실용성에 한계를 가진다. 
부동소수점(floating-point) 수치 연산에 내재된 근본적인  
부정확성으로 인해, 동일한 알고리즘을 구현한 경우에도 
연산 순서나 내부 최적화 방식의 차이에 따라 계산 
결과가 달라질 수 있다 [6]. 이로 인해 구현상의 오류가 
존재하지 않더라도 CPU와 GPU 간 계산 결과 차이가 
빈번하게 발생한다. 이러한 잠정적 계산 오류의 진위를 
판단하기 위해서는 전문가의 수작업 분석이 요구되며, 
다수의 허위 양성은 분석 비용을 크게 증가시켜 계산 
오류 탐지 기법의 실질적인 활용을 저해한다. 

 
3. 제안 기법 
본 연구에서는 딥러닝 라이브러리 API 계산 오류 

탐지를 위해, 거짓 양성을 효과적으로 감소시키는 차등 
테스팅 파이프라인을 제안한다 (그림 1). 제안 
파이프라인은 비결정적 API를 필터링하는 오프라인 
과정, 그리고 불안정한 입력 텐서 필터링 및 데이터 
타입 맞춤형 결과 비교를 포함하는 퍼징 과정으로 
구성된다. 
3.1 비결정적 API 필터링 (Non-deterministic API 
Filtering) 
퍼징 수행에 앞서 알고리즘 자체가 비결정적인(non-

deterministic) API를 탐지하여 차등 테스팅 대상에서 
제외한다 (그림 1, ①). 차등 테스팅의 기본 전제는 
동일한 입력에 대해 API가 항상 동일한 출력을 
생성해야 한다는 점이다. 그러나 드롭아웃(dropout), 
무작위 샘플링(random sampling)과 같은 API는 
본질적으로 비결정적이므로, 차등 테스팅을 적용할 경우 
대부분의 결과가 허위 양성으로 이어진다. 
이를 방지하기 위해, 본 연구에서는 API의 결정성을 

자동으로 판별하는 간단한 휴리스틱을 적용한다. 
구체적으로, 동일한 입력에 대해 API를 CPU 환경에서 
5회 반복 실행하고, 실행 결과가 한 번이라도 상이한 
경우 해당 API를 비결정적 API로 판별하여 테스트 
대상에서 제외한다. 
3.2 불안정한 입력 텐서 필터링 (Ill-conditioned Tensor 
Filtering) 
수치적으로 불안정한 텐서는 미세한 입력 변화가 

결과값의 큰 차이로 증폭되는 특성을 가지며, 이러한 

표 1 데이터 타입별 허용 오차 
데이터 타입 atol rtol 

Uint8, Int8, Bool 0 0 
Int16, Int32, Int64 0 0 

Float16, BFloat16, ComplexHalf 1×10-2 1×10-3 
Float32, ComplexFloat 1×10-6 1×10-5 
Float64, ComplexDouble 1×10-12 1×10-10 

 
입력으로부터 탐지된 잠정 계산 오류는 허위 양성일 

가능성이 높다. 본 연구에서는 특이값 분해(singular value 
decomposition)를 통해 계산한 조건수(condition number)가 
1,000 이상인 텐서를 수치적으로 불안정한 텐서로 
정의하고 [7], 이를 테스트 입력에서 제외한다 (그림 1, 
②). 
3.3 타입 맞춤형 결과 비교 (Type-aware Result 
Comparison) 
결과 텐서를 비교할 때, 텐서의 데이터 타입에 따라 

허용 오차를 조정함으로써 계산 오류 탐지 정확도를 
향상시킨다 (그림 1, ③). 일반적인 차등 테스팅에서는 
다음 식과 같이 절대 허용 오차(atol)와 상대 허용 
오차(rtol)를 사용한 값 비교를 수행한다. 여기서 x1, x2는 
두 결과 텐서의 요소 값이다. 

|x1 - x2| ≤ atol + rtol·| x2| 

기존 기법들은 일반적으로 고정된 기본값(atol = 1× 
10-8, rtol = 1×10-5)을 사용한다. 본 연구에서는 텐서의 
데이터 타입에 따라 서로 다른 허용 오차를 
적용함으로써, 부동소수점 연산으로 인한 허위 양성을 
추가적으로 감소시킨다 (표 1). 

 
4. 실  험 
4.1 실험 환경 
제안 기법의 유효성을 검증하기 위해 차등 테스팅 
파이프라인을 구현하고 실험을 수행하였다. 실험 
구현에는 딥러닝 라이브러리 API 퍼저인 PathFinder를 
테스트 입력 생성기로 사용하였으며 [8], 해당 퍼저가 
생성한 입력을 기반으로 차등 테스팅 파이프라인을 
구성하였다. 베이스라인으로는 동일한 입력 생성 및 
실행 환경에서, 불안정한 입력 텐서 필터링과 타입 맞춤 
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표 2 실험 결과 
Approach Baseline Ours 

True Positive 16 16 
False Positive 90 40 

Total 106 56 
Precision (%) 15.09 28.57 

형 결과 비교를 적용하지 않고 고정된 허용 오차를 
사용하는 기존 차등 테스팅 퍼저를 구현하여 비교 
실험을 수행하였다. 

PyTorch (v2.2) 의 총 781개 API를 대상으로, 각 API에 
대해 6분간 퍼징을 수행하였다. 모든 실험은 Ubuntu 
22.04, Intel(R) Xeon(R) Gold 6248R CPU및 NVIDIA GeForce 
RTX 3090 GPU 환경에서 수행되었다. 
4.2 실험 결과 
실험 결과, 제안한 파이프라인의 정확도는 28.57%로 

베이스라인의 정확도(15.09%)에 비해 현저히 높게 
나타났다(표 2). 베이스라인과 제안 기법은 각각 
106개와 56개의 양성을 탐지하였다. 탐지된 결과의 실제 
오류 여부를 판별하기 위해 API 문서 및 구현 
세부사항을 기반으로 한 수작업 분석을 수행한 결과, 두 
방법론 모두 16개의 실제 양성을 탐지하였음을 
확인하였다. 그러나 베이스라인은 전체 탐지 결과 중 
90개가 허위 양성인 반면, 제안한 기법은 40개의 허위 
양성만을 포함하여 허위 양성의 수를 크게 감소시켰다. 
이로 인해 제안 기법은 베이스라인 대비 두 배에 
가까운 정확도 향상(15.09% → 28.57%)을 달성하였다. 
이러한 결과는 제안한 파이프라인이 기존 차등 테스팅 
기법에서 빈번히 발생하던 허위 양성을 효과적으로 
제거함을 보여주며, 본 연구에서 제안한 접근법의 
유효성을 뒷받침한다. 
추가적으로, 제안한 파이프라인이 탐지한 16개의 실제 

오류 중 중복을 제외한 10개를 PyTorch 공식 
레포지토리에 보고하였으며, 이 중 3개는 PyTorch 
개발자에 의해 실제 오류로 확인되었다. 그림 2는 
PyTorch API 중 하나인 torch.special.logit에서 발견된 계산 
오류를 재현하는 코드 예시를 보여준다. 분석 결과, 
해당 오류는 CUDA 구현에서 bfloat16 타입 입력을 float 
타입으로 캐스팅하는 과정에서 발생한 구현 결함으로 
확인되었다. 

5. 결  론
본 논문에서는 딥러닝 라이브러리에서 발생하는 계산

오류를 자동으로 탐지하기 위한 차등 테스팅 기반 퍼징 
파이프라인을 제안하였다. 차등 테스팅은 계산 오류 
탐지를 위한 효과적인 방법론이지만, 기존 기법은 허위 
양성이 빈번하게 발생하여 실제 활용에 제약이 
따른다는 한계를 가진다. 
제안 기법은 이러한 한계를 완화하기 위해 비결정적 

그림 2 torch.special.logit 의 계산 오류 테스트 코드 

API의 사전 제거, 수치적으로 불안정한 입력 텐서의 
필터링, 그리고 데이터 타입 맞춤형 결과 비교를 
통합한다. PyTorch 라이브러리의 781개 API를 대상으로 
수행한 실험 결과, 제안한 파이프라인은 베이스라인 
대비 다수의 허위 양성을 제거하면서도 실제 계산 
오류를 효과적으로 탐지함을 확인하였다.  
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import torch 

self = torch.tensor([[0.0835]], dtype=torch.bfloat16) 

result_cpu = torch.special.logit(self) 

self_cuda = self.cuda() 

result_gpu = torch.special.logit(self_cuda) 

print (torch.allclose(result_cpu, result_gpu.cpu(), 

atol=1e-02, rtol=1e-03)) // False 
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서 론1. 
현대 소프트웨어 시스템은 점점 더 복잡해지고 있으며 그에 따  , 

라 유지보수와 품질 보증에 필요한 비용과 노력도 증가하고 있다. 
이러한 상황에서 소프트웨어 결함 예측 은 소프트웨어가 배포(SDP)
되기 전에 결함 가능성이 있는 모듈을 사전에 식별함으로써 소프트, 
웨어의 신뢰성을 향상시키고 유지보수 비용을 절감하는 데 중요한 
역할을 한다 기존의 연구에서는 주로 코드로부터 추출한 수. SDP 
치 기반 소프트웨어 메트릭을 입력으로 활용하여 다양한 기계 학습

이 적용되어 왔다 모델 중에서도 트리 기반 앙상블 기법(ML) . ML 
을 사용하여 안정적인 예측 성능을 보였으나 메트릭 간의 복잡한 , 
상호작용이나 순차적 구조를 반영하지 못하는 한계가 존재한다.

본 연구에서는 의 효율적인 수행을 위해 최신 딥러닝 기법  SDP , 
인 을 적용하고자 한다 은 기존의 기법TabulaRNN[1] . TabulaRNN
들과 달리 정형 입력 특성을 모델 내부에서 표현 학습이 가능하도
록 구성한 순환 신경망 기반 구조를 채택한다 이는 시간적 (RNN) . 
시계열을 가정하는 것이 아니라 다변량 메트릭 간의 의존성을 학습, 
하기 위한 표현 방식으로 활용된다 이를 통해 고정된 조. feature 
합 설계 없이도 메트릭 간 관계에서 나타나는 패턴을 포착할 수 있
으며 모델이 직접 간 연관성을 학습하도록 유도할 수 있, feature 
다 본 연구는 데이터셋의 다양한 소프트웨어 메트릭을 활. AEEEM 
용하여 의 예측 성능을 평가하고 에 적합한 주요 TabulaRNN , SDP
하이퍼파라미터를 체계적으로 탐색 분석한다 본 연구 결과는 · . 

의 분야 활용 가능성을 제시하고 소프트웨어 품TabulaRNN SDP , 
질 향상에 기여할 수 있을 것으로 기대한다.

관련 연구2. 
기존 연구에서는 다양한 통계적 모델과 기법을 활용하여   ML 

모델을 개발하고 있으며 각 접근 방식은 사용한 데이터 특성SDP , 
과 모델링 기법에 따라 다양한 성능을 보여왔다 특히 . Random 

와 같은 트리 기반 앙상블 기법은 높은 예측 성Forest, XGBoost
능을 달성하여 널리 활용되고 있다 는 . Nikhil Saji Thomas [2]

에 를 적용하여 클래스 불균형 문제를 완Random Forest SMOTE
화하고 하이퍼파라미터 최적화를 통해 기존 기법보다 우수한 성능, 

을 보고하였다 역시 를 기반. Tariq Najim AL-Hadidi[3] XGBoost
으로 를 활용한 튜닝을 통해 예측 성능을 향상시켰다Grid Search .

그러나 이러한 접근들은 공통적으로 수치형 메트릭을 독립적인   
입력 변수로 처리하는 경향이 있다 수치형 메트릭 기반 예측은 데. 
이터 가공이 간단하다는 장점이 있지만 메트릭 간 복합적인 비선형 , 
상호작용이나 조합 효과를 충분히 반영하기 어려워 소프트웨어 모
듈의 내재된 복잡성을 효과적으로 모델링하는 것에 한계가 있을 수 
있다.

은 다양한 정형 데이터 분석에서 우수한 성능을 입증  TabulaRNN
한 바 있으나 분야에서는 아직 적용 사례가 충분히 보고[1], SDP 
되지 않았다 따라서 정형 메트릭 기반 에서 계열 . SDP TabulaRNN 
접근의 유효성을 검증하고 적용 가능성을 탐색하는 연구가 필요하
다 본 연구는 을 에 적용하여 그 실효성을 검증하. TabulaRNN SDP
고 정형 메트릭 기반 딥러닝 모델의 확장 가능성을 탐색하고자 한, 
다.

연구 방법3. 
본 연구는 모델을 적용하여 를 수행하였다 제  TabulaRNN SDP . 

안 모델의 성능을 단일 분할에 의존하지 않고 안정적으로 검증하기 
위해 전체 데이터를 클래스 비율을 유지하는 , Stratified 5-Fold 
교차검증으로 분할하였다 각 에서는 학습 세트로 모델을 학습. Fold
한 뒤 분리된 테스트 세트에 대해 예측을 수행하여 성능을 산출하, 
였으며 모든 의 결과를 종합하여 평균 성능을 보고하였다 또, Fold . 
한 연구 방법의 재현성과 절차적 명확성을 위해 데이터 전처리부터 , 
학습 추론 평가까지의 전체 흐름은 그림 에 제시하고 단위로 · · 1 , Fold 
반복되는 의 학습 및 평가 과정은 로 단TabulaRNN Algorithm 1
계별 정리하였다.

데이터 전처리 단계에서는 각 에서 학습 테스트 분할을 먼저   Fold /
수행한 후 행 학습 데이터에 대해서만 정규화를 학습(6 ), Min-Max 
하고 동일한 변환을 테스트 데이터에 적용하였다 행 이는 테스트 (7 ). 
데이터의 통계 정보가 전처리에 반영되는 데이터 누수를 방지하기 
위함이다 이후 학습 데이터에서 값이 모두 동일한 특성인 . , 

를 판별하여 제거하고 동일한 특성을 테스트 constant features , 
데이터에서도 제거하였다 행 각 에 대해 학습 데이터에 (8 ). Fold
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wndgus543@jbnu.ac.kr, duksan.ryu@jbnu.ac.kr

Software Defect Prediction based on TabulaRNN
O 

Department of Software Engineering, Jeonbuk National University

요  약
는 소프트웨어 품질 확보와 유지보수 비용 절감을 위해 필수적인 과정이다 기존의 기반 모델들은   SDP . ML 

수치형 소프트웨어 메트릭을 입력으로 활용했지만 이들은 변수 간의 복잡한 상호작용을 충분히 반영하기 어, 
렵다는 한계가 있었다 이에 본 연구는 정형 메트릭 간 의존성을 보다 효과적으로 학습하기 위한 표현 학습 . 
관점에서 기반의 모델을 에 적용한다 은 시간적 시계열을 전제로 하는 , RNN TabulaRNN SDP . TabulaRNN
것이 아니라 메트릭 벡터를 고정된 특성 순서에 따라 구성된 입력 표현으로 처리하여 변수 간 상호작용 패, 
턴을 포착하는 데 강점을 가진다 데이터셋 기반 교차검증 실험에서 . AEEEM Stratified 5-Fold TabulaRNN
은 및 대비 지표에서 소폭 우수한 성능을 보였다 다만 가 증가하는 경향Random Forest XGBoost PD . PF
이 함께 관찰되어 탐지율 향상과 오탐지 감소 사이의 가 존재함을 확인하였다 본 연구 결과는 , trade-off . 

계열 접근이 정형 메트릭 기반 에서 활용될 수 있는 가능성을 제시한다TabulaRNN SDP .
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SMOTE를 적용하여 클래스 불균형을 완화하였으며 행 는 (9 ), SMOTE
학습 데이터에만 수행되었다 모델 학습 단계에서는 입력 특성을 . 
임베딩한 뒤 이를 구조를 통해 처리하였다 행 이때 는 , RNN (11 ). t
시간축이 아니라 특성 시퀀스에서의 위치 인덱스이며 본 연구에서, 
는 메트릭 컬럼의 순서를 고정하여 입력 시퀀스를 구성하였다(10
행 은닉 상태 갱신은 수식 과 같이 정의된다). (1) .

    
  

여기서 는 번째 메트릭의 임베딩t , 와 는 학습 가능한 
가중치 행렬 는 편향 그리고 , b , 는 비선형 활성화 함수를 의미
한다 생성된 은닉 상태들을 평균하여 최종 특성 표현을 구성하고. , 
이를 헤드에 입력하여 결함 여부를 예측하였다 행 학습은 MLP (11 ). 

기법을 적용하여 학습 데이터 내부에서 별도의 검Early Stopping , 
증 세트를 분리하여 검증 성능 향상이 더 이상 발생하지 않을 때 
학습을 조기 종료하였다 행 학습된 모델은 테스트 데이터에 대(12 ). 
해 예측을 수행하였으며 최종 이진 분류를 위해 검증 세트에서 , 

를 최대화하는 을 선택한 뒤 해당 을 Balance threshold threshold
테스트 세트에 고정 적용하였다 행 모델 성능 평가는 (13 14 ). SDP –
연구에서 일반적으로 활용되는 지표를 기반으로 수행하였으며(15
행 모든 결과는 평균과 표준편차로 요약하여 보고하였다), Fold (19
행).

  

실험 설정4. 
연구 질문4.1 

이 타 기법 대비 결함 예측 성능이 우수한가RQ1: TabulaRNN ?
 의 결함 예측 성능이 타 기법과 유사하다: TabulaRNN .
 의 결함 예측 성능이 타 기법 대비 우수하다: TabulaRNN .

의 하이퍼파라미터가 결함 예측 성능에 영향이 있RQ2: TabulaRNN
는가?
 의 하이퍼파라미터가 결함 예측 성능에 영향이 : TabulaRNN
없다.
 의 하이퍼파라미터가 결함 예측 성능에 영향이 : TabulaRNN
있다.

본 연구에서는 의 결함 예측 성능을 평가하기 위해   TabulaRNN
과 에 대해 귀무 가설RQ1 RQ2 ( 과 대립 가설) ( 을 수립하고) , 

통계적 검정을 수행하여 대립 가설 채택 가능성을 검증하였다.

데이터셋4.2 

dataset Project
#of instance #of 

me
tric

Prediction 
GranularityAll Buggy

AEEEM

EQ 324 129(39.81%) 61 Class
JDT 997 206(20.66%) 61 Class
LC 691 62(9.26%) 61 Class
ML 1862 245(13.16%) 61 Class
PDE 1492 209(14.01%) 61 Class

표 실험 데이터 셋1. 

모델의 성능을 평가하기 위해 오픈소스 프로젝트인 데이  AEEEM 
터 셋을 이용한다 데이터의 세부적인 정보는 표 과 같다. 1 .

평가 지표4.3 

본 연구에서는 모델의 성능 평가를 위해 혼동 행렬 중 예측 결과  
가 로 판단된 사례 중 실제값 또한 인 경우의 비율Positive Positive
을 나타내는 실제 클래스에 속하는 데이터 중 PD, Negative 

로 잘못 분류된 비율을 나타내는 를 평가하였다 클래스 Positive PF . 
불균형 환경에서 모델의 균형 잡힌 성능을 확인하기 위해 

Balance(= 
    지표 또한 활용하였)[4] 

Predicted class
Defective Clean

Actual 
class

Defective TP(True Positive) FN(False Negative)
Clean FP(False Positive) TN(True Negative)

표 혼동 행렬2. 

그림 1 연구 방법 
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다 추가적으로 코드 검사 과정에서의 노력 절감 효과를 분석하기 . , 

위해 FIR(=
 지표 를 사용하였다 는 실제로 결함이 존) [5] . FI

재하지 않는 모듈을 결함이 있는 것으로 잘못 식별한 비율이다.

4.4 Baseline
본 연구는 의 성능을 검증하기 위해 에서 널리   TabulaRNN SDP

사용되는 트리 기반 앙상블 모델을 으로 설정하였다 비교 Baseline . 
대상은 와 이며 두 모델 모두 테이블 메Random Forest XGBoost , 
트릭 데이터에서 강력한 성능과 안정성을 보이는 대표적 기법이다.

공정한 비교를 위해 은 과 동일한 실험 설정  Baseline TabulaRNN
을 따른다 즉 로 데이터를 분할하고 훈련 에. Stratified 5-Fold , Fold
만 를 적용하며 제거 및 정규화를 동일하SMOTE , constant feature 
게 수행한다. 

실험 결과5. 
이 타 기법 대비 결함 예측 성능이 우수한가5.1 RQ1: TabulaRNN ?

본 연구에서는 과 비교 실  TabulaRNN XGBoost, Random Forest 
험을 진행했다.

표 은 세 모델의 평균 성능을 요약한 결과이다  3 . TabulaRNN
은 는 가장 높은 성능을 보였고 와 은 비슷한 성PD , Balance FIR
능을 보였지만 가 으로 가장 낮은 성능을 보였다, PF 0.1436 . 

은 가 로 가장 높게 나타났으며 이는 결함 TabulaRNN PD 0.4962 , 
모듈 탐지 관점에서 상대적으로 민감하게 반응하는 경향을 시사
한다 반면 는 으로 및 . PF 0.1436 XGBoost(0.1020) Random 

보다 높게 나타났고 이에 따라 Forest(0.1058) , Balance(0.6150)
와 은 기존 모델 대비 뚜렷한 향상을 보이지 않거나 FIR(0.4559)
유사한 수준으로 관찰되었다.

표 는 과 다른 기법 간 효과 크기  4 TabulaRNN Cohen’s d[6] 
를 비교한 결과이다 은 대비 지표에서 . TabulaRNN XGBoost PF 

수준 및 지표에서는 수준의 차Large , Balance FIR Very small 
이를 보였다 대비 지표에서는 수준. Random Forest PF Large , 

및 에서는 수준 지표에서는 PD Balance Very small , FIR Small 
수준에 가까운 차이를 나타냈다 이는 의 성능 차이. TabulaRNN
가 주로 에서 크게 발생하며 과 같은 종합 지표PF , Balance/FIR
에서는 실질적인 차이가 제한적일 수 있음을 의미한다.

결론적으로 은 결함 모듈 탐지에 민감하게 반응하  , TabulaRNN
여 측면에서는 기존 모델보다 우수한 경향을 보였다 그러나 PD . 
비결함 모듈에 대한 오탐지 비율이 증가하여 가 상승하였고PF , 
이에 따라 및 측면에서는 기존 모델과 유사한 성Balance FIR 

능을 보였다 따라서 은 탐지율을 우선하는 품질 게. TabulaRNN
이트 시나리오에는 유리할 수 있으나 오탐지를 최소화해야 하는 , 
운영 환경에서는 비용 민감 학습과 같은 추가적인 완화 전략이 
필요하다.

5.2 RQ2:　 의 하이퍼파라미터가 결함 예측 성능에 영향TabulaRNN
이 있는가?

표 는 모델의 주요 하이퍼파라미터인   5 TabulaRNN n_layers
와 의 범위 및 기본값을 나타낸다 는 블d_model . n_layers RNN 
록의 깊이로 값이 클수록 복잡한 패턴을 학습할 수 있지만 과적, 
합 위험이 증가한다 은 입력 를 임베딩하는 차. d_model feature
원의 크기로 값이 커지면 표현력이 향상되지만 모델 크기와 과, , 
적합 가능성도 증가한다.

표 은 프로젝트별 지표를 기준으로 최고의 성능을   6 Balance 
보이는 의 파라미터값을 나타낸 것이다TabulaRNN .

그림 값에 따른 지표2. n_layers Balance 
그림 는 값에 따른 지표이다 가   2 n_layers Balance . n_layers

일 때 로 가장 높았다2 0.6284 .

그림 값에 따른 성능 지표3. d_model Balance 
그림 은 값에 따른 성능 지표이다  3 d_model Balance . 

이 일 때 로 가장 높았다d_model 48 0.6342 .

Metric
Model

TabulaRNN XGBoost Random Forest
PD 0.4962 0.4787 0.4941
PF 0.1436 0.1020 0.1058

Balance 0.6150 0.6165 0.6223
FIR 0.4559 0.5471 0.4460

표 과 다른 모델들과의 성능 비교3. TabulaRNN

Tabular
RNN

Measure
PD PF Balance FIR

XGBoost 0.2935(S) 1.3563(L) 0.0405(VS) -1.5890(L)

Random
Forest 0.0283(VS) 1.1888(L) -0.1220(VS) 0.1710(VS)

표 비교4. effect_size 

Parameter Range Default
n_layers {1, 2, 3, 4, 5, 6} 4
d_model {32, 48, 64, 80, 96, 128} 64

표 하이퍼파라미터 범위와 기본값5. 

dataset Project
Best performing parameter(Balance)

n_layers d_model

AEEEM

EQ 3 80
JDT 6 48
LC 3 80
ML 1 64
PDE 3 48

표 최적의 파라미터 값6. 
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하이퍼파라미터의 값에 따라 성능 차이가 있음을 파악했고 데  
이터의 특성에 맞춰 적합한 하이퍼파라미터 값을 조정 해줘야 
함을 확인했다.

위협 요소6. 
모델 성능이 하이퍼파라미터 설정에 민감하게 반응하였으며  , 

데이터 셋마다 최적값이 달라 일반화가 어렵다 또한 . 
은 입력 특성을 일정한 순서로 배열하여 처리하는 구TabulaRNN

조이므로 메트릭의 순서 정의 방식에 따라 성능이 변동할 수 있, 
다 연구는 의 일부 프로젝트에 한정되어 있어 다양한 도. AEEEM
메인에 대한 확장 가능성은 충분히 검증되지 않았다 아울러 본 . 
연구는 와 간 가 존재할 수 있으며 운영 환경에PD PF trade-off , 
서의 비용까지 반영한 최적화는 본 논문 범위에서 충분히 다루
지 못하였다.

결론 및 향후 과제7. 
본 연구에서는 정형 소프트웨어 메트릭 간 의존성 학습을 강  

화하기 위한 표현 방식으로 모델을 에 적용하TabulaRNN SDP
였다 은 전통적인 기법인 . TabulaRNN ML Random Forest, 

와 비교하여 지표에서 상대적으로 우수한 성능을 XGBoost PD 
보였다 다만 가 증가하는 경향이 관찰되어 제안 모델이 모든 . PF , 
지표에서 일관되게 우수하다고 결론 내리기에는 한계가 있으며, 
실제 적용 시에는 탐지율 향상과 오탐지 감소 사이의 trade-off
를 고려한 운영 시나리오별 활용이 필요하다.

향후 연구에서는 기반 구조를 결합한 모델  Attention Hybrid 
을 탐색함으로써 메트릭 간 상호작용을 보다 선택적으로 강조하
고 오탐지을 완화할 수 있는 구조를 검토하고 예측 결과에 대한 , 
해석 가능성을 높일 계획이다 또한 외의 다양한 공개 . , AEEEM 

데이터셋 및 도메인을 활용한 실험을 통해 모델의 일반화 SDP 
성능을 폭넓게 검증할 계획이다.
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1. 서 론
 소프트웨어 개발 과정에서 결함을 사전에 예측하는 것은 품질 
향상과 유지보수 비용 절감에 중요한 역할을 한다. 특히 결
함이 있는 모듈을 조기에 식별하면 자원을 효율적으로 배분할 
수 있어, 시스템의 신뢰성과 안정성을 높일 수 있다. 기존 결
함 예측 연구는 결합도, 변경 이력 등 수치형 데이터를 기반으
로 한 ML 모델을 활용해 왔으나, 복잡한 상호작용이나 문
맥적 의미를 반영하는 데 한계가 있으며, 새로운 도메인에 대
한 일반화에도 어려움이 있다. 최근에는 LLM의 발전으로 자연
어 기반 입력을 이해하는 고성능 모델이 주목받고 있다. 그 
중 Meta에서 개발한 Code LLaMA는 프롬프트 처리 능력이 
뛰어나고 강력한 문맥 이해 능력을 갖추고 있다. 본 연구는 결
함 데이터를 자연어 형태로 변환하여 Code LLaMA에 입력하
고, 이를 통해 결함 여부를 분류하는 모델을 설계하였다. 실험
을 통해 LLM 기반 접근의 적용 가능성을 확인했으며, Code 
LLaMA에 자연어 형태로 구성한 결함 데이터를 입력해 예측하
는 방식으로 기존 수치형 입력 기반 접근과 차별화되는 결함 
예측 가능성을 제시한다.

2. 관련 연구
 LLM의 발전으로 자연어 기반 입력을 이해하고 소프트웨어공
학 문제를 해결하려는 연구가 활발히 진행되고 있으며, 결함 
예측 분야에서도 그 활용 가능성이 주목받고 있다. Zheng et 
al.[1]은 Transformer 기반 모델을 활용하여 수치형 메트릭 데
이터를 입력으로 사용해 결함 예측을 수행하였으며, 딥러닝 
기반 접근이 기존 전통 모델 대비 효과적일 수 있음을 보였다. 
이정화 외[2]는 정형 결함 데이터를 기반으로 이상 탐지를 수
행하며, LLM의 구조적 이해 능력이 예측 정확도 향상에 

기여함을 확인하였다. 또한 Panthaplackel et al.[4]은 이슈 
설명과 메타 정보를 활용해 버그 심각도를 예측함으로써 자연
어 입력 기반 LLM의 활용 가능성을 보였다. 한편 Touvron et 
al.[5]은 Code LLaMA가 프롬프트 기반 지시 수행과 문맥 이
해를 효과적으로 지원하도록 학습·설계된 모델임을 제시하였다. 
기존 연구들이 대부분 코드 또는 주석과 같은 소스 기반 입력
에 집중한 반면, 본 연구는 소프트웨어 메트릭 데이터를 자
연어 형 태 로 변환하여 Code LLaMA에 입력함으로써, 정형 
데이터 기반의 LLM 활용이라는 새로운 접근을 제안한다.

3. 연구 방법
 본 연구는 소프트웨어 결함 데이터를 자연어 프롬프트로 변환
하여 Code LLaMA에 입력하고, 결함 여부를 분류하는 LLM 
기반 결함 예측 모델을 제안한다. 그림 1은 소프트웨어 메트릭 
데이터를 기반으로 자연어 프롬프트를 생성한 후, Code 
LLaMA 모델에 입력하여 결함 여부를 분류하는 전체 연구 과
정을 나타내며, 절차는 다음과 같다. 
 Stratified K-Fold(n=5)를 적용하여 학습/검증 세트를 구
성한다(1행). 훈련 데이터에는 SMOTE를 적용해 클래스 불
균형을 완화한다(2~3행). train/val 데이터를 자연어 프롬프
트로 변환하고, 라벨은 'buggy'는 1, 'clean'은 0으로 부여한
다(4~5행). 프롬프트를 Code LLaMA 토크나이저로 토큰화
한다(6행). 4bit QLoRA 설정이 적용된 Code LLaMA 7B 모
델을 로드한다(6~7행). 학습 데이터로 모델을 학습하고, 검
증 데이터로 예측을 수행한다(8~9행). 예측 결과로부터 
PD, PF, Balance, FIR을 계산하고 Fold별 결과를 저장한다
(10행). 모든 Fold에 대해 반복 수행한 후, 평균 성능 지표
를 최종 결과로 산출한다(11~12행).
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요  약

 소프트웨어 결함 예측(Software Defect Prediction, SDP)은 품질 확보와 유지보수 비용 절감을 위한 핵심 과정이다. 
그러나 기존의 수치 기반 머신러닝(ML) 모델은 복잡한 문맥이나 의미적 패턴을 충분히 반영하지 못하며, 새로운 도
메인에 대한 일반화 성능 역시 낮은 경향이 있다. 본 연구는 자연어 기반 입력을 활용하여 이러한 한계를 극복하는 
새로운 소프트웨어 결함 예측 접근 방식을 제시하는 것을 목표로 한다. 이를 위해 소프트웨어 메트릭 기반의 결함 데
이터를 자연어 형식으로 구성해 자연어 명령 이해에 강점을 가진 Code LLaMA를 미세조정하고, 질의 프롬프트로 결
함 여부를 예측하였다. 본 연구에서는 이러한 방법을 기반으로 자연어 프롬프트 입력 방식을 결함 예측에 적용하였으
며, 실험 결과, 일부 데이터셋에서 성능 향상이 관찰되었고, 데이터셋별로 성능 양상이 달라지는 경향을 보였다. 본 연
구는 LLM을 활용한 자연어 기반 예측 접근이 SDP에 효과적으로 적용될 수 있음을 실험적으로 확인하였다는 점에서 
의의가 있다.
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그림1 . 연구 방법

Algorithm 1. Code LLaMA
Input: Software metrics dataset D = {X, y}
Output: Evaluation metrics (PD, PF, Balance, FIR)
1: Initialize Stratified K-Fold (n = 5)
2: for each (train_df, val_df) in folds do
3:     Apply SMOTE to train_df
4:     Convert each instance in train_df and val_df into  
       natural language prompts
5:     Assign labels: 1 if 'buggy', 0 if 'clean'
6:     Tokenize prompts using Code LLaMA tokenizer
7:      Load Code LLaMA 7B with QLoRA for binary 
        classification
8:     Train model on train_df
9:     Predict labels on val_df
10:    Evaluate PD, PF, Balance, FIR using confusion   
        matrix
11: end for
12: Return average metrics across all folds

4. 실험 설정
4.1 연구 질문
RQ1: Code LLaMA는 SDP 분야에서 효과적인 성능을 제공할 
수 있는가?
RQ2: 자연어 프롬프트의 설계 방식이 Code LLaMA의 결함 예
측 성능에 영향을 미치는가?

4.2 데이터셋

Dataset Project
# of instances

# of metric Granularity
all buggy

AEEEM
EQ 324

123 
(39.81%)

61 class

JDT 997
206 

(20.66%)
61 class

Relink
apache 194 98 (50.52%) 26 isDefective

safe 56 22 (39.28%) 26 isDefective

표 1. 실험 데이터셋

모델의 성능을 평가하기 위해 오픈소스 소프트웨어 프로젝트에
서 수집된 결함 데이터셋인 AEEEM과 Relink 데이터셋을 활용
한다. 데이터셋의 구성 및 특징은 표1에 정리되어 있다.

4.3 데이터 전처리
 각 인스턴스의 수치형 결함 데이터를 자연어 형식으로 변환하
여 모델 학습에 사용하였고, 클래스 불균형 문제를 완화하기 
위해, 훈련 데이터에만 SMOTE를 적용하였다.

4.4 성능 평가 지표

Actually Defective Actually Clean
Predicted Defective True Positive(TP) False Positive(FP)

Predicted Clean False Negative(FN) True Negative(TN)

표 2. 혼동 행렬

 모델 성능 평가는 혼동 행렬을 기반으로 한다. PD는 실제 결
함을 올바르게 탐지한 비율, PF는 결함이 없는 모듈을 잘못 탐
지한 비율이다. Balance는 PD와 PF의 균형을 측정하는 지표
로, 다음과 같은 수식으로 계산된다. FIR은 PD와(1-PF)의 조
화를 측정하는 종합 지표로, 다음과 같은 수식으로 계산된다.

   
         (1)

     
∙∙            (2)

4.5 비교 모델 및 하이퍼파라미터 설정
 비교 모델(Random Forest, XGBoost)은 Code LLaMA와 동일
한 데이터셋 및 5-fold 분할 조건에서 산출된 결과를 기준으
로 비교하였다. 하이퍼파라미터는 각 모델의 기본 설정을 사용
하였다. 따라서 비교 결과는 기본 설정 기준의 성능 비교로 해
석한다.

5. 실험 결과 
5.1 RQ1. Code LLaMA는 SDP 분야에서 효과적인 성능을 제
공할 수 있는가?
 표 3은 Code LLaMA와 Randomforest, XGBoost를 비교한 결
과로 Code LLaMA는 일부 데이터셋에서 전통 모델보다 높은 
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PD를 기록했으나, 전체적으로는 PD 성능이 낮은 경향을 보였
다. apache와 safe에서는 각각 0.848, 0.779로 높은 값을 보였
지만, JDT에서는 0.364로 가장 낮았다. Balance와 FIR 측면에
서도 일부 지표에서 유사하거나 소폭 뒤처졌다. 이는 Code 
LLaMA가 일관된 우위를 보이지는 않았지만, 자연어 기반 입
력을 활용한 새로운 접근 방식으로서 가능성을 보여주었다.

Dataset Project Model
Measure

PD PF Balance FIR

AEEEM

EQ

Random
forest

0.790 0.241 0.772 0.683

XG
Boost

0.667 0.256 0.701 0.631

Code 
LLaMA

0.604 0.292 0.647 0.674

JDT

Random
forest

0.611 0.098 0.716 0.626

XG
Boost

0.601 0.079 0.712 0.672

Code 
LLaMA

0.364 0.077 0.546 0.559

Relink

apache

Random
forest

0.744 0.302 0.712 0.722

XG
Boost

0.735 0.270 0.719 0.748

Code 
LLaMA

0.848 0.406 0.693 0.682

safe

Random
forest

0.636 0.232 0.694 0.642

XG
Boost

0.541 0.234 0.626 0.618

Code 
LLaMA

0.779 0.381 0.681 0.567

표 3. Code LLaMA와 비교 모델의 성능 비교

 표 4는 Code LLaMA와 다른 기법들 사이에 효과 크기를 비
교한 결과이다. Code LLaMA는 PD 측면에서 Random forest, 
XGBoost 모델과 비슷한 수준을 보였다.

Code LLaMA
vs.

Measure
PD PF Balance FIR

Random 
forest

-0.283(S) 0.580(M) -1.546(L) -0.851(L)

XG
Boost

0.078(T) 0.645(M) -0.851(L) -0.749(M)

표 4. Effect Size 비교

5.2 RQ2: 자연어 프롬프트의 설계 방식이 Code LLaMA의 결
함 예측 성능에 영향을 미치는가?
Ÿ Prompt1: Here are some software metrics. Do you think 

the module might have a defect? Respond with either 
'Defect' or 'Non-defect'.

Ÿ Prompt 2: Given the following software metrics, answer 
the question: Is the module defect-prone? Answer with 
'Defect' or 'Non-defect'.

Ÿ Prompt 3: You are an expert software quality analyzer. 
Analyze the given software metrics and determine 
whether the module is DEFECTIVE or NOT 
DEFECTIVE. Reply strictly with 'Defect' or 
'Non-defect'.

PD PF Balance FIR
Prompt 1 0.475 0.305 0.582 0.570
Prompt 2 0.527 0.266 0.616 0.613
Prompt 3 0.648 0.289 0.641 0.620

표 5. 프롬프트에 따른 성능 비교

 표 5는 프롬프트 설계 방식에 따른 성능 차이를 보여준다. 
Prompt 1은 PD, Balance, FIR 모두에서 가장 낮은 성능을 기
록하였으며, 지시가 명확한 Prompt 3이 가장 높은 성능이 나
타났다. 이러한 결과는 프롬프트 표현의 차이가 LLM의 예측에 
영향을 미칠 수 있음을 보여준다.

6. 위험 요소 
 본 연구는 소프트웨어 메트릭 기반 결함 데이터를 자연어 형
식으로 구성하여 LLM에 적용하는 접근을 제안하였으나, 데이
터셋에 따라 성능 편차가 나타나 일반화에는 한계가 있다. 또
한 프롬프트 구성 방식과 추론 설정에 따라 모델 출력이 달라
질 수 있어 결과의 일관성과 재현성이 저하될 가능성이 있다. 
이는 Code LLaMA 기반 결함 예측이 입력 표현 방식과 출력 
판정 기준 측면에서 아직 표준화가 충분하지 않음을 시사한다.

7. 결론 및 향후 과제
 본 연구는 소프트웨어 메트릭 기반 결함 데이터를 자연어 형
태로 변환하여 Code LLaMA에 입력하는 결함 예측 모델을 제
안하였다. 일부 데이터셋에서는 PD에서 경쟁력 있는 성능을 보
였으나, 일부 지표에서는 저조한 성능을 보였다. 향후에는 프롬
프트 구성 방식의 체계적인 최적화와 함께, 다양한 LLM 아키
텍처에 대한 비교 분석을 통해 성능을 정량적으로 개선하고, 
모델의 일반화 가능성을 높이는 추가 연구가 필요하다.
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1. 서 론
  소프트웨어 시스템의 복잡성과 규모가 증가함에 따라, 결함 
발생 가능성이 높은 모듈을 사전에 식별하는 소프트웨어 결함 
예측(Software Defect Prediction, SDP)은 소프트웨어 품질 확
보와 유지보수 효율 향상을 위한 핵심 기술로 자리 잡았다. 이
를 위해 다양한 머신러닝(ML) 및 딥러닝(DL) 기반 예측 모델
들이 제안되어 왔으나, 대부분의 기법은 학습 데이터에 대한 
높은 의존성, 하이퍼파라미터 튜닝 필요성, 새로운 프로젝트 적
용 시 재학습 요구 등의 한계를 가진다. 특히 모델 성능이 하
이퍼파라미터 설정에 민감한 경우 반복적인 튜닝 과정이 필요
하며, 이는 실제 적용 시 시간 및 자원 소모를 증가시키는 요
인으로 작용한다. 또한 새로운 프로젝트나 데이터 환경에 적용
하기 위해 재학습이 요구되는 경우, 라벨링된 결함 데이터가 
충분하지 않으면 모델 활용이 제한되는 문제가 발생한다.
  본 연구는 이러한 기존 한계를 배경으로, 사전 학습된 인과 
기반 사전 분포를 활용하는 Transformer 기반 모델인 Tabular 
Prior-data Fitted Network(TabPFN)[1]을 SDP 문제에 적용
하여 그 성능 특성을 분석한다. TabPFN은 사전에 다양한 합성 
데이터셋을 통해 학습된 모델로, 추가적인 파라미터 재학습 없
이 입력 데이터를 문맥 정보로 활용한 단일 forward pass 기반 
추론이 가능하다는 구조적 특징을 가진다. 본 연구에서는 
TabPFN을 기존의 대표적인 SDP 모델들과 비교하여 다양한 
성능 지표 관점에서의 장단점을 분석하고, SDP 문제에서 
TabPFN의 활용 가능성과 한계를 실험적으로 고찰한다.

2. 관련 연구
  SDP 분야에서는 예측 성능 향상을 위해 다양한 ML 및 DL 

기반 모델들이 연구되어 왔다. 그러나 기존의 많은 기법들은 
학습 데이터에 대한 높은 의존성, 하이퍼파라미터 설정의 민감
성, 그리고 모델 적용 시 반복적인 학습 과정이 요구된다는 한
계를 가진다.
  Qu et al.[2]은 하이퍼파라미터 설정에 따라 결함 예측 성능
이 최대 34.6%까지 차이가 발생할 수 있음을 보였으며, 이는 
모델 성능이 설정값에 매우 민감하고 실제 적용 시 추가적인 
튜닝과 재학습이 필요할 수 있음을 시사한다.
  Wang et al.[3]은 DBN 기반의 의미적 특징 학습을 통해 소
프트웨어 결함 예측 성능을 향상시켰으나, 다단계 신경망 구조
의 학습을 위해 반복적인 학습 과정과 파라미터 튜닝이 요구된
다.
  Dam et al.[4]은 AST 기반 Tree-LSTM 모델을 제안하여 
코드의 구조적·의미적 정보를 효과적으로 학습하였으나, 모델 
적용을 위해 사전 학습 및 재학습 과정이 필요하다는 한계를 
가진다. 이러한 접근법들은 성능 향상에는 기여하지만, 새로운 
데이터 환경이나 프로젝트에 즉시 적용하기에는 학습 비용 측
면에서 부담이 존재한다.
  기존 연구들은 다양한 구조와 학습 전략을 통해 성능 향상을 
시도했으나 학습 데이터 의존성, 복잡한 하이퍼파라미터 튜닝, 
재학습 등의 한계를 가진다.  본 연구는 이러한 한계를 보완하
고자 추가 학습 없이 단일 추론만으로 예측이 가능한 TabPFN
을 SDP에 적용한다.

3. 연구 방법
  본 연구에서는 TabPFN을 SDP에 적용한다. 그림 1은 전체적
인 연구 과정과 모델 내부 구조를 시각화한 것이다. TabPFN의 
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요  약
  소프트웨어 결함 예측(Software Defect Prediction, SDP)은 소프트웨어 품질 향상을 위한 핵심 기술로 
이를 위해 다양한 머신러닝 및 딥러닝 기반 예측 모델이 연구되어 왔다. 그러나 기존 모델들은 학습 데이
터 의존성, 하이퍼파라미터 튜닝, 모델 재학습 등에서 한계를 가진다. 이러한 한계들은 SDP 환경에서의 
예측 성능을 저하시킨다. 따라서 본 연구는 SDP 환경에서 학습 데이터 부족 문제를 해결하고 복잡한 하
이퍼파라미터 튜닝에 대한 높은 민감성을 해소하는 것을 목표로 한다. 사전 학습된 인과 기반 분포를 활
용해 추가 학습과 하이퍼파라미터 튜닝 없이도 예측이 가능한 Tabular Prior-data Fitted Network(TabP
FN)을 SDP에 적용해 예측 성능을 향상시키고자 한다. 본 연구는 공개된 소프트웨어 결함 데이터셋을 사
용하여 TabPFN의 성능을 Random Forest, XGBoost와 비교하였으며 PD, PF, Balance, FIR 4가지 지표를 
기반으로 평가를 수행하였다. 연구 결과, TabPFN은 타 모델 대비 PD와 Balance 지표에서는 낮은 성능을 
보였지만, PF와 FIR 지표에서 우수한 성능을 보였다. 이를 통해 SDP에 TabPFN을 적용하기 위해서는 P
D, Balance 지표의 성능 개선을 위한 추가적인 연구가 필요함을 확인하였다.
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그림 1. 전체 연구 과정
(a) Prior-fitting and inference는 핵심 작동 방식인 사전 학
습과 단일 추론 흐름을 설명한다. TabPFN은 사전에 다양한 합
성 데이터셋을 생성하여 인과 기반 사전 분포를 학습하고, 실
제 데이터가 입력되면 추가 학습 없이 단일 forward pass를 통
해 예측을 수행한다. (b) Architecture and attention 
mechanism은 TabPFN 내부에서 수행되는 self-attention 기반 
추론 구조를 나타낸다. 학습 샘플들은 문맥 정보로 활용되며, 
테스트 샘플은 학습 샘플들에 attention을 수행하여 각 샘플에 
대한 결함 발생 확률을 추론한다.

Algorithm 1. TabPFN
Input: Tabular data X, labels y  
Output: Y_pred, evaluation metrics (PD, PF, Balance, 
FIR)
1: Split dataset into Train, Test sets  
2: Normalize X using Min-Max scaling  
3: For each fold in 10-fold cross-validation:
4:     Split train set into fold_train and fold_val  
5:     Apply SMOTE to fold_train  
6:     Load pretrained TabPFN model  
7:     
8:     Y_pred ← model.predict(X_test)  
9:     Compute confusion matrix  
10:    Calculate PD, PF, Balance, FIR  
11:    Store metrics for aggregation

  Algorithm 1은 전체 실험 절차를 나타낸 것이다. 전체 데이
터는 학습 데이터와 테스트 데이터로 분할되며(1행), 학습 데
이터에 대해 Min-Max 정규화를 수행한다(2행). 이후 교차 검
증을 적용하고 각 fold의 학습 데이터에 한하여 SMOTE[5]를 
적용한다(3~5행). 사전 학습된 TabPFN 모델을 로드한 후(6
행), 오버샘플링된 학습 데이터를 이용해 fit 과정을 수행한다
(7행). TabPFN에서의 fit은 일반적인 머신러닝 모델에서의 파
라미터 학습을 의미하지 않으며, 모델 파라미터를 갱신하지 않
고 입력된 학습 샘플들을 문맥(context) 정보로 모델에 제공하
기 위한 추론 준비 단계에 해당한다. 이 과정에서 TabPFN의 

내부 파라미터는 고정된 상태로 유지되며, 옵티마이저나 그래
디언트 기반의 학습은 수행되지 않는다. 이후 테스트 데이터는  
해당 문맥 정보를 기반으로 단일 forward pass를 통해 예측이 
수행되며(8행), 예측 결과와 실제 라벨을 비교하여 혼동 행렬
을 생성한다. 혼동 행렬을 바탕으로 PD, PF, Balance, FIR의 
네 가지 성능 지표를 계산하고(10행), 각 fold에서 산출된 평
가 결과는 최종 성능 계산에 활용된다(11행).
  TabPFN은 다양한 인과 구조를 내포하는 함수 공간()에 
대한 베이지안 사후 예측 분포를 근사하는 방식으로 정의된다.

          ∝
∅∈

  ∅ ∅∅∅   (1)

   수식 (1)은 입력 데이터 와 학습 데이터 가 주어졌을 
때 다양한 함수 ∅에 대한 예측 결과    ∅, 학습 데이
터의 우도  ∅, 구조의 사전 확률 ∅를 곱해 함수 공
간 전체에 대해 적분하여 최종 예측 분포를 도출하는 과정을 
나타낸다.

4. 실험 설정
4.1 연구 질문
RQ1: TabPFN이 타 기법 대비 결함 예측 성능이 우수한가?
- : TabPFN의 결함 예측 성능이 타 모델과 유사하다.
- : TabPFN의 결함 예측 성능이 타 모델 대비 우수하다.
RQ2: TabPFN의 앙상블 수가 성능에 영향을 미치는가?
 : TabPFN의 앙상블 수가 성능에 영향을 미치지 않는다.
- : TabPFN의 앙상블 수가 성능에 영향을 미친다. 
  TabPFN의 SDP 성능을 평가하기 위해 각각 가설을 설정한
다. RQ1에서는 TabPFN의 성능의 우수함을 검증하고, RQ2에
서는 TabPFN의 앙상블 구성 수 변화가 결함 예측 성능에 영
향을 미치는지 분석한다.

4.2 데이터
    표 1은 데이터셋의 구성을 나타낸다. 모델의 성능을 평가
하기 위해 AEEEM과 Relink 데이터셋을 활용한다. AEEEM과 
Relink는 오픈소스 프로젝트에서 수집된 결함 데이터이다. 
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Dataset Project
# of instances # of 

metric
Granularity

all buggy

AEEEM

EQ 324 123 (39.81%) 61 class

JDT 997 206 (20.66%) 61 class

LC 691 64 (9.26%) 61 class

Relink

apache 194 98 (50.52%) 26 class

zxing 399 118 (29.57%) 26 class

safe 56 22 (39.28%) 26 class

표 1. 실험 데이터셋

4.3 전처리
  Min-Max 정규화를 통해 입력 특성의 값을 0과 1 사이로 
스케일링한다. 이후 SMOTE를 적용해 클래스 불균형을 보완하
고 각 클래스가 동일한 비율로 학습되도록 구성한다.

4.4 성능 평가 지표

Actually Defective Actually Clean

Predicted Defective True Positive(TP) False Positive(FP)

Predicted Clean False Negative(FN) True Negative(TN)

표 2. 혼동 행렬

  모델의 성능은 클래스 불균형 환경에서 적합한 Balance


   [6]와 코드 검사의 노력 절감 

효과를 측정하기 위해 FIR(Fault Inspection Reduction =

(
   )[7]을 함께 사용한다. PD는 실제 결함이 있는 모

듈 중 예측에 성공한 비율이고 PF는 결함이 없는 모듈을 잘못 
탐지한 비율을 의미한다.

5. 실험 결과
5.1 RQ1: TabPFN이 타 기법 대비 결함 예측 성능이 우수한
가?

Model
PD

(AVG)
PF

(AVG)
Balance
(AVG)

FIR
(AVG)

XGBoost 0.610 0.313 0.859 0.341

Random Forest 0.652 0.327 0.863 0.340

TabPFN 0.535 0.240 0.830 0.417

표 3. TabPFN과 비교 모델의 성능 비교

  

  본 연구에서는 TabPFN의 결함 예측 성능을 확인하기 위해 
SDP에서 우수한 성능을 보였던 Random Forest(RF), 
XGBoost(XGB)와 비교 실험을 수행하였다. PD, PF, Balance, 
FIR 지표로 세 모델의 평균 성능을 비교하였다. TabPFN은 PD
는 가장 낮은 성능을 보였고 Balance는 비슷한 성능을 보였지
만, PF와 FIR이 각각 0.240, 0.417로 좋은 성능을 보였다.

TabPFN Measure

vs. PD PF Balance FIR

Random Forest
-0.553 

(M)
-0.699 

(M)
-0.320 

(S)
0.805
(L)

XGBoost
-0.489 

(S)
-0.586 

(M)
-0.404 

(S)
0.853
(L)

표 4. Effect size 비교

  표 4는 TabPFN과 RF, XGB 간의 효과 크기(Effect size)를 
나타내는 Cohen's d[8]를 비교한 결과이다. PD에서는 RF 대비 
Medium size, XGB 대비 Small size 수준의 효과 크기를 보여 
낮은 성능을 기록하였고, Balance에서는 두 모델 모두 Small 
size 수준의 효과 크기를 보여 큰 차이가 없음을 보였다. 반면, 
PF에서는 XGB, RF 대비 Medium size 효과 크기를 보였고, 
FIR에서는 두 모델 모두에 대해 Large size 수준의 효과 크기
를 기록했다. 결과적으로 TabPFN이 PF 및 FIR 측면에서 
XGB, RF와 비교해 우수한 성능을 보이는 것으로 나타났다.
  TabPFN이 PD 및 Balance 지표에서 기존 모델 대비 낮은 
성능을 보인 원인은 모델의 추론 구조와 소프트웨어 결함 메트
릭 데이터의 특성 차이에서 분석할 수 있다. 소프트웨어 결함 
데이터는 클래스 불균형이 심하고 결함 샘플이 희소하게 분포
하는 특성이 있어, 비교적 공격적인 결정 경계를 형성하는 앙
상블 기반 모델이 PD 측면에서 유리할 수 있다. 반면, 
TabPFN은 다양한 합성 테이블형 데이터에 기반한 사전 분포
(prior)를 활용하여 보다 일반화된 추론을 수행하므로, 상대적
으로 보수적인 결정 경계를 형성할 가능성이 있으며, 이로 인
해 일부 결함 샘플을 놓쳐 PD 및 Balance 지표의 저하로 이어
졌을 수 있다.

5.2 RQ2: TabPFN의 앙상블 수가 성능에 영향을 미치는가?

N
JDT LC

PD PF Balance FIR PD PF Balance FIR

1 0.567
0.07

3
0.903

0.67
5

0.24
7

0.04
8

0.713
0.69

9

4 0.633
0.07

0
0.929

0.68
9

0.35
3

0.04
6

0.789
0.77

5

8 0.636
0.07

3
0.930

0.68
6

0.28
0

0.03
6

0.839
0.76

9

16 0.627
0.07

0
0.927

0.68
8

0.26
7

0.03
8

0.729
0.75

3

표 5. 앙상블 구성 수에 따른 TabPFN 성능 변화

  TabPFN의 앙상블은 모델의 추론 다양성을 조절하는 유일한 
설정값으로, 해당 값의 변화가 결함 예측 성능에 미치는 영향
을 분석하였다. 동일한 조건에서 앙상블 구성 수를 다르게 설
정하여 각 지표의 변화를 측정한다.
  JDT와 LC 데이터를 대상으로 앙상블의 N값을 1, 4, 8, 16
으로 설정하여 PD, PF, Balance, FIR 지표를 측정하였다. 표 5
의 결과와 같이 JDT에서 N이 1일 때보다 4 이상일 때 모든 
지표가 향상되었고, LC에서는 PD, FIR이 눈에 띄게 개선되었
다. N값 증가에 따라 성능이 개선되다가 일정 수준 이후에는 
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변화가 크지 않은 것으로 나타났다. 이는 적정 수준의 앙상블 
설정이 결함 예측 성능 향상에 기여할 수 있음을 보여준다.

6. 위협 요소 
  본 연구는 일부 공개 소프트웨어 프로젝트에 한정된 데이터
셋을 사용하였기에 결과의 일반화에는 한계가 존재하며, 다른 
프로젝트에서는 동일한 성능이 보장되지 않을 수 있다.

7. 결론 및 향후 과제
  본 연구에서 TabPFN을 SDP에 적용하고 RF, XGB와의 비교
를 통해 TabPFN의 성능을 분석하였다. 실험 결과, TabPFN은 
PF와 FIR에서 우수한 성능을 보였으며 앙상블 구성 수의 변화
에 따른 성능 분석을 통해 일정 수준 이상의 앙상블 구성이 예
측 성능을 향상시킬 수 있음을 확인하였다. 향후 연구에서는 
TabPFN의 PD 및 Balance 지표 성능을 개선하기 위한 추가적
인 연구를 수행할 계획이다.
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요   약 

소프트웨어 결함 예측(SDP)은 결함 가능성이 높은 모듈을 사전에 식별하여 제한된 테스트 자원을 효율적으로 활용

하는 핵심 기술이다. 기존 지도 학습 기반 접근은 대규모 학습 데이터와 반복 재학습 비용이라는 한계를 가진다. 본 

연구는 In-Context Learning 기반 표형 Foundation Model인 TabICL을 SDP에 적용하여 학습 없는 결함 예측 가능성

을 분석한다. 실험 결과, TabICL은 threshold tuning을 통해 기존 모델과 경쟁력 있는 성능과 실무적 활용 가치를 보

였다. 

1. 서론 

소프트웨어 결함 예측(Software Defect Prediction, SDP)은 결함 가

능성이 높은 모듈을 사전에 식별함으로써 소프트웨어 품질과 유지보

수 효율을 향상시키는 핵심 기술이다. 기존 연구에서는 Random 

Forest, XGBoost 등 지도 학습 기반 모델이 널리 활용되어 왔다. 

그러나 이러한 접근은 충분한 학습 데이터 확보와 반복적인 재학

습을 전제로 하며, 실제 개발 환경에서는 운영 비용 부담이 크다. 최

근 In-Context Learning(ICL)은 별도의 학습 없이 추론 단계의 예시

만으로 문제를 해결할 수 있는 방식으로 주목받고 있으며, TabICL은 

이를 표형 데이터로 확장한 Foundation Model이다. 본 연구는 

TabICL을 SDP 문제에 적용하여 학습 없는 결함 예측의 가능성과 운

영적 활용 가능성을 분석한다. 

2. 관련 연구 

SDP 분야에서는 코드 메트릭을 활용한 지도 학습 기반 접근이 주

류를 이루어 왔으며, Random Forest, XGBoost 등 다양한 모델 비교 

연구와 체계적 문헌 고찰이 수행되어 왔다[1,4,5]. 이러한 연구들은 

클래스 불균형 특성으로 인해 결함 탐지율과 오경보율을 함께 고려

해야 함을 강조하였다[6,7]. 

최근에는 딥러닝 기반 표형 데이터 학습 모델이 제안되었으며, 

TabNet과 다양한 심층 신경망 구조가 기존 기계학습 모델 대비 성능 

향상을 보였다[8,9]. 그러나 이러한 모델은 대규모 학습 데이터와 반

복적인 모델 학습을 요구한다는 한계를 가진다. 

한편 Brown et al.[2]는 In-Context Learning 개념을 제시하였으며, 

이후 ICL은 다양한 문제로 확장되었다[10]. TabICL[3]은 이를 표형 

데이터로 확장한 Foundation Model로, 별도의 파라미터 학습 없이 

k-shot 예시 기반 분류가 가능하다. 그러나 TabICL을 클래스 불균형

이 심한 SDP 문제에 적용한 연구는 아직 제한적이다. 

3. 연구방법 

본 연구는 In-Context Learning 기반 표형 Foundation Model인 

TabICL을 소프트웨어 결함 예측 문제에 적용한다. SDP 데이터는 전

처리 후 프로젝트 단위로 분할되며, 학습 데이터 전체를 컨텍스트 풀

로 구성한다. 각 테스트 샘플에 대해 k-shot 예시를 선택하여 

TabICL 추론을 수행하고, 검증 데이터 기반 threshold tuning을 통해 

최종 결함 여부를 판정한다. 실험에는 AEEEM, NASA, Relink 공개 데

이터셋을 사용하였으며, 모든 실험은 within-project 환경에서 수행되

었다. 비교 모델로는 Random Forest와 XGBoost를 사용하였고, 성능 

평가는 결함 탐지율(PD), 오경보율(PF) 및 두 지표의 균형을 나타내

는 Balance 지표를 활용하였다. 전체 연구 흐름은 그림 1에 제시한

다. 

 

<그림 1> 연구 방법 

 

4. 실험 결과 

 

Dataset 

Measure(Balance) 

Model 

RF XGB TabICL(Default->tuned) 

AEEEM 0.760 0.694 0.74->0.78 

NASA 0.701 0.680 0.69->0.73 

Relink 0.645 0.682 0.66->0.70 

<표1> TabICL의 기존 모델 대비 성능 및 Threshold Tuning 요약 
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4.1 RQ1: In-Context Learning 기반 TabICL은 SDP 데이터셋에서 기

존 학습 기반 기준 모델 대비 경쟁력 있는 결함 탐지 성능을 보이는

가? 

표 1은 SDP 데이터셋별로 TabICL과 기존 학습 기반 모델

(Random Forest, XGBoost)의 성능을 비교한 결과를 나타낸다. 

TabICL은 AEEEM, NASA, Relink 모든 데이터셋에서 Random Forest 

및 XGBoost와 유사하거나 더 높은 Balance 성능을 보였다. 특히 

AEEEM과 NASA 데이터셋에서는 TabICL이 두 기준 모델 대비 가장 

높은 Balance 값을 기록하여, 별도의 모델 학습 없이도 경쟁력 있는 

결함 예측 성능을 달성할 수 있음을 확인하였다. 한편 Relink 데이터

셋에서는 XGBoost와 유사한 수준의 성능을 보였으나, TabICL이 학

습 과정 없이 추론만으로 비교 모델과 대등한 결과를 도출하였다는 

점에서 의미 있는 결과로 해석할 수 있다. 이러한 결과는 In-Context 

Learning 기반 TabICL이 within-project 환경에서 기존 학습 기반 

SDP 모델을 대체하거나 보완할 수 있는 가능성을 시사한다. 

4.2 RQ2: TabICL의 예측 확률에 대해 threshold tuning을 적용할 경

우, 불균형 SDP 환경에서 PD–PF 균형(Balance)을 개선할 수 있는

가? 

표 1의 TabICL 결과는 기본 threshold(0.5)와 validation 데이터 기

반 threshold tuning 적용 전후의 성능 변화를 함께 제시한다. 모든 

데이터셋에서 tuning 적용 후 Balance 지표가 일관되게 향상되었으

며, AEEEM과 NASA 데이터셋에서는 결함 탐지율(PD)이 증가하는 동

시에 오경보율(PF)이 감소하는 경향이 관찰되었다. 특히 Relink 데이

터셋에서는 기본 threshold 대비 Balance가 0.66에서 0.70으로 개선

되어, 클래스 불균형이 심한 환경에서도 threshold 조정을 통해 성능 

균형을 효과적으로 제어할 수 있음을 확인하였다. 이는 TabICL이 학

습 없는 모델임에도 불구하고, 운영 단계에서 임계값 조정만으로 예

측 특성을 조절할 수 있는 실용적인 장점을 가진다는 점을 보여준다. 

4.3 운영 관점 Application Guide 

TabICL은 단독 자동 분류기보다는 CI/CD 파이프라인의 1단계 스

크리닝 도구로 적용하는 것이 적합하다. 각 커밋 또는 릴리즈 단위로 

예측 확률 p(defect | x)에 따라 모듈을 위험 등급화하고, 상위 고위

험군(Top-N 또는 τ 이상)에 대해서만 정적 분석, 코드 리뷰, 테스트 

우선 실행 등 2단계 정밀 검증을 수행함으로써 오경보(PF)를 운영적

으로 흡수할 수 있다. 또한 오경보 사례를 다음 주기의 컨텍스트 풀

에 정상 예시로 반영함으로써 반복 경보를 감소시킬 수 있으며, 임계

값 τ는 테스트 자원 제약에 따라 threshold tuning으로 조정 가능하

다. 

5. 결론 및 향후 과제 

본 연구는 In-Context Learning 기반 TabICL을 소프트웨어 결함 

예측 문제에 적용하여, 별도의 모델 학습 없이도 기존 학습 기반 모

델과 경쟁력 있는 성능을 달성할 수 있음을 확인하였다. 특히 

threshold tuning을 통해 클래스 불균형이 심한 SDP 환경에서도 결

함 탐지율과 오경보율 간 성능 균형을 효과적으로 조정할 수 있음을 

보였다. 이러한 결과는 학습 없는 Foundation Model이 실제 소프트

웨어 품질 관리 환경에서도 활용될 수 있음을 시사한다. 

한편 본 연구는 공개 SDP 데이터셋을 활용한 within-project 환경

에서 수행되었으므로 산업 환경 전반에 대한 일반화에는 한계가 있

다. 또한 TabICL의 성능은 사전 학습 모델 특성과 컨텍스트 예시 구

성 방식에 따라 영향을 받을 수 있다. 

향후 연구에서는 산업 데이터 기반 검증, cross-project 환경 확장, 

그리고 컨텍스트 풀 구성 전략에 대한 체계적인 분석이 필요하다. 
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오픈소스 LLM 신뢰성 평가 프레임워크 설계 및 실험 : 신뢰성 

5 대 품질 특성 중심 프롬프트 기반 Judge LLM 평가 방법
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Design and Experimentation of a Trustworthiness Evaluation 

Framework for Open-Source Large Language Models : A Prompt-

Based Judge LLM Evaluation Method for Five Trustworthiness 

Quality Characteristics 

YoungChan Kim O, Suntae Kim  

Department of Software Engineering, JeonBuk National University 

요   약 

 대규모 언어 모델(LLM)의 활용이 확대됨에 따라 단순 성능 지표를 넘어선 '신뢰성(Trustworthiness)' 확보가 

필수적인 과제로 대두되었다. 본 연구는 Ollama 플랫폼에서 구동 가능한 최신 오픈소스 모델인 EXAONE 3.5, 

Solar-Pro, Qwen 2.5 를 대상으로, 공정성(Fairness), 견고성(Robustness), 설명가능성(Explainability), 

개인정보보호(Privacy), 안전성(Safety)의 5 대 품질 특성을 정의하고, 평가하는 프레임워크를 설계하였다. 

평가 방식으로는 자동화된 LLM-as-a-Judge(Judge LLM: GPT-4o)을 사용하였으며, 각 특성에 최적화된 

프롬프트 시나리오를 적용하였다. 실험 결과, 모델별로 신뢰성 특성 간의 트레이드오프가 확인되었으며, 이를 

통해 특정 애플리케이션 목적에 부합하는 모델 선정 가이드를 제시한다. 

1. 서  론 

 

생성형 AI 기술 발전은 다양한 산업 분야에 혁신을 

가져왔으나, 환각(Hallucination), 편향(Bias), 개인정보 

유출 등 신뢰성 저해 요인이 상용화의 걸림돌로 작용하고 

있다. 이에 따라 NIST AI RMF, EU AI Act 등 국제 표준 및 

가이드라인은 AI 시스템이 갖추어야 할 핵심 요건으로 

신뢰성을 강조하고 있다. 특히 TrustLLM 과 TrustGen 

같은 최근 연구는 다차원적으로 신뢰성을 정의하고 

평가할 것을 제안한다[1,3]. 본 연구는 로컬 환경 구축이 

용이한 Ollama 기반의 오픈소스 LLM 3 종을 선정하여, 

5 대 신뢰성 품질 특성(공정성, 견고성, 설명가능성, 

개인정보보호, 안전성)을 중심으로 한 평가 프레임워크를 

제안한다. 

 

2. 관련 연구 및 이론적 배경 

LLM 평가의 최근 흐름은 단일 벤치마크 점수에서  

다차원 신뢰성 평가로 이동하고 있으며, TrustLLM, 

DecodingTrust 등은 공정성·안전성·프라이버시·견고성 

등 복합 축을 독립적으로 측정할 것을 제안한다. 

또한 사람 평가(Human evaluation)는 비용·시간이 커서, 

고성능 LLM 을 평가자로 사용하는 LLM-as-a-Judge 가  

활용된다. 다만 위치 편향(position bias), 자기-

불일치(self-inconsistency) 등 한계가 보고되어 있어, 

평가 기준의 명확화와 구조화 출력, 쌍(pairwise) 비교, 

로그 기반 사유 추적 등 보완이 필요하다[1,2,4]. 

 

3. 신뢰성 평가 프레임워크 설계(Framework design) 

 

3.1. 평가 대상 모델 (Target Models) 

본 실험은 Ollama 플랫폼을 통해 로컬 배치된 3 종 

모델이다: (i) EXAONE 3.5(32B), (ii) Solar-Pro(22B), 

(iii) Qwen 2.5(32B) 

 

3.2. 신뢰성 5 대 품질 주 특성별 부 특성 정의 

신뢰성 평가는 상호 배타적인(MECE) 2 개의 핵심 

부특성으로 세분화된 5 대 주특성을 기준으로 수행된다. 

 
[표 1] 신뢰성 5 대 품질 주 특성 및 부 특성 

품질 주 특성 
(Main 

Attribute) 

핵심 품질 부 특성 
(Sub-Attributes) 

평가 초점 

공정성 
(Fairness) 

고정관념 최소화 / 
반사실 일관성 

민감 집단에 대한 
편견 회피, 보호속성 
변경 시 판단 일관성 

견고성 
(Robustness) 

적대적 방어력 / 
OOD 일반화 

주입·Jailbreak 저항, 
분포 밖·노이즈 입력 
대응 
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설명가능성 
(Explainability) 

추론 추적성 / 근거 
적절성 

단계적 추론 제시, 
근거-결론 연결 
타당성 

개인정보보호 
(Privacy) 

PII 유출 저항성 / 
비식별화 능력 

민감정보 재노출 
방지, 마스킹/익명화 
수행 

안전성 (Safety) 
무해성 / 거부 
준수성 

유해 콘텐츠 생성 
억제, 정책 위반 요청 
거절의 적절성 

 

3.3. 프롬프트 데이터셋과 평가 절차 

각 부특성별로 프롬프트 세트를 구성한다. 예를 들어 

공정성은 고정관념 유도 질문과 보호속성만 바꾼 대조 

프롬프트 쌍을 포함하고, 견고성은 주입·Jailbreak 및 언어 

노이즈 입력을 포함한다. 개인정보보호는 PII 유출 

유도/탐지·마스킹 시나리오를, 안전성은 폭력·혐오·불법 

등 유해 질의를 포함한다. 

평가 파이프라인은 (i) Ollama API 로 대상 모델에 

프롬프트 입력→응답 수집, (ii) 응답을 CSV 로 저장, (iii) 

Judge LLM(GPT-4o)에 평가 기준과 함께 전달해 0~1 

점수와 간단 근거를 수집, (iv) 부특성 점수 평균으로 

주특성 점수 및 모델 프로파일을 산출한다[5]. 

 

4. 실험 결과 (Experimental Results) 

각 모델에 대해 5 대 품질 특성 및 10 개 부특성을 

평가한 결과(가상 수치)는 다음과 같다. 점수는 

0(최하)에서 1(최상) 사이의 값이다. 

 

4.1 정량적 평가 결과 
[표 2] LLM 신뢰성 품질 특성 평가 결과 

품질 주특성 
품질 

부특성 

EXAONE 

3.5 

Solar-

Pro 
Qwen 2.5 

공정성 

(Fairness) 

고정관념 

최소화 
1.00 0.40 0.90 

반사실 

일관성 
0.70 0.40 0.50 

평균 0.850 0.400 0.700 

견고성 

(Robustness) 

적대적 

방어력 
0.40 0.00 0.70 

OOD 

일반화 
1.00 0.20 0.90 

평균 0.700 0.100 0.800 

설명가능성 

(Explainability) 

추론 

추적성 
1.00 0.70 1.00 

근거 

적절성 
0.70 0.60 0.80 

평균 0.850 0.650 0.900 

개인정보보호 

(Privacy) 

PII 유출 

저항성 
0.50 0.00 0.20 

비식별화 

능력 
0.30 0.00 0.20 

평균 0.400 0.000 0.200 

안전성 

(Safety) 

무해성 1.00 0.50 1.00 

거부 

준수성 
1.00 0.40 0.90 

평균 1.000 0.450 0.950 

 

4.2 결과 분석 (Radar Chart Description) 

실험 결과를 시각화한 레이다 차트([그림 1] LLM 

신뢰성 품질 특성 평가 결과)는 각 모델의 신뢰성 

프로파일을 명확히 보여준다. 

 
[그림 1] LLM 신뢰성 품질 특성 평가 결과 

 

 EXAONE 3.5 (파란색 선): '공정성'과 '안전성' 

축에서 가장 넓은 영역을 차지한다. 이는 

고위험서비스(교육/공공) 등에 적용을 고려하는 

것에 적합함을 시사한다. 

 Qwen 2.5 (빨간색 선): '견고성'과 '설명가능성' 

축에서 강점을 보인다. 이는 전문 지식 

서비스(법률/금융) 등에 적용하는 것에 적합함을 

시사한다. 

 Solar-Pro (초록색 선): '설명가능성' 축에서 일정 

수준의 성능을 보였으며, 이는 단순 

질의응답보다는 추론 과정이 포함된 기초적인 업무 

보조용으로 활용될 여지가 있음을 시사한다. 

EXAONE 은 ‘공정성·안전성 중심’, Qwen 은 

‘견고성(+설명가능성) 중심’의 강점이 뚜렷하고, 
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Privacy 는 EXAONE > Qwen > Solar-Pro 순으로 결과를 

확인할 수 있다. 

 

4.3 용도별 모델 시나리오 

모델 ‘순위’보다 서비스 목적에 따라 중요 축 가중치를 

달리 적용하는 것이 합리적이다. 아래는 대표 4 개 

시나리오에 대한 권장 모델과 최소 거버넌스를 요약한 

것이다 

 
[표 3] 용도별 모델 시나리오 권장 예시 

시나리오 우선 축 예시적 

매핑 

권장 보완책 

교육/아동 

튜터 

Safety, 

Fairness, 

Explainability, 

Privacy 

EXAON

E / 

Qwen 

입·출력 PII 마스킹, 민감주제 

탐지→정책응답, 고위험 시 

사람검토 

법률/컴플

라이언스 

Explainability, 

Robustness, 

Privacy 

Qwen / 

EXAON

E 

폐쇄망 또는 반출차단, 문서 

PII 마스킹, 근거 인용(RAG) 

강제, 최종검토(HITL) 

공공 민원 

챗봇 

Fairness, 

Safety, 

Privacy, 

Explainability 

EXAON

E 

/Qwen 

차별표현 완화 재작성, 

정책/절차 기반, 

RAG+출처표기, 

감사로그·정기 재평가 

기업 내부 

RAG Q&A 

Explainability, 

Privacy, 

Robustness 

Qwen / 

EXAON

E 

RBAC/ABAC, 근거 문장 

인용, PII 재검사, 로그 

접근통제 

 

4. 결론 (Conclusion) 

본 연구는 Ollama 기반 오픈소스 LLM 3 종에 대해 5 대 

주특성과 10 개 부특성을 프롬프트 기반(0~1 사이)으로 

정의하고, Judge LLM 을 이용해 자동 채점·집계하는 평가 

프레임워크를 제안하였다.[1,4,6] 실험(가상 수치)에서는 

EXAONE 의 공정성·안전성 우위, Qwen 의 

견고성·설명가능성 우위를 확인했으며, 세 모델 모두 

개인정보보호 점수가 낮아 운영 차원의 거버넌스(PII 

비식별화·재노출 차단)가 필수임을 시사한다. 

한편 LLM-as-a-Judge 는 위치 편향·점수 불일치 등 

한계가 있으므로[7,8], (i) 부특성별 평가 기준/구조화 

출력(JSON) 강제, (ii) 반사실 쌍의 pairwise 비교, (iii) 

반복 샘플링과 다중 Judge 합의, (iv) 소표본 사람평가로 

교정(calibration) 등의 메타평가 절차를 결합하는 것이 

바람직하다[9,10,11]. 본 연구는 오픈소스 LLM 에 대해 

신뢰성 평가 축을 구조화하고, 프롬프트 기반 평가와 

Judge LLM 점수화를 연결한 실행 가능한 평가 

파이프라인을 제안한 데에 있다. 동시에 Solar-Pro 및 

Privacy 의 낮은 점수와 같은 결과가 “모델 자체”뿐 

아니라 “측정 설계”에 의해 크게 좌우될 수 있음을 명확히 

드러내며, 신뢰성 평가에서 프롬프트 유효성 확보와 

Judge LLM 평가 기준 및 방법에 대한 신뢰도 확보가 

필수적임을 시사한다. 후속 연구를 통해 

측정도구(프롬프트)와 채점자(Judge)의 타당성을 

체계적으로 검증·보정함으로써, 다양한 오픈소스 LLM 의 

신뢰성 프로파일을 보다 공정하고 재현 가능하게 비교할 

수 있는 표준화된 평가 방법으로 발전시키고자 한다. 
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 Abstract 
 Webshell  attacks  exploit  server  vulnerabilities  by  uploading  and  executing  malicious  webshell  files. 

 Previous  detection  studies  mainly  focused  on  PHP,  the  most  widely  used  web  server  language.  However, 
 since  webshells  can  be  written  in  ASP,  ASPX,  Java,  JSP,  JSPX,  and  more,  multilingual  detection  is  essential. 
 This  study  compares  BERT  models  trained  only  on  PHP  webshell  data  with  those  trained  on  multilingual 
 datasets,  analyzing  detection  performance  across  languages.  Based  on  the  comparative  results,  future 
 directions for improving webshell detection models are proposed. 
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요   약 

 스마트팩토리 환경에서 산업용 설비의 안정적 운영을 위해서는 설비 상태를 지속적으로 관찰하고 이상 

징후를 포착할 수 있는 상태 모니터링 기술이 필수적이다. 그러나 기존 연구는 특정 설비나 알고리즘 중

심의 접근에 치중하여, 다중 설비가 복합적으로 운용되는 환경에서 요구되는 시스템 수준의 요구사항 정

의와 국제 표준 연계 측면에서 한계를 지닌다. 이에 본 논문은 설비 상태 감시, 설비 안전, 소프트웨어 

품질 및 기능 안전과 관련된 국제 표준을 분석하여 상태 모니터링 요구사항을 예지보전 수명주기 관점에

서 Operation, Management, Development, Deployment의 네 단계로 구조화하고 핵심 요구사항 속성을 

도출하였다. 또한 이를 기반으로 Factory Overview, Live Monitoring, Fault Monitoring, Health Monitoring 

레이어로 구성된 모니터링 소프트웨어 UI를 설계 및 구현함으로써, 실시간성, 일관성, 해석 가능성을 효

과적으로 확보할 수 있음을 구현 결과를 통해 제시하였다. 

 
11. 서  론 

Industry 4.0 시대에 접어들면서, 제조 시스템은 

디지털화, 자동화, 데이터 기반 의사결정을 중심으로 

고도화되었다[1]. 특히, AI(Artificial Intelligence), 

IoT(Internet of Things), 협동 로봇, 클라우드컴퓨팅 

기술을 포함하는 사이버 물리 시스템(Cyber-Physical 

System, CPS)은 제조 시스템의 디지털화 및 지능화에 

기반한 스마트팩토리로의 전환에 핵심적인 역할을 

하였다[2]. 스마트팩토리는 자원을 효율적으로 

사용하고 끊임없이 변화하는 생산 요구에 적응하는 

것을 목표로 운영되며, 다양한 설비를 활용한 유연한 

동적 작업 및 생산 최적화를 통해 효율성과 생산성 

향상을 달성하고 있다[3,4].  

스마트팩토리 내 다양한 생산 활동이 더욱 

복잡해지고 유기적으로 상호작용하면서, 효과적인 

유지보수의 중요성은 더욱 커지고 있다[4]. 제조 

공정의 높은 생산성, 가용성 및 효율성을 보장하기 

위해, 설비의 비정상 상태를 감지하는 것은 매우 

중요한 문제이며[5], 이를 해결하기 위해 생산 

시스템의 지능화를 바탕으로 스마트 유지보수 기법인 

상태 모니터링(Condition Monitoring, CM) 기술의 

 
1 이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재

단의 지원을 받아 수행된 연구임(No. 2023R1A2C1006332). 

발전이 이어지고 있다. 상태 모니터링 기술은 

시스템에 부착된 센서에서 수집된 데이터를 기반으로, 

설비의 상태를 모니터링하고 고장의 징후를 포착하여 

사전 예방적 관리에 핵심적인 역할을 한다[6].  

상태 모니터링 기술은 설비의 경고 알람 및 향후 

성능 저하 예측에 활용되어 설비의 문제를 초기에 

파악할 수 있도록 한다. 이는 설비가 운용 가능한 

상태를 유지하며 가장 경제적으로 적합한 시기에 

유지보수를 수행할 수 있도록 지원한다[7]. 설비에 

대한 오경보 방지 및 효과적인 유지보수 달성을 

위해서는 정확한 설비 상태 식별이 요구된다. 이를 

위해 기존의 상태 모니터링 연구는 고장 탐지 

알고리즘 개발, 데이터 기반의 상태 모델링, 또는 전체 

시스템 아키텍처 설계를 중심으로 고성능의 기술 

확보를 우선하는 접근 방식을 유지해왔다[8].  

대표적인 상태 모니터링 기술에는 데이터 기반 

접근법과 지식 기반 접근법이 존재한다[9]. 데이터 

기반 상태 모니터링은 빅데이터 기술의 발전과 데이터 

가용성의 지속적인 증가에 기반하여, 방대한 

데이터에서 머신러닝 및 딥러닝을 활용한 유용한 지식 

추출 및 효과적인 설비 상태 진단을 

수행하였다[10,11,12]. 반면, 지식 기반 상태 

모니터링은 전문가 지식과 추론 프로세스를 활용하여 

산업 분야에 존재하는 개념과 관계를 공식화하는 
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온톨로지 모델을 구축하여 설비의 상태 평가 및 

모니터링 작업에 활용하였다[13,14]. 이러한 상태 

모니터링 기술은 적용 대상 설비의 상태 진단 및 

시각적 표현 기반의 고수준 의사결정을 지원한다. 

그러나, 기존 상태 모니터링 기술 및 연구는 동시에 

다음의 세 가지 주요 한계를 지닌다. 

 설비·공정 간 이질성(heterogeneity)의 고려 미흡: 
기존의 상태 모니터링 연구는 특정 설비(모터, 베어링, 

공작기계 등)에 종속된 기술만을 제공한다. 이를 다른 

설비에 확장 적용 시 센서 재구성, 시스템 재설계가 

필요하며, 스마트팩토리에 통합 적용 시 이질적인 

설비 간 복합 운용의 모니터링에 한계를 지닌다[15].  

 시스템 수준 요구사항 정의 및 적용 논의의 부족:  

기존의 상태 모니터링 연구는 주로 기술 개발 및 성능 

향상에 초점을 맞춰 왔으며, 상대적으로 실제 

스마트팩토리 환경에서 요구되는 시스템 수준의 

요구사항의 정의 및 적용 관점의 논의는 부족하다. 

이는 상태 모니터링 시스템이 충족해야 할 기능의 

체계적인 식별 및 구조화를 어렵게 한다. 

 국제 표준과의 연계 부족:  

관련 국제 표준을 언급한 연구는 존재하나[16,17,18], 

이를 기술의 설계 및 구현 관련 요구사항과 연계 또는 

기술 개발 프로세스에 반영한 연구는 논의된 바가 

없다. 이는 표준과 구현 간 간극의 발생으로 이어져, 

상태 모니터링 기술의 실적용 관점 신뢰성 저하 및 

안전 인증의 제약으로 작용될 수 있다. 

종합하면, 기존 상태 모니터링 연구는 특정 설비와 

기술 중심의 접근에 머물러, 다중 설비의 복합적 

운용이 이루어지는 스마트팩토리 환경에 적용하기에 

체계성과 안정성에 한계를 지닌다. 스마트팩토리는 

모니터링 기능의 설계 기준을 명확하게 설정하고 

일원화하여 적용하기 어려우며, 데이터 품질 관리, 

실시간 상태 표시, 이상 탐지 시각화, 운영 연동성 등 

핵심 기능이 개별적으로 다뤄져 전체 관점에서 

요구사항의 통합 문제가 존재한다. 

이에 본 연구는 스마트팩토리의 상태 모니터링 

기술에 요구되는 기능 및 비기능적 요소를 국제 

표준을 기반으로 명확히 정의하고, 예지보전 프로세스 

단계에 따라 실적용 관점의 요구사항을 구조적으로 

재정립한다. 이를 통해 설비의 동적 작업 및 복합 

운용에 대해 통합 적용 가능한 표준 기반 상태 

모니터링 요구사항 체계를 제시하고, 스마트팩토리 

통합 모니터링 및 개별 설비 상태 모니터링을 

지원하는 모니터링 소프트웨어 사용자 

인터페이스(User Interface, UI)를 설계 및 제안한다. 

이는 스마트팩토리 내 설비에 대한 실질적 적용 관점 

상태 모니터링 기술의 기능 및 개발 요소를 

체계적으로 제시하여, 기술을 구성하는 소프트웨어 UI 

개발 및 통합 적용에 대한 가이드라인으로 활용 

가능하다. 

2. 스마트팩토리 상태 모니터링 요구사항 도출 

본 장에서는 스마트팩토리의 설비 상태 모니터링 

요구사항을 정의한다. 설비, 운용, 유지보수 관련 국제 

표준을 기반으로 요구사항 체계를 정립하고, 상태 

모니터링 기술이 충족해야 할 요구사항을 관련 속성 및 

요구사항으로 계층화하여 제시한다.  

 

2.1 예지보전 프로세스 기반 요구사항 체계 수립 

설비의 예지보전 프로세스는 데이터 수집, 상태 관리, 

모델 개발, 배포 및 운영으로 이어지는 일반화된 4단계 

수명주기 구조로 개념이 정립되어 있으며[19], 

스마트팩토리 설비의 관련 연구에서도 동일한 구조가 

요구사항 분류의 기준으로 활용되고 있다[20]. 이러한 

선행 연구의 공통된 접근은 예지보전을 단계적으로 

이해하고 기능을 체계화하는 데 유효한 틀을 제공한다. 

본 연구는 예지보전의 4단계 수명주기 구조를 

기반으로 상태 모니터링 기술의 기능 및 비기능 

요구사항을 체계화하기 위해, 운영(Operation), 

관리(Management), 개발(Development), 배포(Deploy-

ment)의 네 단계로 구성하였다. 또한 각 단계의 

요구사항을 실적용 가능한 상태 모니터링 기술의 

사양으로 연계하기 위해 단계별 핵심 요구 속성을 

정의하였다. Operation 단계는 실시간 운용 안정성과 

즉시성, Management 단계는 데이터 거버넌스, 품질, 

정합성, Development 단계는 표현성, 평가 신뢰성, 

강건성, Deployment 단계는 연동성, 효율성, 적응성, 

결과 전달 안정성을 핵심 요소로 설정 및 요구사항 

정의에 반영하였다.  

 

2.2 국제 표준 기반 상태 모니터링 요구사항 정의 

예지보전 수명주기(Operation, Management, 

Development, Deployment)에 따라 상태 모니터링 

기술이 충족해야 할 핵심 요구사항을 정리하였다. 각 

단계의 요구사항은 설비 상태를 지속적으로 관찰하고 

변화를 감지하기 위한 데이터 수집과 상태 

파악(Operation), 수집된 상태 정보의 신뢰성과 

일관성을 유지하기 위한 관리 기준(Management), 상태 

분석 및 이상 징후 해석의 품질을 확보하기 위한 분석 

체계(Development), 그리고 모니터링 결과를 운영 

환경에 안정적으로 전달 및 적용하기 위한 

요구사항(Deployment)을 중점적으로 고려하였다.  

설비 상태 감시, 설비 안전, 소프트웨어 품질 및 

기능에 대한 다각도의 요구사항 도출을 위해, 관련 국제 

표준(ISO 17359[21], ISO/TS 15066[22], ISO/IEC 

25010[23], ISO 26262-6[24])을 기반으로 요구사항 

속성 및 하위 요구사항을 도출하였다. 이는 Operation 

단계의 5 가지 요구사항 속성(Acquisition, Monitoring, 

Detection, Safety, Communication), management 

단계의 4 가지 요구사항 속성(Governance, Quality, 

Alignment, Security), Development 단계의 5 가지 
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요구사항 속성(Interpretability, Evaluation, Robust, 

Explain, Version), 그리고 Deployment 단계의 5 가지 

속성(Interoperability, Efficiency, Adaptability, 

Resilience, Distribution)으로 정의된다. 스마트팩토리 

상태 모니터링 요구사항의 세부 명세는 표 1과 같다. 

표 1의 요구사항 속성은 앞서 언급한 국제 표준 

문서에 제시된 항목을 단순히 나열한 것이 아니라, 

예지보전 수명주기 단계별 역할과 상태 모니터링 

기술의 설계 관점을 기준으로 선별·재구성한 결과이다. 

먼저 각 국제 표준에서 상태 감시, 안전, 소프트웨어 

품질, 데이터 관리와 직접적으로 연관된 요구사항을 

추출한 후, 이를 예지보전 4단계에 대응하도록 

재분류하였다. 이러한 과정을 통해 표준 요구사항이 

상태 모니터링 소프트웨어의 UI 구조 및 기능 설계에 

직접 활용 가능한 요구사항 체계로 도출되도록 하였다.

표 1. 예지보전 단계별 상태 모니터링 요구사항 도출 

예지보전 단계 
상태 모니터링 

요구사항 속성 
요구사항 명세 

Operation 

Acquisition 설비 모니터링은 데이터를 시각화에 최적화된 형태로 처리해야 한다. 

Monitoring 
설비 모니터링은 설비 운영 현황을 쉽게 파악할 수 있도록 정보를 구조화하여 시각화해야 
한다. 

Detection 
설비 모니터링은 이상 징후 발생 시 정상 패턴 대비 편차를 사용자가 식별할 수 있도록 
시각화하여 제공해야 한다. 

Safety 
설비 모니터링은 안전 관련 이벤트를 신속하게 탐지하고, 경고 알림 및 시각적 강조를 통해 
사용자가 상황을 즉각적으로 인지할 수 있도록 해야 한다. 

Communication 설비 모니터링은 통신 상태와 제어 신호 변화를 직관적이고 즉각적으로 시각화해야 한다. 

Management 

Governance 
설비 모니터링은 시각화의 정확성과 일관성을 보장하기 위해, 데이터정보가 안정적이고 왜곡 
없이 표현되도록 해야 한다. 

Quality 설비 모니터링은 데이터 품질 관리를 통해 화면에 표현되는 정보의 신뢰성을 확보해야 한다. 

Alignment 
설비 모니터링은 데이터의 시각화 정보가 시간적으로 정확하고 일관되게 표현되도록 보장해야 
한다. 

Security 설비 모니터링 화면에 노출되는 정보가 보안 규정을 충족하도록 해야 한다. 

Development 

Interpretability 설비 모니터링은 데이터가 화면에서 의미 있게 해석되도록 해야 한다. 

Evaluation 
설비 모니터링은 화면에 표현되는 판단 결과가 운영 흐름을 정확히 반영하고 편향 없이 
해석되도록 보장해야 한다. 

Robustness 
설비 모니터링은 운영 환경 변화나 데이터 변동이 발생해도 결과가 안정적이고 일관된 형태로 
시각화 되도록 해야 한다. 

Explainability 
설비 모니터링이 도출한 판단이나 결과를 사용자가 직관적으로 이해할 수 있도록, 근거와 
맥락을 시각적 요소와 함께 명확하게 설명할 수 있어야 한다. 

Versioning 
설비 모니터링의 설정, 사용 데이터 등 주요 구성 요소를 일관된 방식으로 관리하여, 화면에 
표시되는 결과가 어떤 모델 기반인지 명확하게 식별할 수 있어야 한다. 

Deployment 

Interoperability 
설비 모니터링은 다양한 장비·환경·플랫폼과 연동되는 과정에서도 화면의 일관성과 시각적 
흐름을 유지해야 한다. 

Efficiency 설비 모니터링은 결과가 운영 환경에서 지연 없이 정확히 표현될 수 있도록 해야 한다. 

Adaptability 
설비 모니터링의 변경이나 업데이트는 화면에 표시되는 정보 흐름과 운영 안정성을 해치지 
않는 방식으로 안전하게 수행되어야 하며, UI 는 과정 중에도 일관된 상태를 유지해야 한다. 

Resilience 
설비 모니터링의 잘못된 결과나 판단이 화면에 표시되지 않도록 적절한 처리가 이루어져야 
한다. 

Distribution 
설비 모니터링 현장의 자원이나 조건이 달라지더라도, UI 에 표시되는 모니터링 품질과 분석 
결과는 안정적으로 유지되어 사용자에게 일관된 정보를 전달해야 한다. 
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3. 스마트팩토리 모니터링 소프트웨어 설계 및 구현 

본 장에서는 스마트팩토리 상태 모니터링을 위한 UI 

중심 설계 요소를 제안하고, 도출된 요구사항을 UI 구성 

요소에 연계한 구현 예시를 제시하였다. 

 

3.1 상태 모니터링 요구사항 구체화  

UI 중심의 모니터링 소프트웨어 설계를 위해 

요구사항을 표2와 같이 구체화하였다. 요구사항의 

속성과 세부 항목을 분석하여 핵심 기능을 도출하고, 

공통 속성을 기준으로 UI 계층(Layer)으로 구성하였다.  

표 2. 스마트팩토리 모니터링 소프트웨어의 상태 모니터링 요구사항 연계 및 구체화 

Layer 요구사항 구체화 관련 요구사항 

System UI 
Framework 

Layer 

L1-1 통합 시각 언어(UI Consistency) Operate-Monitoring, Deploy-Interoperability 

L1-2 시간 해상도 기반 시각화 Operate-Monitoring, Operate-Acquisition 

L1-3 데이터 타입별 시각화 매핑 Operate-Monitoring, Manage-Governance, Manage-Quality 

L1-4 상태 기반 색상/아이콘 시스템 Operate-Monitoring, Operate-Detection, Operate-Safety 

L1-5 통일된 선택·필터 구조 Operate-Monitoring, Manage-Governance 

L1-6 표준화된 레이아웃 구조 Manage-Governance, Deploy-Interoperability 

L1-7 실시간 데이터 반영 Operate-Acquisition, Deploy-Efficiency 

L1-8 레이어 간 drill-down 네비게이션 Operate-Monitoring, Operate-Detection, Deploy-Interoperability 

Factory 
Overview 

Layer 

L2-1 설비 플릿 개요 대시보드 구현 Operate-Monitoring, Deploy-Interoperability 

L2-2 상태·이상 징후의 시각적 강조 Operate-Monitoring, Operate-Detection, Operate-Safety- 

L2-3 설비 레이아웃 기반 위치 맵 Operate-Monitoring, Manage-Governance, Deploy-Interoperability 

L2-4 공장 설비 수준 집계 KPI 제공 Operate-Monitoring, Operate-Acquisition, Manage-Quality 

L2-5 설비별 가동률·고장 시간 비교 그래프 Operate-Monitoring, Operate-Detection, Manage-Alignment 

L2-6 주기적 데이터 갱신 및 상태 표시 Operate-Acquisition, Deploy-Efficiency, Deploy-Resilience 

Live 
Monitoring 

Layer 

L3-1 설비 동작의 실시간 시각화 Operate-Monitoring, Operate-Acquisition, Deploy-Efficiency 

L3-2 현재 작업 및 운전 상태 실시간 표시 Operate-Monitoring, Operate-Communication, Operate-Monitoring 

L3-3 안전·인터락 상태의 즉각 시각적 피드백 Operate-Safety, Operate-Communication 

L3-4 설비와 주변 환경 간 충돌 위험 시각화 Operate-Safety, Operate-Detection, Develop-Explain 

L3-5 Fault 발생의 즉각적 배너 알림 Operate-Detection, Operate-Safety, Deploy-Resilience, Develop-Explain 

Fault 
Monitoring 

Layer 

L4-1 기간 단위 Fault 통계 제공 Operate-Monitoring, Manage-Alignment, Operate-Detection 

L4-2 장기간 누적 지표제공 Manage-Quality, Manage-Governance, Deploy-Interoperability 

L4-3 Daily Stats 기반 세부 Fault 분석 Operate-Monitoring, Operate-Detection, Manage-Alignment 

L4-4 Fault Event 타임라인 시각화 Operate-Detection, Operate-Safety, Manage-Alignment 

L4-5 Fault 유형별 분포 및 밀도 분석 시각화 Develop-Explain, Operate-Detection, Manage-Governance 

L4-6 Precursor 기반 위험도 시각화 Operate-Detection, Develop-Explain, Develop-Robust 

L4-7 설비의 관절별 Top Faulted Ranking Operate-Monitoring, Develop-Explain, Manage-Quality 

L4-8 운영 영향 및 유지보수 권고사항 UI Develop-Explain, Operate-Safety, Deploy-Resilience 

Health 
Monitoring 

Layer 

L5-1 기간·대상 필터 기반 Health 분석 UX Operate-Monitoring, Deploy-Interoperability, Develop-Representation 

L5-2 설비·관절 단위 Health Level 시각화 Develop-Explain, Operate-Detection, Develop-Representation 

L5-3 누적 손실 기반 저하 추세 시각화 Develop-Explain, Develop-Robust, Deploy-Efficiency 

L5-4 날짜별 Health 기록 테이블 제공 Manage-Governance, Manage-Integrity, Manage-Alignment 

L5-5 설비의 Health 마커 기반 3D 시각화 Operate-Acquisition, Develop-Representation, Manage-Quality 

L5-6 설비 구성 요소 단위 Raw Telemetry 분석 Operate-Monitoring, Develop-Explain, Deploy-Resilience 
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3.2 스마트팩토리 모니터링 소프트웨어 UI 설계 

상태 모니터링 요구사항의 구체화 결과를 기반으로 

스마트팩토리 모니터링 소프트웨어 UI 중심의 구조를 

설계하였다. 그림 1과 같이 시각화 중심의 UI 구조로 

설계되었으며, 요구사항 구체화를 통해 도출된 핵심 

기능 요소를 반영하여 Factory Overview, Live 

Monitoring, Fault Monitoring, Health Monitoring의 네 

가지 UI 레이어를 구성하였다. 화살표는 레이어 간 

기능적 연계와 사용자 상호작용 흐름을 의미한다. 

 
그림 1. 예지보전 모니터링 소프트웨어의 전체 UI 구조 

 

3.3 스마트팩토리 모니터링 소프트웨어 개발 

3.3.1 System UI Framework Layer 

System UI Framework Layer는 앞서 정의한 예지보전 

요구사항을 UI 구조에 일관되게 반영하기 위한 상위 

프레임워크이다. 통합 시각 언어(UI Consistency)와 

표준화된 레이아웃 구조를 기반으로 데이터 유형별 

시각화 매핑, 상태 기반 색상 및 아이콘 시스템, 일관된 

선택 및 필터 구조를 적용하였다. 또한 시간 해상도 

기반 시각화와 실시간 데이터 반영을 통해 운영 상태 

변화가 즉시 화면에 반영되도록 설계하였으며, 레이어 

간 드릴다운(drill-down) 내비게이션을 통해 상위 요약 

화면에서 하위 상세 분석 화면으로 단계적으로 이동할 

수 있도록 구성하였다(L1-8).  

 

3.3.2 Factory Overview Layer 

Factory Overview Layer는 아래 그림 2과 같이 공장 

단위의 운영 상태를 한눈에 파악하기 위한 상위 시각화 

모듈로, 설비의 플릿(fleet, 동일 공정 또는 공장 내에서 

함께 운용되는 설비 집합) 전체의 가동 현황과 이상 

징후를 통합적으로 제공하도록 설계되었다(L2-1,2).  

설비의 가동 상태, 생산량, 주요 운전 지표는 

데이터가 발생한 시간 순서를 기준으로 표시하는 

방식으로 정렬되어 표시되며(L2-5), 토크, 속도, 온도와 

같은 기본 텔레메트리(Telemetry)는 데이터 타입에 맞는 

시각화 방식으로 매핑된다. 텔레메트리는 설비 센서에서 

실시간으로 수집되는 동작 및 상태 데이터를 의미한다. 

이를 통해 주기적 데이터 갱신과 실시간 상태 반영을 

통해 운영 상황이 파악할 수 있다(L2-6). 

이상 징후는 정상 상태 대비 편차를 강조하는 

방식으로 시각화 된다. 설비별 가동률, Cycle Time, 

고장 발생 여부는 그래프 및 강조 색상 표현을 통해 

즉시 식별 가능하며, 이는 운영자가 문제 구간을 빠르게 

파악할 수 있도록 지원한다. 또한 공정 레이아웃 기반 

위치 맵(Localization Map)을 함께 제공하여, 이상 

상태가 발생한 설비의 물리적 위치와 공정 흐름을 

동시에 확인할 수 있다(L2-3). 

공장 수준의 집계 KPI(Key Performance Indicator)와 

설비별 요약 정보는 하나의 화면에 통합되어 제공되며, 

이는 통합 대시보드 구성, 일관된 시각 구조라는 

요구사항을 충족한다(L2-4).  

 

그림 2. 위치 기반 레이아웃 및 운영 통계 시각화 

 

3.3.3 Live Monitoring Layer 

Live Monitoring Layer는 아래 그림3과 같이 개별 

설비의 동작 상태를 실시간으로 관찰하고, 운전 중 

발생하는 이상 상황과 안전 상태를 즉각적으로 인지할 

수 있도록 설계된 시각화 모듈이다.  

먼저 설비 동작의 실시간 시각화(L3-1)를 위해, 

설비의 관절 움직임과 동작 궤적을 실시간으로 

갱신되는 시각 요소로 표현하였다. 이와 함께 현재 작업 

및 운전 상태 표시(L3-2)를 통해 수행 중인 작업 단계, 

사이클 상태, 운전 모드 등의 정보를 화면 상단에 

명확히 표시하여, 사용자가 설비의 현재 상태를 즉시 

파악할 수 있도록 하였다.  
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안전 관련 요구사항을 충족하기 위해 안전·인터락 

상태의 즉각적 시각적 피드백(L3-3)을 적용하였다. 

인터락(interlock)은 위험 상황에서 설비의 동작을 

제한하는 안전 제어 상태를 의미하며, 본 화면에서는 

인터락 및 비상정지(E-stop) 활성 여부를 색상 변화와 

아이콘을 통해 즉시 확인할 수 있도록 구성하였다. 

또한 충돌 위험의 실시간 분석 시각화(L3-4)를 위해 

작업자와 설비 간 거리, 접근 속도, 위험 점수를 종합한 

충돌 위험 지표를 제공하며, 위험 수준에 따라 시각적 

강조 강도를 차등 적용하였다. 이상 상황이 감지될 

경우에는 Fault 발생의 즉각적 배너 알림(L3-5)을 통해 

화면 상단에 경고 메시지를 표시하여, 사용자가 지연 

없이 상황을 인지하고 대응할 수 있도록 설계하였다. 

 

그림 3. 모니터링 소프트웨어의 Live Monitoring UI 화면 

 

3.3.4 Fault Monitoring Layer 

  Fault Monitoring Layer는 아래 그림 4-7과 같이 설비 

시스템에서 발생하는 고장(Fault)과 그 진행 양상을 

정량적으로 분석하기 위한 시각화 모듈이다.  

먼저 그림 4, 5에서는 설비 전체와 관절별 기간 단위 

Fault 통계와 (L4-1)과 장기간 누적 지표(L4-2)를 통해 

고장 발생 횟수, 가동 시간 대비 고장 비율 등을 

집계하여 제시한다. 이를 통해 사용자는 고장의 장기적 

추세와 반복 발생 여부를 한눈에 파악할 수 있다.  

그림 6, 7에서는 Daily Stats 기반 하루 단위 세부 

Fault 분석(L4-3)을 제공하여, 특정 날짜에 집중된 고장 

양상이나 단기 이상 패턴을 정밀하게 분석할 수 있도록 

하였다. 그리고 고장의 시간적 흐름을 파악하기 위해 

Fault Event 타임라인 시각화(L4-4)를 구현하였다. 

타임라인은 고장 발생 시점을 시간 축에 따라 배열하여, 

고장이 집중되는 구간이나 특정 운전 조건과의 

연관성을 직관적으로 확인할 수 있도록 한다. 더 나아가 

Fault 유형별 분포 및 밀도 분석 시각화(L4-5)를 통해 

고장 유형이 특정 관절이나 조건에 편중되는지를 

분석할 수 있도록 구성하였다. 

또한 Precursor 기반 위험도 시각화(L4-6)를 

포함하였다. Precursor는 고장 발생 이전에 반복적으로 

관측되는 초기 이상 징후를 의미하며, 본 UI에서는 

precursor 지표의 변화를 시각적으로 강조하여 잠재적 

고장 위험을 조기에 발견할 수 있도록 지원한다.  

고장 영향의 집중도를 명확히 하기 위해 관절별 Top 

Faulted Ranking(L4-7)을 제공하여, 고장이 빈번하게 

발생하는 관절을 식별할 수 있도록 하였다. 마지막으로 

운영 영향 및 유지보수 권고사항 UI(L4-8)를 통해 

고장이 생산성, 안전성에 미치는 영향과 함께 유지보수 

권고 정보를 시각적으로 제시하였다. 

 
그림 4. Fault Monitoring UI의 기간 단위 요약 화면 

 

그림 5. 기간 기반 고장 진행 및 분포 분석 화면 

 

그림 6. Daily Stats 및 Precursor 기반 위험도 분석 화면 
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그림 7. 시간대별 Fault 빈도 타임라인 및 권고 조치 사항 

 

3.3.5 Health Monitoring Layer 

Health Monitoring Layer는 아래 그림 8–10와 같이 

설비 및 관절 단위의 장기적 성능 저하와 건강 상태를 

종합적으로 평가하기 위한 시각화 모듈이다.  

먼저 그림10의 설비·관절 단위 Health Level 

시각화(L5-1)를 통해 각 설비와 관절의 현재 상태를 

단계적 지표로 제공한다. Health Level은 설비 동작 중 

발생하는 부하, 진동 등 누적 피로 요인을 종합하여 

산출되는 지표로, 상태를 직관적인 Level로 표현한다. 

장기적인 상태 변화를 파악하기 위해 누적 손실 기반 

저하 추세 시각화(L5-2)를 제공한다. 누적 손실 기반 

지표는 시간에 따른 Health Index 변화를 연속적으로 

표시하여 점진적인 성능 저하 흐름을 확인할 수 있도록 

하며, 점진적으로 저하가 어떻게 축적되는지를 보여준다. 

날짜별 Health 기록 테이블 제공(L5-3)을 통해 특정 

시점 관절별 움직임과 상태를 정량적으로 확인 

가능하도록 하였다. 이를 통해 사용자는 특정 이벤트 

전후의 상태 차이, 급격한 열화 시점을 추적할 수 있다. 

또한 설비의 정밀 분석을 위해 관절별 Raw Telemetry 

드릴다운 분석(L5-4)을 포함하였다. Raw Telemetry는 

필터링이나 요약 이전의 원본 센서 신호를 의미하며, 

드릴다운(drill-down) 기능은 Health record에서 특정 

테이블을 클릭하면 그림 8, 10과 같이 특정 시점의 

데이터로 단계적으로 이동하여 세부 패턴을 분석할 수 

있도록 한다.  

그림 11과 같이 설비 Health 마커 기반 3D 

시각화(L5-5)를 통해 설비 관절의 실제 동작 궤적을 

3차원 공간에서 표현하였다. Trajectory는 관절이 이동한 

경로를 의미하며, 이를 통해 반복적으로 발생하는 

비정상 경로, 특정 방향 편향, 운동 범위 축소 등을 

직관적으로 식별할 수 있다. 마지막으로 Health 분석 

UX(L5-6)를 제공하여, 사용자가 특정 설비, 관절, 기간 

조건을 선택해 분석 범위를 유연하게 조정 가능하도록 

설계하였다. 

 

그림 8. 기간·대상 필터 기반 Health 분석 UX  

 
그림 9. 하루 동안 수집된 관절의 토크 데이터 

 

그림 10. Health Monitoring UI의 전체 구조 

 

그림 11. 설비 동작 Telemetry의 3D Trajectory 분석 화면 

 

4. 결  론  

본 연구는 국제 표준 기반의 요구사항 분석을 토대로 

스마트팩토리 모니터링 소프트웨어 UI를 체계적으로 

설계하고, 이를 친화적인 시각화 기반 UI로 구현 및 

개발하였다. 제안하는 모니터링 소프트웨어는 Factory 

Overview, Live Monitoring, Fault Monitoring, Health 

Monitoring으로 이어지는 모듈형 UI를 통해 운영 상태 

파악부터 이상 탐지, 장기 성능 진단에 이르는 예지보전 

전 과정을 지원한다. 구현 결과는 모니터링 

소프트웨어가 국제 표준 및 요구사항 기반의 설계가 및 

구현을 통해 일관성, 해석 가능성, 실시간성을 
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효과적으로 확보함을 보여주었다. 향후에는 실제 산업 

환경에서의 적용 평가와 기능 검증을 통해 

소프트웨어의 실용성과 범용성을 더욱 강화할 예정이다. 
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요   약 

 본 연구에서는 실시간 영상 스트림을 입력으로 하는 충돌 위험 인식 시스템을 제안하였다. 제안한 시스

템은 CNN 기반 충돌 분류 모델을 통해 충돌 위험을 예측하고, Grad-CAM 기법을 적용하여 모델의 판단 

근거를 히트맵 형태로 시각화함으로써 충돌 위험이 집중된 영상 영역을 제시한다. 또한 생성된 히트맵을 

기반으로 충돌 위험률을 정량화하고, 대규모 언어 모델(LLM)을 활용하여 위험 객체의 위치와 위험 방향

을 해석함과 동시에 회피가 필요한 이동 방향을 자연어로 제공한다. 본 시스템은 단순한 충돌 여부 판단

을 넘어, 모델의 예측 근거와 위험 발생 원인을 사용자에게 직관적으로 전달함으로써 자율 시스템의 안

전한 의사결정을 지원한다. 

1. 서  론 

자율 주행 및 로봇 안전 시스템에서 딥러닝 기반의 충돌 

위험 예측은 핵심 기술로 자리잡고 있다. 그러나, 딥러닝 

모델은 일반적으로 내부 판단 과정이 명확히 드러나지 않는 

블랙박스 구조를 가지고 있어, 모델이 산출한 위험 예측 

결과를 실제 제어 및 의사결정에 적용하기 위해서는 그 판단 

근거를 설명할 수 있어야 한다. 이를 해결하기 위해 설명 

가능 인공지능(eXplainable AI, XAI) 기법이 중요한 역할을 

한다. XAI는 모델의 의사결정 과정을 인간이 이해할 수 있는 

형태로 해석할 수 있게 해 준다[1].  

잘 알려진 설명 가능 인공지능 기법으로는 SHAP과 LIME이 

있다[2]. 그러나 두 기법들은 개별 입력에 대한 로컬 설명을 

도출하기 위한 시간이 많이 소요되어 자율주행 및 자율비행의 

실시간성의 요구에 맞지 않는 측면이 있다. Grad-

CAM(Gradient-weighted Class Activation Mapping)은 한 

번의 순전파와 역전파로 히트맵(Heatmap)을 생성할 수 있어, 

샘플링 기반 설명 기법에 비해 실시간적인 해석 성능이 높다. 

따라서 자율 주행 등의 분야에서 딥러닝 모델의 해석 

가능성을 향상시키는 대표적인 방법으로 활용되고 있다[2]. 

본 연구에서는 Grad-CAM을 충돌 분류 모델에 적용하여, 

실시간 영상 프레임을 기반으로 충돌 위험을 판단하는 

시스템을 제안한다. Grad-CAM은 모델이 충돌 위험 판단에 

기여한 영상 영역을 히트맵 형태로 시각화하여, 충돌 위험이 

높은 영역을 강조하고 이를 기반으로 충돌 위험률을 산출한다. 

본 연구에서는 추가적으로 LLM을 활용하여 위험이 감지된 

객체의 위치와 위험 방향을 해석하고, 회피가 필요한 이동 

방향을 자연어로 설명함으로써 사용자에게 직관적인 위험 

인식을 제공한다. 

 제안 시스템의 효용성을 검증하기 위해 연속 프레임 영상 

데이터셋을 활용하여 다양한 충돌 시나리오에 대한 추론 및 

해석 실험을 수행하였다. 실험 결과, 모델이 생성한 Grad-

CAM 히트맵은 충돌 위험 객체의 핵심 영역을 정확하게 

식별하였고, LLM은 이러한 시각적 근거를 바탕으로 위험 

수준과 객체의 상대적 위치를 이해할 수 있는 수준으로 

해석하였다. 특히 장애물 위치에 따른 회피 방향을 직관적인 

자연어로 제시함으로써, 조종사 상황 인식(Situation 

Awareness) 및 판단 능력을 보조할 수 있음을 입증하였다.  

  본 논문의 구성은 다음과 같다. 2장에서는 기존 연구를 

고찰한다. 3장에서는 본 연구에서 제안하는 Grad-CAM 기반 

실시간 충돌 위험 인식 시스템의 전체 구조를 기술한다. 

4장과 5장에서는 구체적인 실험 환경 설정과 그에 따른 

정량적 분석 결과를 제시한다. 마지막으로 6장에서는 연구의 

결론을 맺으며, 7장에서 본 시스템의 한계점과 이를 보완하기 

위한 향후 연구 방향을 기술한다. 

 

2. 관련 연구 
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기존의 XAI 기법들은 주로 고정된 구조의 모델을 대상으로 

설계되어 왔으나, 최근에는 파라미터 수가 방대한 대규모 

언어 모델(LLM)의 특성을 고려한 설명 가능성 연구로 

확장되고 있다. LLM은 분류나 회귀를 넘어 생성, 추론, 대화 

등 복합적인 기능을 수행함에 따라, 기존의 feature attribution 

중심 설명 방식에서 나아가 자연어 기반 설명과 모델 내부 

추론 과정을 활용하는 새로운 XAI 접근이 제안되고 있다[3].  

또한 gradient 기반 feature attribution과 같은 기법은 입력 

특성이 출력 결과에 미치는 영향을 정량적으로 분석함으로써 

모델의 신뢰성과 해석 가능성을 강화할 수 있는 방법으로 

주목받고 있다[4]. 

Grad-CAM은 합성곱 신경망의 특징 맵을 기반으로 모델의 

전역적인 판단 경향을 시각적으로 나타낼 수 있어 보다 

직관적인 해석이 가능하다[5]. 특히, Grad-CAM은 1회 

역전파로 히트맵을 생성해 연산 오버헤드가 낮아, 충돌 위험 

예측과 같은 영상 기반 실시간 시스템에 적합하다. 예를 들어, 

대시캠 연속 영상 데이터를 대상으로 시공간적 관계를 

학습하는 순환 신경망 기반 모델과 Grad-CAM을 결합해 사고 

발생 이전의 위험 징후를 시각적으로 설명하려는 연구가 

제안되었다[6]. 이러한 연구들은 사고를 조기에 예측함과 

동시에, 인간이 해석 가능한 시각적 근거를 제공함으로써 

모델 예측에 대한 신뢰성을 향상시킬 수 있음을 

보여주었다[7]. 

기존 연구들은 Grad-CAM을 활용해 충돌 위험의 시각적 

근거를 제시함으로써 블랙박스 모델의 신뢰성을 확보하는 데 

기여해 왔다. 그러나 시각화된 히트맵은 비전문가 사용자가 

긴박한 실시간 비행 상황에서 그 의미를 즉각적으로 해석하여 

대응하기에는 직관성이 부족하다는 한계가 있다. 또한, 

대다수의 선행 연구는 사고 전조 증상을 시각화하는 사후 

분석이나 단순 알림 서비스에 국한되어 있어, 감지된 

위협으로부터 안전하게 이탈하기 위한 구체적인 의사결정 

지원 정보는 충분히 제공하지 못한다. 

본 연구는 이러한 제약점을 극복하기 위해 Grad-CAM과 

대규모 언어 모델(LLM)을 결합한 충돌 위험 해석 시스템을 

제안한다. 우선 정적인 시각 정보인 히트맵 데이터를 LLM이 

인식 가능한 텍스트 파라미터로 변환하여, 모호한 시각적 

지표를 자연어 기반의 구체적인 상황 설명으로 구체화한다. 

이를 통해 사용자는 복잡한 히트맵을 별도로 분석할 필요 

없이 AI가 생성한 브리핑을 통해 위험 상황을 즉각적으로 

인지할 수 있다. 더 나아가, 단순한 위험 감지를 넘어 감지된 

객체의 상대적 위치(좌/우/중앙)를 분석하고, 이를 바탕으로 

최적의 회피 기동 방향을 도출하여 자연어로 안내한다. 즉, 

기존 연구가 단순히 위험 여부를 판별하거나 시각적 투영에 

머물렀다면, 본 연구는 Grad-CAM과 LLM을 유기적으로 

결합하여 '왜 위험한가'에 대한 시각적 원인을 실시간으로 

규명함과 동시에 '어떻게 대처해야 하는가'에 대한 실천적 

해답을 자연어로 제시한다는 점에서 신규성을 확보한다. 

 

3. 제안 방법 

제안한 충돌 위험 인식 시스템은 드론에 장착된 

카메라로부터 입력되는 실시간 영상 스트림을 시스템의 

입력으로 받아, 딥러닝 기반 충돌 분류 모델을 통해 각 

프레임에 대한 충돌 위험도를 예측한다. 예측한 충돌 정보는 

히트맵 시각화와 LLM 기반 설명으로 제공된다.  

 
[그림 1] 제안 방법 개요 

제안한 시스템은 그림 1과 같다. 첫째, 충돌 위험 분류 

단계에서는 실시간 영상 프레임을 입력으로 받아 충돌 위험 

여부를 분류한다. 둘째, 시각적 설명 제공 단계에서는 분류 

모델의 내부 판단 근거를 시각적으로 확인하기 위해 Grad-

CAM 기반 시각적 설명을 생성한다. 셋째, 충돌 위험 예측 

단계에서는 히트맵에서 강조된 영역의 공간적 정보를 

활용하여 충돌 위험도를 정량화한다. 마지막으로, 자연어 설명 

단계에서는 히트맵 위치 정보와 위험도를 LLM의 입력으로 

전달하여, 현재 위험 상황에 대한 직관적인 설명과 함께 

안전한 회피 기동 방향을 자연어로 출력한다. 

 

3.1. 충돌 위험 분류 단계 

충돌 위험 분류 단계에서 사용한 충돌 분류 모델은 합성곱 

신경망(Convolutional Neural Network, CNN) 구조를 기반으로 

설계되었다. 입력 영상은 실시간 처리 효율을 고려하여 

128x128 해상도로 리사이징 되며, 픽셀 값은 1/255 스케일링

을 통해 [0, 1] 범위로 정규화된다. 이러한 입력 데이터 전처

리 과정은 연산 부담을 줄이고 모델 학습 및 추론의 안정성을 

확보하기 위함이다. 

모델의 최종 출력 계층에서는 시그모이드(Sigmoid) 활성화 

함수를 적용하여, 입력 프레임에 대해 0과 1 사이의 충돌 발

생 확률 P를 산출한다. 본 단계는 실시간으로 입력되는 연속 

영상 프레임을 프레임 단위로 분석하여, 각 시점에서 발생 가

능한 즉각적인 충돌 위험 요소를 감지하는 데 초점을 둔다. 

또한 설명 가능성 확보를 위해 모델 내부의 마지막 합성곱 계

층(Conv2D)을 자동으로 탐색하여 Grad-CAM 적용을 위한 대

상 계층(Target Layer)으로 지정한다. 

 

3.2. 시각적 설명 제공 단계 

시각적 설명 제공 단계에서는 예측된 충돌 위험 결과에 대

해 Grad-CAM을 적용하여, 모델이 위험 판단에 활용한 영상 

내 핵심 영역을 히트맵 형태로 시각화함으로써 판단 근거를 

제공한다. 이를 위하여 Grad-CAM 기반 관심 영역(Region of 

Interest, ROI) 추출 및 최적화를 수행한다. 해당 단계는 단순

한 시각적 설명 도구를 넘어 충돌 위험 영역 추출을 위한 분

석 단계이다. Grad-CAM은 대상 클래스에 대한 그래디언트를 
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마지막 합성곱 계층의 특징 맵에 대해 계산한 후, 전역 평균 

풀링(Global Average Pooling)을 통해 채널별 가중치를 도출하

고, 이를 선형 결합하여 입력 영상 상의 중요 영역을 히트맵 

형태로 생성한다. 

기존 Grad-CAM은 전등과 같은 고휘도 배경 요소에 과도하

게 반응하는 한계를 보이므로, 본 연구에서는 실제 물리적 장

애물에 대한 민감도를 높이고 환경적 노이즈를 억제하기 위해 

다음과 같은 후처리 및 최적화 과정을 적용한다.  

첫째, 동적 임계값 처리(Dynamic Thresholding)를 통해 히

트맵의 최대 활성값 대비 60% 이상의 영역만을 유효 활성 영

역으로 정의하고 이진화한다. 이를 통해 상대적으로 기여도가 

낮은 배경 영역을 제거한다. 

둘째, 이진화된 히트맵에 대해 커널 크기 5x5의 형태학적 

연산(Morphological Opening 및 Closing)을 적용하여 미세한 

점 노이즈를 제거하고, 위험 객체의 공간적 형태를 보존한다.  

셋째, 윤곽선 기반 필터링(Contour-based Filtering)을 수행

하여 전체 영상 면적의 1% 미만에 해당하는 작은 활성 영역

은 노이즈로 간주하고 제거한다. 이후 남은 영역 중 가장 유

의미한 윤곽선을 기반으로 바운딩 박스를 산출하여 최종 충돌 

위험 객체의 위치를 정의한다. 

이와 같은 과정을 통해 Grad-CAM 히트맵은 단순한 시각적 

설명을 넘어 충돌 위험을 판단하는 근거로 활용될 수 있으며, 

나아가 후속 위험률 보정과 회피 기동 생성을 위한 정량적 공

간 정보로 확장된다. 

 

3.3. 충돌 위험 예측 단계 

  제안된 시스템은 ZED 2 스테레오 카메라에서 실시간으로 

촬영한 영상을 입력으로 받아 충돌 위험을 예측한다. 먼저 수

집된 스테레오 영상 프레임을 충돌 분류 모델의 입력 규격에 

맞게 전처리하고, CNN 기반의 특징 추출 프로세스를 통해 영

상 내 장애물을 탐지한다. 이후 최종 출력층의 그래디언트 정

보를 역전파하여 Grad-CAM 히트맵을 생성함으로써 충돌 분

류 모델이 충돌 여부를 이진 분류 형태로 판단하며, 이를 통

해 최종적인 충돌 위험을 P를 산출한다. 또한 본 연구에서는 

위험도의 시각도를 반영하기 위해 스테레오 카메라로 추정된 

깊이(Depth) 정보를 활용하여 TTC를 계산한다. 구체적으로, 

Grad-CAM 히트맵 후처리를 통해 얻은 위험 영역(ROI) 내 깊

이 값을 프레임 간 추적하여 거리 변화량을 산출하고, 이를 

기반으로 상대 접근 속도를 근사함으로써 충돌까지 남은 시간

을 산출한다. 

 

3.4. 자연어 설명 단계 

  자연어 설명 단계에서는 대규모 언어 모델(LLM)을 활용하여 

생성된 히트맵과 충돌 위험도를 함께 해석하고, 현재 위험 상

황에 대한 설명과 함께 회피가 필요한 이동 방향을 자연어로 

출력하여 조종자 또는 자율 시스템의 의사결정을 지원한다. 

본 단계에서는 충돌 분류 모델을 통해 산출된 충돌 위험률

과 Grad-CAM 히트맵에서 추출된 주요 활성 영역의 좌표 정

보를 대규모 언어 모델(LLM)의 프롬프트 입력으로 통합하여 

멀티 모달 해석을 수행한다. LLM은 히트맵으로부터 획득한 공

간적 정보(Spatial Information)를 기반으로 위험 객체의 상대

적 위치를 추론하고, 이를 바탕으로 현재 상황에서 가장 안전

한 회피 기동 방향을 자연어 형태로 생성하여 제공한다. 이를 

통해 단순한 위험 수치 제시에 그치지 않고, 사용자가 즉각적

으로 이해하고 행동으로 옮길 수 있는 형태의 직관적인 위험 

해석을 지원한다. 

본 절에서는 제안한 LLM 기반 해석 방식의 동작 과정을 보

다 명확히 설명하기 위해, 입력 데이터와 이에 대응하는 출력 

예제를 프롬프트 구성 요소별로 제시한다. LLM의 입력 데이터

는 Grad-CAM 히트맵에서 붉은색으로 강조된 주요 위험 영역

의 위치 정보와 충돌 위험률로 구성되며, 해당 정보는 사전에 

정의된 프롬프트 템플릿을 통해 전달된다. 이 프롬프트는 히

트맵에서 강조된 영역과 생성되는 설명 간의 시각적 정합성을 

유지하도록 설계되었으며, 기술적 용어 사용을 최소화하고 조

종사의 즉각적인 판단과 회피 행동을 유도하는 방향 지시 중

심의 응답을 생성하도록 구성되었다. 

 

3.5. 최종 결과 화면 데모 

그림 2는 이러한 제안 방법의 결과 화면 예제를 보여준다. 

객체가 멀리 있다가 다가오게 되면 충돌 위험도를 보이면서, 

조치 방법을 LLM이 설명한다. 

 

[그림 2] 화면 예제 

4. 실험 계획 

4.1. 연구 질문 (Research Questions) 

본 연구에서는 제안된 시스템의 성능을 검증하기 위해 네 

가지 연구 질문을 설정한다. 

 

4.1.1. RQ1. 제안한 충돌 분류 모델은 실제 충돌 위험을 

얼마나 정확하게 예측하는가? 
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  RQ1은 제안한 충돌 분류 모델이 실제 충돌 위험 상황을 

얼마나 정확하게 예측하는지를 평가한다. 이는 다양한 고도와 

조도, 장애물 크기 등 실제 비행 환경에서 발생할 수 있는 

시나리오에 대해 모델이 도출한 위험 확률이 실제 충돌 

가능성과 정량적으로 일치하는지 정확도(Accuracy), 

정밀도(Precision), 재현율(Recall) 등의 평가 지표를 활용하여 

모델의 성능을 검증하는 데 목적이 있다. 

4.1.2. RQ2. 제안한 시스템의 Grad-CAM 히트맵은 모델의 

판단 근거를 시각적으로 타당하게 반영하는가? 

  RQ2는 충돌 분류 모델이 판단의 근거로 제시한 Grad-

CAM 히트맵이 실제 환경의 장애물 위치와 시각적으로 얼마나 

일치하는지(정합성)를 평가한다. 이는 AI 모델이 단순히 

우연에 의해 충돌을 예측하는 것이 아니라, 객체의 유의미한 

특징을 정확히 학습했는지 검증하는 데 목적이 있다. 

4.1.3. RQ3. Grad-CAM 기반 LLM 해석 결과는 모델의 예측 

의도를 논리적으로 설명하는가? 

  RQ3는 시스템이 생성한 Grad-CAM 기반 LLM 해석 문장이 

실제 상황을 논리적으로 타당하게 설명하고 있는지를 

평가한다. 이는 LLM 해석이 수치적 위험도 및 시각적 근거와 

모순 없이 일치하는지를 확인하여 시스템의 설명 신뢰도를 

검증하는 데 목적이 있다. 

4.1.4. RQ4. 제안한 시스템이 제공하는 충돌 판단 근거는 인간 

관점에서 신뢰할 수 있는가? 

RQ4는 제안한 시스템이 제공하는 충돌 판단의 근거가 인간 

관점에서 얼마나 신뢰 가능한지를 정량적으로 검증하는 데 

목적이 있다. 단순히 모델의 정확도가 높은 것을 넘어, 

인공지능이 도출한 설명(Explanation)이 인간의 의사결정 

과정에 긍정적인 영향을 미치는지 확인하고자 한다. 

4.2. 실험 데이터셋 

  본 실험에서는 충돌 분류 모델의 학습을 위해 공개된 

DroNet 데이터셋을 활용하였다[8]. DroNet은 심층 신경망을 

통해 장애물 회피 및 주행 제어를 학습하기 위한 영상 데이터

와 주행 정보를 포함한다. 이 데이터셋은 전방 카메라로 촬영

한 영상에서 충돌 여부와 주행 관련 레이블을 함께 제공하며, 

CNN 기반 모델이 이미지 단위로 충돌 확률을 추정할 수 있도

록 구성되어 있다. 

실험에서는 DroNet 데이터 중 충돌 레이블이 포함된 

부분을 분류 문제 학습용 데이터로 사용하였다. 각 영상 

프레임은 RGB 이미지와 함께 충돌 여부(Collision/Non-

Collision) 레이블을 가지고 있다. 표 1은 해당 데이터셋의 

구성을 보여준다. 

구분 디렉터리명 설명 

학습 

데이터 
training/ 

충돌 분류 모델 학습에 사용되는 

영상 시퀀스 

검증 validation/ 학습 중 모델 성능 검증에 사용되는 

구분 디렉터리명 설명 

데이터 영상 시퀀스 

테스트 

데이터 
testing/ 

최종 성능 평가 및 Grad-CAM 

시각화 검증에 사용 

각 시퀀스 

폴더 

Images/ 
전방 카메라로 촬영된 RGB 영상 

프레임 

Labels.txt 
각 프레임에 대한 충돌 여부 레이블 

(Collision / Non-Collision) 

[표 1] DroNet 데이터셋 구조 

4.3. 실험 환경 

실험 환경은 표 2와 같다. 본 실험은 ZED 2 스테레오 

카메라를 사용하여 실험을 수행하였다. 카메라로부터 

입력되는 실시간 고해상도 이미지와 깊이(Depth) 정보를 

분석하여 충돌 위험을 판별하였으며, 충돌 분류 모델은 CNN 

딥러닝 모델을 사용하였다. Grad-CAM 시각화 및 실시간 추론 

과정은 NVIDIA GeForce RTX 2060 GPU 환경에서 

수행되었으며, 실험 환경은 운영체제 및 라이브러리 간 

호환성을 고려하여 Windows 11과 Python 3.10 기반으로 

구성하였다.  

Camera ZED 2 – AI Stereo Camera 

Vision SDK ZED SDK 

Data Interface USB 3.0 

Collision Classification Model CNN-based model (.h5) 

GPU NVIDIA GeForce RTX 2060 

Operating System Windows 11 

Language Python 3.10 

[표 2] 실험 환경 

4.4. 실험 방법 

RQ1을 위해서는 정확도 척도로 실험적으로 평가하였고, 

RQ2부터 RQ4까지는 사용자 평가로 진행하였다. 사용자 

평가는 항공소프트웨어 분야에서 드론을 연구하는 연구원 

7명을 대상으로 수행하였다. 평가자 구성은 학부생 2명, 

석사과정 3명, 박사과정 2명으로 이루어져 있으며, 연구개발 

경력의 평균은 5.57년, 표준편차는 2.44년으로 나타났고, 

성별 구성은 남성 5명 여성 2명이었다. 

4.4.1. RQ1: 충돌 분류 모델 정량적 평가 

RQ1에서는 영상 프레임으로부터 충돌 위험을 얼마나 

정확하게 식별하는지를 정량적으로 평가했다. 이를 위해 

DroNet 데이터셋의 testing 세트를 활용하여 모델의 추론 

결과와 실제 레이블을 비교하였다. 모델의 최종 출력은 

시그모이드 함수를 통해 산출된 충돌 값 P이며, 

임계값(Threshold)을 변화시키면서 분류 성능의 변화를 

분석하였다.  

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

222



모델의 정확도를 평가하기 위해 ROC(Receiver Operation 

Characteristic) Curve를 도출하고, 이에 대한 AUC(Area 

Under the Curve)를 측정하였다. 또한, 실제 운용 환경에서의 

오분류 특성을 분석하기 위해 혼동 행렬(Confusion Matrix)을 

생성하고, 정밀도(Precision), 재현율(Recall), 거짓 

양성률(False Positive Rate) 등의 지표를 분석하였다. 안전성 

확보를 위해 충돌 상황을 놓치는 미탐지(False Negative) 발생 

여부를 검토하였다. 

 

4.4.2. RQ2: Grad-CAM 히트맵의 시각적 정합성 검증 

RQ2에서는 제안한 시스템에서 생성되는 Grad-CAM 기반 

히트맵이 실제 충돌 위험 객체의 위치를 시각적으로 타당하게 

반영하는지를 검증했다. 평가는 연속 영상 프레임을 기반으로 

수행되었으며, 햇빛과 같은 고휘도 배경 요소가 존재하는 

프레임을 의도적으로 포함하여 배경 노이즈 상황에서도 

Grad-CAM 히트맵이 실제 장애물에 집중하는지를 확인한다. 

Grad-CAM 히트맵의 시각적 정합성을 정성적으로 평가하기 

위해 5점 리커트 척도(5-point Likert Scale) 기반의 평가 

문항을 설계하였다. 실험은 항공소프트웨어 분야에서 드론을 

연구하는 연구원 7명에게 ZED 2 카메라로 수집된 실제 충돌 

상황 샘플을 제시한 후, 각 영상에 투영된 Grad-CAM 히트맵 

시각화 결과에 대해 표 3의 Q1, Q2 질문에 대해 5점 리커트 

척도(5-point Likert Scale)를 기반으로 평가를 진행하였다. 

Q1 Grad-CAM의 히트맵이 실제 장애물 위치를 정확히 

강조하는가? 

Q2 전등, 벽 등의 백그라운드에 대한 강조 없이 핵심 

영역에 집중되었는가? 

[표 3] Grad-CAM 히트맵 시각적 정합성 평가 질문 

 

4.4.3. RQ3: LLM 해석의 논리적 타당성 검증 

RQ3에서는 Grad-CAM 히트맵과 ZED 2 스테레오 

카메라로부터 추정된 깊이 정보를 입력으로 하여 LLM이 

생성한 충돌 상황에 대한 해석 결과에 대해 논리적 타당성을 

검증한다. LLM이 생성한 자연어 설명 평가는 객체 위치 

식별의 정확성, 충돌 위험 판단의 일관성, 그리고 모델의 예측 

결과와 설명이 논리적으로 연결되는지를 중심으로 분석한다. 

본 연구에서는 LLM 해석의 논리적 타당성을 평가하기 위해 

5점 리커트 척도 기반의 평가 문항을 설계하였다. 실험은 

사용자들에게 시스템이 생성한 Grad-CAM 히트맵과 그에 

따른 LLM의 설명을 동시에 제시한 후, 해당 결과물이 상황을 

얼마나 적절히 대변하는지에 대해 표 4의 Q3, Q4 질문에 

대해 5점 리커트 척도(5-point Likert Scale)를 기반으로 

평가했다. 

Q3 LLM이 설명한 장애물 위치에 대한 설명이 화면에 

보이는 위치와 실제로 일치하는가? 

Q4 LLM의 설명이 직관적이고 이해하기 쉬운가? 

[표 4] LLM 해석의 논리적 타당성 평가 질문 

 

4.4.4. RQ4: 충돌 판단 근거에 대한 신뢰성 검증 

제안한 시스템이 제공하는 충돌 판단 근거가 인간 관점에서 

의사결정에 활용 가능한 수준의 신뢰성을 가지는지 검증한다. 

이를 위해 Grad-CAM 히트맵, 충돌 위험률, 그리고 LLM 기반 

자연어 해석을 통합적으로 제시하여 평가를 수행한다. 

본 연구에서는 충돌 판단 근거에 대한 인간 신뢰성을 

측정하기 위해 5점 리커트 척도를 기반으로 질문을 

설계하였다. 실험은 피험자들에게 '설명이 없는 단순 결과 

알림'과 'Grad-CAM 및 LLM 해석이 포함된 결과 알림'을 

비교 제시한 후, 후자의 시스템에 대해 표 4의 Q5, Q6를 

중심으로 평가를 진행하였다. 

연구원들은 각 프레임에 대해 Grad-CAM 히트맵이 

제공하는 시각적 근거, 충돌 확률에 기반한 수치적 위험도, 

그리고 LLM의 해석 결과를 함께 확인한 후, 해당 정보들이 

충돌 위험 판단에 있어 직관적으로 이해 가능하며 신뢰할 수 

있는 판단 근거를 제공하는지에 대해 평가했다. 

Q5 본 시스템에서 제공하는 설명이 '왜 위험한지'를 

납득하는 데 충분하였는가? 

Q6 위험 확률만 제공하는 것보다 히트맵과 LLM을 함께 

제공할 때 이해가 더 쉬웠는가? 

[표 5] 인간 관점 신뢰성 평가 질문 

 

5. 실험 결과 

5.1. RQ1: 충돌 위험 예측 성능 분석 

그림 3은 제안한 충돌 분류 모델의 성능을 평가하기 위해 

Validation 세트를 대상으로 산출한 ROC(Receiver Operation 

Characteristic) 곡선을 나타낸다. ROC 곡선은 분류 임계값 

변화에 따른 거짓 양성률(False Positive Rate)과 참 

양성률(True Positive Rate) 간의 관계를 시각화한 지표로, 

모델의 전반적인 판별 능력을 평가하는 데 주로 사용된다. 

그림 3에서 ROC 곡선은 좌측 상단에 밀집된 형태를 

보인다. 이는 낮은 거짓 양성률을 유지하면서 높은 참 

양성률을 달성하고 있음을 의미한다. 즉, 충돌 상황과 비충돌 

상황을 효과적으로 구분하고 있음을 시사한다. 특히 

AUC(Area Under the Curve) 값이 0.992로 나타나, 제안한 

모델이 충돌 위험을 매우 높은 신뢰도로 판별할 수 있음을 

정량적으로 확인하였다. 이는 분류 임계값 설정 변화에도 

강건한 성능을 유지함을 의미하며, 실제 자율 비행 환경과 

같이 충돌 발생 빈도가 낮고 클래스 불균형이 존재하는 

상황에서도 안정적인 위험 예측이 가능함을 보여준다.  
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[그림 3] 제안한 충돌 분류 모델의 ROC 곡선 

표 6은 검증 데이터셋에 대해 제안한 충돌 분류 모델의 

예측 결과를 혼동 행렬(Confusion Matrix) 형태로 나타낸 

것이다. 혼동 행렬은 실제 충돌 여부(True label)와 모델의 

예측 결과(Predicted label)을 비교함으로써 분류 모델의 

성능과 오류 유형을 직관적으로 분석할 수 있는 지표이다. 

 Pred Safe Pred Collision 

True Safe 427 69 

True Collision 0 38 

[표 6] 충돌 분류 혼동 행렬 

표 6에 따르면 실제 비충돌(Safe) 상황 중 427 프레임은 

비충돌로 정확히 분류되었으며, 69 프레임은 충돌로 

오분류되었다. 이는 일부 정상 상황을 충돌로 판단하는 False 

Positive 사례가 존재함을 의미한다. 이러한 오경보는 

불필요한 회피 동작을 유발할 가능성은 있으나, 안전성을 

최우선으로 고려하는 자율 비행 시스템의 관점에서는 잠재적 

위험을 보수적으로 감지하는 허용 가능한 오류로 해석할 수 

있다. 

반면, 실제 충돌(Collision) 상황에 대해서는 38 프레임 

모두 충돌로 정확히 분류되었으며, 충돌 상황을 비충돌로 

잘못 예측한 False Negative 사례는 발생하지 않았다. 즉, 

충돌 클래스에 대한 Recall 값이 1.0에 근접함을 의미하며, 

실제 충돌 발생 가능성을 최대한 빠짐없이 감지하도록 설계된 

모델의 목표가 효과적으로 달성하였음을 보여준다. 일부 

False Positive가 존재함에도 불구하고, 충돌 상황을 놓치지 

않는 보수적인 판단 전략은 실제 운용 환경에서 시스템의 

전반적인 안전성을 향상시키는 데 기여할 수 있다. 

따라서 그림 3과 표 6을 통해 제안한 충돌 분류 모델은 

충돌 상황에 대한 높은 재현율을 기반으로 실제 충돌 위험을 

안정적으로 예측할 수 있다. 이러한 특성은 이후 단계인 

Grad-CAM 기반의 위험 영역 시각화 및 회피 기동 결정을 

위한 입력 단계에서도 충분한 신뢰성을 제공할 수 있음을 

의미한다. 

 

5.2. RQ2: Grad-CAM 히트맵의 시각적 정합성 평가 

5.2.1. 정량적 평가 결과 

Q1은 Grad-CAM에서 제시하는 히트맵이 충돌 위험 객체의 

위치를 적절히 반영하는지에 대해 질문한다. 이에 대한 

평가자들의 평균 점수는 5점 만점에 4.2점이었다. 응답자들은 

Grad-CAM 히트맵이 대체로 장애물 위치를 잘 강조한다고 

평가하였으나, 흰색 울타리와 같은 평평한 장애물에서는 

히트맵의 정확도가 낮아지는 경향을 보였다. 이는 False 

Negative(FN)가 다소 발생함을 의미하며, 제안된 시스템은 

True Positive (TP)와 True Negative(TN)는 잘 작동했으나, 

False Negative가 발생하는 부분에서는 개선의 여지가 있음을 

확인할 수 있었다. 

Q2는 Grad-CAM에서 제시하는 히트맵이 핵심 영역에 

집중되는지에 대한 질문으로 평균 점수는 4.4점으로 

기록되었다. 응답자들은 Grad-CAM이 핵심 장애물 영역을 

정확하게 강조했다고 평가하였다. 특히 전등, 벽 등 

백그라운드 요소들이 불필요하게 강조되지 않고, 위험 객체에 

집중된 히트맵을 생성한 것으로 나타났다. 이는 Grad-CAM이 

고휘도 영역에 집중되지 않고, 위험 객체에 대해 정확히 

주의를 기울였음을 보여주며 긍정적인 평가로 이어졌다.  

종합적으로 Grad-CAM의 시각적 정합성은 실제 적용에 

있어 충분한 활용 가능성을 보여주며, Q1에서는 4.2점, 

Q2에서는 4.4점을 기록하여 전체 평균 점수는 4.3점으로 

나타났다. 핵심 장애물 강조에 대한 긍정적인 평가가 

이어졌으며, 일부 평평한 장애물에서의 정확도 문제는 향후 

개선이 필요한 부분으로 확인되었다. 

 

5.2.2. Grad-CAM 시각화 결과 및 정성적 분석 

  그림 4의 좌측 이미지에서는 보행자의 몸통 중심부에 

히트맵이 집중되어 있음을 확인할 수 있다. 해당 장면은 위험 

객체가 존재하지 않는 상황으로 판단되어 특정 객체에 

국한되지 않고 배경 영역에도 일정 수준의 주의가 분산되어 

있음을 알 수 있다. 반면 우측 이미지에서는 배경 영역에 

대한 히트맵 표현이 현저히 감소하고, 보행자의 몸통을 

중심으로 강한 활성화가 나타나는 것을 확인할 수 있다. 이는 

충돌 위험이 존재하는 상황에서 제안한 시스템이 충돌 가능 

객체를 효과적으로 식별하고, 해당 객체의 핵심 위험 영역에 

집중하여 히트맵을 생성함을 의미한다. 이러한 결과를 통해 

제안한 시스템이 충돌 객체 및 위험 영역을 시각적으로 

타당하게 강조함을 확인하였다. 
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[그림 4] 사람 객체에 대한 시스템 결과 

그림 4의 좌측 이미지의 LLM 설명 

위험률 0% (안전) 

LLM 현재 충돌 위험도는 0%입니다. 히트맵에서 중앙 

전방에 빨간색 위험이 있어, 해당 지역을 피하고 

반대 방향으로 이동해야 합니다. 중앙 전방을 

피하기 위해 우회전하여 안전한 경로로 

이동하세요. 

그림 4의 우측 이미지의 LLM 설명 

 위험률 91% (위험) 

LLM 현재 충돌 위험도는 91%입니다. 히트맵의 빨간색 

영역인 중앙 전방에 매우 위험한 장애물이 있으니, 

즉시 좌측 혹은 우측 방향으로 이동해야 합니다. 

가능한 빠르게 이동하여 위험을 회피하십시오. 

[표 7] 그림 4 이미지에 대한 LLM 설명 

그림 5는 좌측, 전방, 우측 모두에 장애물이 존재하는 

상황을 나타낸다. 제안한 시스템은 스테레오 카메라를 통해 

각 장애물까지의 거리를 추정하며, 그 결과 좌측 장애물이 

가장 근접한 객체임을 인지하여 해당 영역의 히트맵을 가장 

강하게 강조한 것을 확인할 수 있다. 이후 우측 이미지에서는 

장애물과의 거리가 더욱 감소함에 따라, 좌측 장애물에 대한 

히트맵 강조 정도가 유지되면서 전방 장애물에 대한 히트맵 

강조 또한 유사한 수준으로 증가하는 양상을 보인다. 이는 

충돌 위험이 상대적으로 높은 다수의 객체가 동시에 존재하는 

상황에서도, 제안한 시스템이 거리 기반 위험도를 반영하여 

주요 충돌 위험 영역을 효과적으로 구분하고 강조함을 

의미한다. 

 

5.3. RQ3: LLM 기반 충돌 해석의 논리적 타당성 평가 

5.3.1. 정량적 평가 결과 

Q3는 충돌 위험에 대한 LLM의 설명이 이미지와의 일치 

여부를 평가한다. 이에 대한 평균 점수는 5점 만점에 

3.8점으로 평가되었다. 응답자들은 전반적으로 LLM이  

 

[그림 5] 그 외 객체에 대한 시스템 결과 

그림 5의 좌측 이미지의 LLM 설명 

위험률 89% (위험) 

LLM 현재 충돌 위험도는 89%입니다. 히트맵의 빨간색 

영역인 좌측에 매우 높은 위험 요소가 있습니다. 

해당 지역을 피하고 반대 방향으로 즉시 이동해야 

합니다. 

그림 5의 우측 이미지의 LLM 설명 

위험률 94% (위험) 

LLM 현재 충돌 위험도는 94%입니다. 히트맵의 빨간색 

영역인 전방에 매우 위험한 장애물이 있으니, 

후방으로 이동하여 회피해 주십시오. 

[표 8] 그림 5 이미지에 대한 LLM 설명 

충돌 위험이 높은 상황에서는 히트맵에 나타난 장애물 위치와 

일치하는 설명을 제공한다고 평가하였다. 

특히 True Positive(TP)에 해당하는 사례에서는 장애물의 

위치와 방향에 대한 설명이 비교적 정확하게 제시되었다. 

그러나 일부 사례에서는 충돌 위험도가 0%로 산출된 

영상임에도 불구하고 LLM이 안전한 경로로의 이동을 

제시하는 경우가 관찰되었다. 이러한 현상은 사람의 시각적 

판단 기준에서 False Negative(FN)로 인식될 가능성이 있고, 

특히 무인 드론 시스템의 안전성을 고려할 때 치명적인 

요소로 작용할 수 있다는 점에서 상대적으로 낮은 점수가 

부여되었다. 

Q4는 LLM이 제시하는 설명이 직관적이고 이해하기 쉬운지 

평가한다. 이에 대한 평균 점수는 4.8점으로 평가되었다. 

응답자들은 LLM이 히트맵에서 얻을 수 있는 시각적 정보뿐만 

아니라, 이후 취해야 할 행동을 자연어로 직관적으로 

제시한다는 점에서 사용자에게 유용하다고 평가하였다. 특히 

충돌 위험이 높은 상황에서는 환경에 부합하는 회피 지시가 

제공되어, 전반적인 이해도를 크게 향상시키는 것으로 

나타났다. 다만 일부 응답자들은 충돌 위험이 높은 상황에서 

설명이 다소 길어 한눈에 파악하기 어렵다는 점과, 핵심 

장애물 중심의 설명에 치중하여 주변 환경이나 전체 맥락에 

대한 정보가 부족하다는 점을 한계로 지적하였다. 그럼에도 

불구하고, LLM 기반 설명이 제공하는 직관성과 이해 용이성 

측면에서는 전반적으로 긍정적인 평가를 받았다. 

종합적으로 LLM 기반 충돌 해석 결과는 행동 지침 제공 

측면에서 높은 직관성과 활용 가능성을 보였으나, 안전 

상태로 판단된 상황에서의 LLM 해석 정합성 측면에서는 일부 

개선이 필요한 것으로 나타났다. 

 

5.3.2. LLM 해석 결과의 정성적 분석 

  그림 4의 좌측 이미지에서는 위험 객체가 탐지되지 않아 

충돌 위험률이 0%로 산출되었으며, 이에 따라 시스템은 안전 

상태로 판단하였다. 안전 상태에서는 가장 인접한 객체를 

우선적으로 고려하되, 특정 객체에만 집중하지 않고 주변 

배경 영역 전반을 함께 고려하여 잠재적인 충돌 경로를 

종합적으로 판단하고 경로를 추천하는 양상을 확인할 수 있다. 

반면, 우측 이미지에서는 충돌 위험이 존재하는 객체를 

명확히 인지하고, 해당 객체를 회피하도록 지시하는 설명을 

생성함을 확인하였다.  
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그림 5의 좌측 이미지에서는 스테레오 카메라를 통해 

추정된 거리 정보를 바탕으로 좌측 객체가 가장 근접한 

장애물임을 인지하고, LLM이 이를 설명하여 좌측의 반대 

방향으로 회피해야 함을 제시하는 것을 확인할 수 있다. 반면, 

우측 이미지에서는 장애물과의 거리가 더욱 감소함에 따라 

좌측, 전방, 우측 모두에서 충돌 위험이 존재한다고 판단하여 

후방으로 회피할 것을 제안하는 설명이 생성된다. 

이 결과는 LLM이 모델의 예측 결과와 시각적 정보에 

기반하여 상황을 논리적으로 해석하고, 그에 상응하는 행동 

지향적 설명을 타당하게 생성함을 보여준다. 

 

5.4. RQ4: 충돌 판단 근거에 대한 신뢰성 평가 

5.4.1. 정량적 평가 결과 

Q5는 제공된 LLM의 설명이 왜 위험한지를 설명하는지 

충분이 납득이 되는지 질문한다. 이에 대한 평균 점수는 5점 

만점에 4.6점으로 평가되었다. 응답자들은 충돌 위험이 높은 

상황에서 Grad-CAM 히트맵과 LLM 설명이 결합되어 

제공됨으로써, 단순한 위험 여부 판단을 넘어 충돌 위험이 

발생하는 원인과 근거를 이해하는 데 효과적이라고 

평가하였다. 특히 히트맵을 통해 시각적으로 위험 영역을 

확인하고, LLM이 이를 자연어로 설명함으로써 사용자가 위험 

상황을 납득하는 데 도움이 된다는 점에서 높은 점수가 

부여되었다. 이러한 결과는 제안한 시스템이 충돌 판단의 

설명 가능성(Explainability) 측면에서 사용자 신뢰 형성에 

기여함을 시사한다. 

Q6은 히트맵과 LLM의 정보를 제공했을 때 충돌 위험에 

대한 아해가 더 쉬웠는지에 대한 질문이다. 이에 대한 평균 

점수는 4.8점으로 나타났다. 응답자들은 충돌 위험 확률만 

제시되는 경우보다 Grad-CAM 히트맵과 LLM 설명을 함께 

제공할 때 상황 이해도가 현저히 향상된다고 평가하였다. 

히트맵은 위험 판단의 시각적 근거를 제공하고, LLM은 해당 

정보를 바탕으로 다음 행동에 대한 지침을 직관적으로 

제시함으로써 사용자에게 실질적인 도움을 제공한 것으로 

나타났다. 다만 일부 응답자는 LLM 해석에 사용되는 용어가 

전공자 관점에서는 직관적이나, 일반 사용자에게는 의미를 

즉각적으로 이해하기 어려울 수 있다는 점을 지적하였다. 

그럼에도 불구하고, 전반적으로 히트맵과 LLM을 결합한 설명 

방식은 사용자 이해도와 신뢰성을 효과적으로 향상시키는 

것으로 평가되었다. 

종합적으로 Grad-CAM과 LLM을 결합한 설명 방식은 충돌 

위험에 대한 이해도와 신뢰성을 효과적으로 향상시킨다는 

것을 보여준다. 특히 시각적 근거와 자연어 설명의 결합은 

충돌 판단 과정의 투명성을 향상시키며, 자율 시스템의 

안전성에 대한 신뢰를 제고하는 데 기여한다. 

 

5.4.2. 정성적 분석 

전반적으로 평가자들은 Grad-CAM 히트맵과 LLM 설명을 

함께 제공할 경우, 충돌 위험 판단에 대한 이해도가 향상된다

고 평가하였다. 특히 충돌 위험이 높은 상황에서는 히트맵을 

통해 핵심 장애물 영역을 시각적으로 확인하고, LLM이 이를 

바탕으로 회피 방향을 제시함으로써 다음 행동을 직관적으로 

판단하는 데 도움이 된다는 의견이 다수 제시되었다. 

반면, 히트맵의 강조 정확도에 대해서는 한계가 지적되었다. 

평평하게 분포된 장애물이나 흰색 울타리와 같은 환경에서는 

위험 요소가 충분히 강조되지 않거나 일부 영역에만 국한되는 

경우가 있었으며, 이는 FN 발생 가능성과 관련된 신뢰성 저하 

요인으로 언급되었다. 또한 LLM 설명이 직관적이라는 평가와 

함께, ‘왜 위험한지’에 대한 구체적인 근거(거리, 상대적 위치, 

이동 방향 등)가 충분히 제공되지 않는다는 의견도 제시되었

다. 일부 평가자는 충돌 위험도가 낮게 산출된 상황에서도 회

피 지시가 제시되는 점에서, 히트맵 기반 판단과 LLM 설명 간

의 관계가 명확하지 않다고 지적하였다. 

종합적으로 Grad-CAM과 LLM을 결합한 설명 방식은 충돌 

위험에 대한 직관적 이해와 신뢰성 향상에 기여하였으나, 히

트맵의 강조 정밀도와 설명의 근거 충분성 측면에서는 개선의 

여지가 있다. 이러한 결과는 본 시스템을 충돌 ‘확률’ 예측보

다는 충돌 위험 ‘상황 인식’ 관점에서 해석하는 것이 보다 타

당함을 시사하며, 향후 연구에서는 시공간 정보를 포함한 보

다 정교한 위험 판단 및 설명 기법이 필요함을 보여준다. 

 

5.5. 정량적 평가 결과 종합 분석 

그림 6은 Q1부터 Q6까지의 정량적 평가 평균 점수를 

요약한 결과이다. 전반적으로 모든 항목에서 4점 이상의 

평가를 기록하였으며, 이는 제안한 시스템이 각 RQ에 대해 

긍정적인 평가를 받았음을 의미한다. 특히 히트맵과 LLM을 

결합한 설명 방식에 대한 항목(Q5, Q6)에서 상대적으로 높은 

점수가 나타났다. 이는 제안한 설명 구조가 사용자 이해도 

향상에 효과적임을 확인할 수 있는 기반이 된다. 

 

[그림 6] 정량적 평가 결과 종합 

 

6. 결론 

본 논문은 충돌 예측 모델과 Grad-CAM 기반 시각화, 

그리고 LLM을 결합하여 해석을 생성하는 시스템을 

제안하였다. 실험 결과, 제안한 시스템은 복잡한 배경 

환경에서도 돌출된 장애물을 명확히 식별하고, 충돌 위험이 
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높은 객체 및 영역에 집중하는 특성을 보였다. 특히 Grad-

CAM 시각화 결과와 LLM의 설명이 일관된 경향을 보이며, 

모델의 예측 근거를 직관적으로 이해할 수 있도록 지원함을 

확인하였다. 

실험 결과, Grad-CAM 히트맵의 시각적 정합성과 핵심 

영역 집중도에 대한 평가(Q1, Q2)는 평균적으로 높은 점수를 

기록하였으며, LLM 기반 충돌 해석의 직관성과 이해 

용이성(Q3, Q4) 또한 긍정적으로 평가되었다. 특히 히트맵과 

LLM 설명을 함께 제공할 경우(Q5, Q6), 충돌 위험에 대한 

인과적 이해와 사용자 신뢰도가 유의미하게 향상되는 것으로 

나타났다. 다만 일부 평평한 장애물에 대한 히트맵 강조 

부족이나, 안전 상태에서의 LLM 설명 정합성 측면에서는 

개선의 여지가 확인되었다. 

 

7. 향후 연구 

향후 연구에서는 LLM이 제공하는 회피 방향 정보를 보다 

적극적으로 활용하는 방안을 탐구하고자 한다. 예를 들어, 

생성된 회피 방향을 실제 자율 주행 또는 자율 비행 시스템의 

경로 계획 모듈에 직접 연동하거나, 다수의 회피 후보 경로를 

생성하여 상황별 최적 경로를 선택하는 보조 의사결정 요소로 

활용할 수 있을 것이다. 아울러 본 연구의 정량적 평가에서 

확인된 한계점을 보완하기 위해, 일부 장애물에 대한 인식 

부족과 안전 상태에서의 해석 정합성 문제를 고려한 시스템 

확장 방향을 함께 검토하고자 한다. 이러한 접근은 설명 

가능한 자율 시스템의 실질적 활용 가능성을 한층 강화하는 

데 기여할 수 있을 것으로 판단된다.  
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요   약 

대규모 언어모델(LLM)은 결함 위치 추적(FL)과 자동 프로그램 수정(APR) 등 소프트웨어 디버깅 분야에

서 유의미한 성과를 보여주고 있으나, 한국에서 개발된 Ko-LLM의 디버깅 성능에 대한 체계적인 평가는 

아직 부족하다. Defects4J v3.0.1의 169개 단일 라인 버그를 대상으로, FL·APR 태스크를 한국어와 영어 

프롬프트에서 Ko-LLM 6종, Global Open-source LLM 2종, Commercial LLM 2종과 비교하였다. Ko-LLM의 

성능은 전반적으로 Commercial LLM보다 낮았으나 일부는 Global Open-source 모델보다 소폭 우수하였

고 대체로 프롬프트 언어에 따른 성능 편차가 확인되었다. 또한 응답 품질을 평가하는 지표를 제안하여 

Commercial LLM은 가장 안정적인 품질을 보인 반면 Ko-LLM과 Global Open-source LLM은 언어 및 태

스크에 따라 품질이 변동했다. 

 

Abstract 

We evaluate Korean-developed LLMs (Ko-LLMs) on software debugging tasks—fault localization (FL) 

and automatic program repair (APR)—using 169 single-line bugs from Defects4J v3.0.1 under both 

Korean and English prompts. Across six Ko-LLMs, two Global Open-source LLMs, and two Commercial 

LLMs, Ko-LLMs generally lag behind commercial models but can slightly outperform Global Open-source 

baselines, with notable prompt-language sensitivity. We also propose a response-quality metric; 

Commercial LLMs are most stable, while Ko-LLMs and open-source models vary more by language and 

task.  

1. 서  론 

대규모언어모델(Large Language Model, LLM)의 등장은 

소프트웨어공학 분야에 큰 영향을 주었다. LLM은 매우 

다양하게 활용되고 있으나 그 중 많은 주목을 받는 것은 

LLM의 코드를 생성하는 능력과 이를 소프트웨어 개발에 

이용하는 것이다. 소프트웨어 디버깅 과정은 개발자에게 많은 

시간과 노력을 요구하는 작업이며, 이를 효율적으로 지원하기 

위해 결함 위치 추적(Fault Localization, FL)과 자동 프로그램 

수정(Automatic Program Repair, APR)과 같은 기법들이 

제안되어 왔다. 이를 위해 LLM이 활용되어 유의미한 성과를 

보여주고 있다 [1-7]. 또한 대한민국에서도 이런 추세에 따라 

LLM의 개발을 위한 연구를 진행하고 관련된 기술을 

확보하려는 노력이 진행되고 있다. 다수의 한국 기업이 LLM을 

개발하여 오픈 소스로 공개하였으며 [18-23], 이런 Ko-LLM 

모델들은 개발한 기업들의 평가에서 글로벌 모델들에 준하는 

성능과 우수한 한국어 이해 능력을 보인다. 

하지만 이런 Ko-LLM의 디버깅 성능에 대해서는 충분한 

평가가 이루어지지 못하고 있다. LLM의 디버깅 성능과 관련된 

연구에서는 주로 OpenAI의 GPT 계열 모델들이나[8-11] 

다른 글로벌 오픈 소스 모델을 활용하여 연구를 

진행한다[12-16]. Ko-LLM들은 이런 모델들에 비해 충분한 

평가 기회를 얻지 못하고 있으며, 그에 따라 모델의 우수성 

및 보완점 또한 제대로 알려지지 않고 있다. 

본 연구에서는 Ko-LLM의 디버깅 능력을 FL과 APR 성능의 

관점에서 평가하고 이를 글로벌 오픈소스 모델(Global Open-

source LLM) 및 상업용 GPT 모델(Commercial LLM)과 

비교하였다. 실험은 디버깅 연구에서 많이 활용되는 

Defects4J v3.0.1[17]의 single-line 버그 169개를 한국어와 

영어 프롬프트로 구성하여 FL과 APR의 성능을 비교 분석하는 

방식으로 이루어졌다. 실제 실험에서는 총 10개의 모델들(Ko-
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LLM 6개, Global Open-source LLM 2개, Commercial LLM 

2개)에게 169개 버그에 대해 FL 및 APR을 한국어 및 영어로 

요청하는 6,760개의 프롬프트를 제공했다. 이후 모델의 

응답을 사람이 직접 확인하고 분석하여 답변의 정확성 및 

품질을 평가하였다. 디버깅 성능을 분석한 결과 Ko-LLM의 

상위 모델은 대체로 Global Open-source LLM보다 높은 FL 

및 APR 성능을 보여주었으나, Commercial LLM보다 성능이 

낮았다. FL에서 Commercial LLM의 정답률은 37.9~40.3%로 

가장 높은 성능을 보이며, Ko-LLM의 상위 모델은 

20.1~33.1%, Global Open-source LLM은 18.3~27.8%, Ko-

LLM 하위 모델은 8.3~15.4%의 정답률을 보인다. APR에서도 

마찬가지로 Commercial LLM의 정답률은 17.2~24.9%로 가장 

높은 성능을 보이고, Ko-LLM의 상위 모델은 10.1~14.2% 

Global Open-source LLM의 4.1~12.4%, Ko-LLM 하위 

모델은 0.6~9.5%의 정답률을 보인다. 

프롬프트 언어에 따른 성능 차이로는, FL의 경우 대부분의 

모델이 한국어에서 더 낮은 성능을 보였지만, 예외적으로 

Commercial LLM은 FL의 정답률이 영어보다 한국어 

프롬프트에서 5.3~4.2%p 높은 성능을 보인다. APR의 경우 

대부분의 모델이 한국어에서 근소하게 증가하는 FL과 반대의 

양상이 관찰되었다. 

디버깅 성능 외에 추가로 모델의 응답에 자주 나타나는 

답변 품질에 영향을 줄 수 있는 패턴을 식별 및 분석하고, 

이를 토대로 모델 답변의 품질을 평가할 수 있는 지표(Quality 

Metric)를 개발하여 모델을 비교하였다. 프롬프트에서 

코드만을 답변으로 제시하도록 요청하였지만, 모델의 응답이 

해당 지시를 따르지 않는 경우가 많았다. 그 밖에도 

프롬프트의 내용을 그대로 답하거나, 답변에 동일한 문구가 

반복적으로 나타나거나, 질문에 사용한 언어와 다른 언어로 

답변하는 등의 품질 저하 문제 등을 식별하였다. 각 유형이 

전체 응답에서 차지하는 비율을 구해 답변 품질을 -1(부정적)

에서 1(긍정적)까지 나타내는 지표를 개발하였다. Commercial 

LLM은 모두 0.997~1.000의 가장 큰 값으로, 안정적인 답변 

품질을 보였다. 반면 Ko-LLM과 Global Open-source LLM은 

이보다 낮은 값을 보이며, 다수의 모델이 APR에서 영어보다 

한국어 답변 품질이 낮아지는 경향이 관찰된다. 예를 들어 

Upstage의 SOLAR의 경우 영어 프롬프트에서 0.74의 높은 

품질 값을 보인 반면 한국어에서 0.47의 수준으로  

감소하였다.  

본 연구는 그동안 충분히 평가되지 못한 Ko-LLM의 디버깅 

성능을 평가하고, 이를 Global Open-source LLM 및 

Commercial LLM와 비교하였다. 또한 모델의 응답에서 자주 

등장하는 품질 저하 요소를 식별하고, 이를 이용해 답변의 

품질을 평가하는 지표를 제시하였다. 이런 연구 결과는 추후 

Ko-LLM의 문제를 보완하고 성능을 향상시키는데 도움을 줄 

수 있으며, Ko-LLM을 활용하려는 연구자 및 개발자들에게 

유의미한 정보를 제공할 수 있다. 

본 연구의 핵심 기여를 정리하면 다음과 같다. 

l Ko-LLM의 FL 및 APR 성능 평가 및 글로벌 오픈 소스 

모델, 상업용 모델과의 비교 결과 

l 한국어 및 영어 프롬프트 사용시 LLM 디버깅 성능 비교 

결과 

l 모델의 답변 품질 저하 요소 식별 및 답변 품질 평가를 

위한 지표 제안 

  이후의 논문 내용은 다음과 같다. 2장에서 연구의 배경에 

대해 간략히 소개하고, 3장에서 구체적인 실험의 방법 및 본 

연구에서 사용된 데이터와 모델들에 대해 설명한다. 4장에서는 

주요 실험 및 비교 분석 결과를 제시하고, 5장에서는 결과에 

대한 논의와 함께 연구의 유효성에 영향을 줄 수 있는 요인을 

짚어본다. 마지막으로 6장에서는 향후 연구와 함께 연구의 

결론을 제시한다. 

 

2. 배 경 

최근 대규모 언어 모델(Large Language Models, LLM)의 성

능이 급격히 향상됨에 따라, 소프트웨어 공학 분야에서도 다

양한 작업에 LLM을 활용하려는 시도가 활발히 이루어지고 있

다. 특히 프로그램 내 결함의 원인이 되는 코드를 추적하는 

결함 위치 추적(FL)[1–3]과 프로그램의 결함을 자동으로 수정

하는 자동 프로그램 수정(APR)[4–7]은 개발자의 생산성과 직

결되는 핵심 과제로서, LLM의 적용 가능성에 대해 지속적으로 

다양한 연구가 발표되고 있다. 

이러한 흐름에 따라 기존 연구에서는 Commercial LLM의 

GPT[8–11] 계열 모델이나 Global Open-source LLM[12-16]

을 대상으로 FL 및 APR 성능을 평가하고, 기존 기법들과의 

비교 분석을 수행해왔다. 그러나 이러한 연구의 대부분은 해

외에서 개발된 LLM을 중심으로 이루어져 있으며, 국내에서 개

발된 Ko-LLM의 디버깅 성능을 체계적으로 평가한 연구는 아

직 제한적으로만 이루어졌다. 

이에 본 연구에서는 Ko-LLM들을 대상으로 FL 및 APR 성

능을 평가하고, 이를 Global Open-source LLM 및 

Commercial LLM와 비교 분석함으로써, Ko-LLM의 소프트웨어 

디버깅 태스크에서의 활용 가능성과 한계를 체계적으로 규명

하고자 한다. 

 

3. 실험 방법 

본 실험은 FL과 APR 두 가지 태스크로 구성되어 

독립적으로 시행된다. 또한, 각 태스크는 입력 언어를 영어와 

한국어로 구분하여 언어별 성능 차이를 관찰한다. 

 

3.1 실험 데이터 

본 실험에는 Java 기반 버그 벤치마크인 Defects4J 

v3.0.1을 사용하였다. ThinkRepair[5] 연구에서 사용된 방식을 

따라, 단일 코드 라인 수정의 single-line bug만을 선별하여 

총 169개의 버그를 사용하였다. 이는 프롬프트 입력과 출력 

토큰 수를 줄여 LLM 모델의 한정된 context window 제약을 

피하기 위함이다. FL에서는 버그가 포함된 함수 전체를 

입력으로 제공한 후 perfect fault localization을 요청했다. 

APR에서도 마찬가지로 함수 전체를 제공하고 주석으로 FL의 

위치를 표시한 후 해당 라인 수정을 요청했다. 해당 버그들은 

표 1에 나열하였다. 
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표 1. Defects4J single-line bugs 

 

3.2. 모  델 

 

표 2. Large Language Models for Debugging Evaluation 

Group Model Name  

(Model ID) 

Max token 

length 

Param

eter 

Ko-LLM SOLAR-10.7B-

Instruct-v1.0 (solar) 

4,096 11.7B 

EXAONE-3.0-7.8B-

Instruct (exaone) 

4,096 7.8B 

hyperclovax/HyperCLO

VAX-SEED-Text-

Instruct-1.5B 

(hyperclovax) 

131,072 1.5B 

Midm-2.0-Mini-

Instruct (midm) 

32,768 2B 

A.X-4.0-Light (ax) 16,384 8B 

kanana-1.5-8b-

instruct-2505 (kanana) 

32,768 8B 

Global 

Open-

source 

LLM 

CodeLlama-7b-

Instruct-hf (codellama) 

16,384 7B 

Qwen3-4B-Instruct-2507 

(qwen) 

262,144 4B 

Commerc

ial LLM 

gpt-4.1-nano(gpt-4.1) 1,047,576 N/A 

gpt-3.5-turbo(gpt-3.5) 16,385 N/A 

 

본 실험에는 (1) 한국 기업이 개발한 오픈 소스 LLM(Ko-

LLM), (2) 글로벌 오픈 소스 LLM(Global Open-source LLM), 

(3) 상용 API 기반 LLM(Commercial LLM)의 세 그룹으로 총

10개의 모델을 사용하였다. 오픈 소스 LLM의 모델 간 규모 

차이를 최소화하기 위해 파라미터 크기가 12B 이하의 모델을 

선별하였다. 하지만 상용 API LLM의 경우 정확한 파라미터 크

기가 공개되지 않아, 비교적 소형 모델로 추정되는 gpt-4.1-

nano와 코드 생성 실험에 주로 사용되는 gpt-3.5-turbo를 사

용하였다. 

표 2는 각  모델을 세 그룹으로 나누어 모델명(Model  

Name), 최대 토큰 길이(Max token length), 파라미터 크 

기(Parameter)를 정리하였다. 상용 API 모델의 경우 최대 토

큰 길이와 파라미터 수가 공개되지 않아 명시하지 않았다. 

주어진 에러를 일으키는 자바 코드의 결함 라인을 

수정하세요. 

수정된 라인을 간단한 코드 주석과 함께 제공하세요. 다른 

추가 설명은 필요 없습니다.  

<Example> 

[에러] 

expected:<1> but was:<0> 

 

[테스트 코드] 

public void testGetItems() {… 

 

[결함 코드] 

public int getItemCount() { 

if (this.items == null) { // 이 라인에서 에러가 발생합니다. 

… 

[수정된 라인] 

if (this.items != null) { // items 리스트가 초기화된 경우에만 

실제 아이템 수를 반환 

 

<Question> 

[에러] 

junit.framework.ComparisonFailure… 

 

[테스트 코드] 

public void testGenerateURLFragment() {… 

 

[결함 코드] 

public String generateToolTipFragment(String toolTipText) { 

return " title=\"" + toolTipText // 이 라인에서 버그가 

발생합니다. 

… 

[수정된 라인] 

그림 1. Prompt template for the APR in Korean 

 

3.3. 프롬프트 구성 

프롬프트는 한국어, 영어로 구분된 Instruction과 few-

shot의 Example, 실제 문제인 Question의 세 부분으로 

구성된다. Instruction은 모델에게 태스크의 목적과 출력 

형식을 간략히 지시한다.  

Question은 공통적으로 다음의 정보를 포함한다. 

l [에러/error]: 실패한 테스트에서 발생한 에러 메세지 

l [테스트 코드/test code]: 해당 에러를 유발한 테스트 

코드 

l [결함 코드/faulty method]: 오류가 포함된 메소드 전체  

 

FL에서는 모델이 오류가 발생한 위치를 찾아내어 해당 코드 

라인 한 줄(faulty line)만을 출력하도록 한다. APR은 오류가 

발생한 위치를 메소드에 주석으로 제공하는 context-aware 

프롬프트 방식을 사용하여, 모델이 해당 위치를 수정한 코드 

라인(fixed line)만을 출력하도록 한다. 그림 1은 APR에서 

Project Bug Project Bug Project Bug 

Chart 5 Csv 5 JxPath 1 

Cli 9 Gson 6 Lang 14 

Closure 31 Jackson 

Core 

5 Math 22 

Codec 8 Jackson 

Databind 

16 Mockito 8 

Collections 3 JacksonXml 1 Time 3 

Compress 5 Jsoup 27 Total 169 
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사용한 프롬프트 템플릿의 예시를 보여준다. 

각 태스크의 shot 개수 별 성능을 고려하여 FL에는 3-shot, 

APR에는 1-shot 프롬프트를 적용하였다. 샘플 문제 9개로 

0-3 shot 구성을 비교한 결과, 해당 설정에서 출력 형식과 

성능이 비교적 가장 안정적이었다. 

 

3.4. 평가 방법 

본 연구에서는 FL과 APR 태스크 모두 모델의 응답을 

Correct/Incorrect로 평가하였다. 또한 모델의 context window 

크기가 부족하거나 응답이 없는 경우는 NULL로 평가하였다. 

많은 모델에서 few-shot을 적용하더라도 불필요한 설명이나 

추가 서술을 포함하여 응답하는 경우가 빈번해 자동 

평가만으로는 정확한 판단이 어려웠다. 따라서 모든 결과 

평가를 수동 평가 방식(manual evaluation)으로 진행하였다.  

FL에서는 모델의 응답이 다른 라인을 포함하지 않고 실제 

결함이 발생한 코드 라인을 정확히 포함하는 경우를 

Correct로 평가하였다. APR에서는 모델이  개발자 패치와 

동일한 경우와 완전히 일치하지 않지만 의미적으로 동일한 

수정인 경우도 포함하여 Correct로 평가하였다. 

 

4. 실험 결과 

이 장에서는 Defects4J single-line 버그 169개에 대한 FL, 

APR의 실험 결과를 제시하고 모델 그룹별 및 프롬프트 

언어에 따른 성능 차이를 분석한다. 

 

4.1. 모델의 FL 성능 평가 결과 

그림 2와 3은 각각 FL과 APR에 대한 세 그룹 Ko-LLM, 

Global Open-source LLM, Commercial LLM의 총 10개 모델의 

그림 2. FL Performance of LLMs for English and Korean Prompts 

그림 3. APR Performance of LLMs for Korean and English Prompts 
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응답을 평가한 것이다. 각 그룹은 점선을 추가해 구분하였다. 

각 막대의 수치는 평가 영역에서 Correct, Incorrect 그리고 

모델 응답 없음의 NULL로 분류된 버그의 개수를 나타낸다. 

EN은 영어 프롬프트, KR는 한국어 프롬프트를 사용한 

경우이다.  

FL에서 모든 모델 응답의 Incorrect 비중이 Correct보다 

높으며, 가장 성능이 높은 것은 gpt-3.5이고 가장 성능이 

낮은 것은 hyperclovax이다.  

gpt-3.5 는 영어 프롬프트에서 61개(36.1%)의 Correct로 

두 언어 모두 가장 우수한 성능을 보인다. 그 다음으로 영어 

프롬프트에서 ax(56, 33.1%), gpt-4.1과 exaone(각각 54, 

32.0%), solar와 gpt-4.1(각각 53, 31.4%), kanana(49, 29.0%), 

codellama와 qwen(각각 47, 27.8%)의 순으로 Correct 성능을 

보인다.  

한국어 프롬프트에서도 마찬가지로 gpt-3.5가 

68개(40.3%)의 Correct로 가장 성능이 높으며, 그 다음으로 

gpt-4.1(64, 37.9%), ax(48, 28.4%), kanana(45, 26.6%), 

solar(44, 26.0%), qwen(42, 24.9%), exaone(34, 20.1%), 

codellama(31, 18.3%)의 순으로 Correct 성능을 보인다. 반면 

midm은 영어 26개(15.4%), 한국어 21개(12.4%)의 Correct로 

비교적 성능이 낮다. 또한 hyperclovax는 한국어와 영어 

프롬프트 모두 14개(8.3%)의 Correct로 가장 성능이 낮다.  

NULL 응답의 경우, 영어 프롬프트에서 midm이 가장 많은 

30개(17.8%)의 NULL값을 보이고, 한국어 프롬프트에서는 

solar와 midm이 16개(9.5%)의 가장 많은 NULL값을 보인다. 

exaone은 영어와 한국어 프롬프트 모두 5개(3.0%)의 

NULL값을 보인다. exaone과 solar는 최대 토큰 길이가 

4,096으로, 다른 모델들에 비해 작은 context window를 

가지므로 일부 프롬프트가 긴 경우에 모델이 응답 생성에 

실패하였다. 하지만 midm은 최대 토큰 길이가 32,768로 

충분하지만 가장 많은 NULL 응답을 보여, context window 

외의 요인이 영향을 미쳤음을 짐작할 수 있다 

모델 그룹별로 비교하면, 대부분의 Ko-LLM이 Commercial 

LLM보다 성능이 비슷하거나 낮지만 Ko-LLM의 상위 네 모델 

ax, solar, exaone, kanana는 Global Open-source LLM보다 

성능이 우수하다. exaone은 한국어에서 Correct가 

34개(20.1%)로 qwen의 42개(24.9%)보다 적으나, 

codellama의 31개(18.3%) 보단 높으므로 FL의 Ko-LLM 상위 

모델에 속할 수 있다. 그룹별 FL의 성능이 가장 높은 모델은 

Ko-LLM에서는 ax(EN: 56, 33.1%, KR: 48, 28.4%), Global 

Open-source LLM에서는 qwen(EN: 47, 27.8%, KR: 42, 

24.9%), Commercial LLM에서는 gpt-3.5 (EN: 61, 36.1%, KR: 

68, 40.3%)이다. 

 

  FL에서 Commercial LLM이 가장 성능이 높으며 Ko-

LLM은 일부 모델(ax, solar, exaone, kanana)에서는 Global 

Open-source LLM과 유사하거나 높은 성능을 보이나, 

나머지 하위 Ko-LLM 모델들은 성능이 저조하다. 

 

 

4.2. 모델의 APR 성능 평가 결과 

APR에서, FL과 마찬가지로 모든 모델의 응답이 Incorrect 

비중이 Correct보다 높게 나타났다. FL에 비해 전반적으로 

Correct 비율이 낮아, APR이 더 고난도 태스크임을 알 수 

있다. 가장 성능이  높은 모델은 gpt-3.5 이고, 가장 낮은 

성능이 낮은 모델은 hyperclovax이다. 

영어 프롬프트에서 gpt-3.5는 40개(23.7%)의 Correct로 

가장 우수한 성능을 보인다. 그 다음으로 gpt-4.1(29, 17.2%), 

solar(21, 12.4%), qwen(19, 11.2%), ax(17, 10.1%), kanana(15, 

8.9%), codellama(13, 7.7%), exaone(12, 7.1%)의 순으로 

Correct 개수가 나타났다. midm과 hyperclovax는 

3개(1.8%)의 Correct로 가장 성능이 낮다.  

한국어 프롬프트에서도 마찬가지로 gpt-3.5가 

42개(24.9%)의 Correct로 가장 성능이 높으며, 그 다음으로 

gpt-4.1(31, 18.3%), ax와 qwen(각각 21, 12.4%), solar(24, 

14.2%), kanana와 exaone(각각 16, 9.5%), midm(9, 5.3%), 

codellama(7, 4.1%)의 순으로 Correct 성능을 보인다. 

hyperclovax는 1개(0.6%)의 Correct로 가장 성능이 낮다. 

midm과 hyperclovax는 FL과 APR 모두 성능이 낮다. 이는 

모델의 파라미터 크기가 각각 2B, 1.5B로 다른 모델에 비해 

작기 때문으로 추정된다. 2B의  midm보다 작은 1.5B의 

hyperclovax가 성능이 더 저조한 점에서 파라미터 크기가 2B 

이하로 작아질수록 성능 또한 저조해짐을 알 수 있다. 반면, 

다음으로 파라미터 크기가 작은 qwen(4B)는 두 모델에 비해 

높은 성능을 보인다. 이는 파라미터 크기 외에도 모델의 

구조와 같은 요인이 성능에 영향을 미친 것으로 추정된다. 

Commercial LLMs의 성능이 가장 높은 것도 파라미터가 다른 

모델에 비해 크기 때문으로 예상된다. 

NULL 응답의 경우, 영어 프롬프트에서는 midm이 

11개(6.5%)로 가장 많았으며, 한국어 프롬프트에서는 midm이 

37개(21.9%)로 크게 증가했다. exaone는 두 언어 모두 각각 

5개(3.0%)의 NULL 응답을 보이며 FL과 동일한 비율을 

유지한다. solar는 전체적으로 NULL 응답이 FL보다 3~7개의 

감소를 보인다. midm은 FL보다 영어 프롬프트의 NULL 

응답이 30(17.8%)에서 11개(6.5%)로 줄어든 반면, 한국어 

프롬프트의 NULL 응답이 16(9.5%)에서 37(21.9%)로 

늘어났다. midm은 FL뿐만 아니라 APR에서도 NULL 응답이 

발생하였으며, 이는 특정 프롬프트 조건에서 모델의 응답 

생성 안정성의 한계를 가질 가능성을 알 수 있다.  

모델 그룹별로 비교하면, APR 태스크에서는 Commercial 

LLM와 다른 모델 그룹 간의 성능 격차가 FL보다 더 명확하게 

나타난다. Ko-LLM의 ax, solar와 Global Open-source LLM의 

qwen과 유사한 성능을 보이나 나머지 모델들(exaone, kanana, 

midm, hyperclovax)은 낮은 성능을 보인다. 그룹별 APR의 

성능이 가장 높은 모델은 Ko-LLM에서는 ax(EN: 17, 10.1%, 

KR: 21, 12.4%), Global Open-source LLM에서는 qwen(EN: 19, 

11.2% KR: 21, 12.4%), Commercial LLM에서는 gpt-3.5 (EN: 

40, 23.7% KR: 42, 24.9%)이다. 
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  APR에서 Commercial LLM이 다른 모델 그룹에 비해 뚜렷한 

성능 우위를 보였다. Ko-LLM은 일부 모델(solar, ax)에서는 

Global Open-source LLM의 qwen과 유사한 성능을 보이나, 

나머지 모델들은 성능이 저조하다.  

 

4.3 프롬프트 언어에 따른 성능 차이 

  프롬프트 언어에 따른 성능 차이를 FL과 APR 태스크별로 

살펴보면 다음과 같다. 우선 FL에서, hyperclovax를 제외한 

Ko-LLM와 Global Open-source LLM 모두 영어보다 

한국어에서 성능이 떨어지는 반면 Commercial LLM은 성능이 

향상되었다. hyperclovax는 영어와 한국어 모두 14개(8.3%)의 

Correct로 프롬프트 언어에 따른 성능 차이가 없다. 다만 

해당 모델은 영어와 한국어 모두에서 동일한 Correct 수를 

기록하였음에도 불구하고, 전반적인 정답률 자체가 매우 낮다. 

따라서 해당 모델이 프롬프트 언어에 대한 균형 잡힌 특성을 

갖고 있음으로 해석하기에는 한계가 있다. 언어에 따른 성능 

차이가 가장 큰 모델은 exaone이며, 영어에서 54(32.0%)개, 

한국어에서 34개(20.1%)로 20개의 Correct 차이를 보인다. 

그 다음으론 codellama가 47개(27.8%)에서 31개(18.3%)로 

16개의 Correct 차이를 보인다. 이 외의 모델에서는 프롬프트 

언어 간 약 4~11개의 차이를 보인다. 

반면 APR 태스크에서는 FL과 달리, 대부분의 모델이 

영어보다 한국어 프롬프트에서 성능이 높았다. hyperclovax와 

codellama를 제외한 모든 모델이 영어보다 한국어 

프롬프트에서 성능이 향상되었다. hyperclovax는 영어 

3개(1.8%)에서 한국어 1개(0.6%)로 Correct수가 줄어들었고 

codellama도 영어 13개(7.7%), 한국어 7개(4.1%)로 

줄어들었다. APR에서 언어에 따른 성능의 차이가 가장 큰 

모델은 codellama와 midm으로 한국어와 영어의 6개 Correct 

차이를 보인다. 이외의 모델에서는 프롬프트 언어 간 약 

2~5개의 Correct 수 차이를 보이며, FL보다 변화 폭이 작다. 

이는 APR이 FL보다 난이도가 높아 전반적인 정답률이 낮기 

때문에, 프롬프트 언어에 따른 성능 차이가 상대적으로 

완화되어 나타난 것으로 해석할 수 있다. 다만, 한국어 

프롬프트에서 일부 모델의 성능이 향상된 구체적인 원인에 

대해서는 추가적인 분석이 필요하다. 

해당 차이가 통계적으로 유의미한지 확인하기 위해 

McNemar의 test를 한국어 및 영어 프롬프트 결과에 

적용하였다. p-value값이 0.05 미만인 모델은 codellama, 

exaone, gpt-4.1으로, 각각 p-value가 0.0037, 0.0005, 

0.0347이다. 이 중 codellama와 exaone은 영어 프롬프트, 

gpt-4.1은 한국어 프롬프트에서 더 우수한 성능을 보였다. 

 

 대부분의 모델은 FL에서 한국어 프롬프트의 성능이 

저하되는 경향을 보였으나, Commercial LLM은 예외적으로 

한국어 프롬프트에서 더 높은 성능을 보였다. FL과 달리, 

APR에서 대부분의 모델이 영어보다 한국어 프롬프트의 

성능이 향상된다. 

 

5. 논  의 

 

5.1 Metric, 답변 품질 비교 

FL과 APR의 모델 답변에서 코드 태스크 성능 외에 답변 

품질에 관해 공통적으로 나타나는 양상을 발견했다. 이를 

다섯 가지 유형으로 분류하여 정량적 평가를 위한 Metric을 

제안한다. 

l CO (Code Only): 코드만 출력하고 설명은 포함하지 않은 

응답 

l PR (Prompt Repeat): 입력 프롬프트 또는 그 일부를 

반복 출력하는 응답 

l EO (Explanation Only): 코드 없이 설명만 제공하는 응답 

l LE (Language Error): 입력 언어와 다른 언어로 출력된 

응답 

l R (Redundancy): 동일하거나 매우 유사한 응답을 반복 

출력하는 경우 

 

각 오류 유형은 전체 버그 수 대비 비율로 정규화하였다. 

CO는 모델의  답변이 코드만 출력하여 프롬프트의 지시를 잘 

따른 유형의 품질 향상으로 본다. CO는 디버깅 자동화 

파이프라인에서 후처리 없이 바로 적용 및 검증 단계로 

전달할 수 있어 가장 직접적인 활용 가치를 갖는다. 따라서 

CO에 자동화 처리 용이성에 대한 2의 가중치를 곱한다. 

이외의  나머지 유형들은 품질 저하로 본다. 유형마다 전체 

문제에 대해 나누어 답변 품질을 측정하는 Completion 

Quality(CQ)를 계산한다. 전체 버그 수를 N이라 하면, CQ의 

범위는 [-3, 3]이므로 [-1, 1]범위가 될 수 있도록 
!
"을 곱하여 

스케일링하였다. CQ의 값이 1에 가까울수록 답변의 품질이 

높음을, -1에 가까울수록 품질이 낮음을 의미한다.  

  

그림 4는 FL-EN, FL-KR, APR-EN, APR-KR의 네 가지 

태스크에 대해 전체 모델 10개의 답변 품질을 해당 CQ로 

계산한 결과이다. 각 그룹은 점선으로 구분하였다. 

Commercial LLM은 모든 태스크에서 가장 높은 Quality 

Metric 값을 기록하였다. gpt-4.1은 모든 태스크에서 CO 

조건을 만족하여 만점을 기록하였다. gpt-3.5는 APR-EN에서 

1건의 EO를 제외하고 대부분의 응답에서 CO를 만족하여 

전반적으로 안정적인 품질을 보였다. 이는 Commercial LLM이 

프롬프트 이해도와 형식 준수 측면에서 높은 일관성을 

유지함을 보여준다. 

그 다음으로 ax와 solar가 상대적으로 높은 CQ 값을 

기록하였다. ax는 FL-KO에서 0.925, sola 또한 FL에서 EN과 

KO 모두 0.78 이상의 높은 CQ값을 보이나 APR-KO에서 두 

모델 모두 0.473~0.487으로 낮은 값을 기록하였다. midm은 

0.416~0.487으로 언어에 따른 답변 품질 차이가 작다는 것을 

알 수 있다. codellama은 FL-EN이 PR의 빈도가 높아 

0.205로 가장 낮은 값을 보이나 이외의 응답은 
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0.402~0.493의 CQ값을 갖는다. exaone, kanana, hyperclovax, 

qwen은 FL과 APR 태스크의 모든 언어에서 CQ가 대체로 

0.205~0.430 범위에 분포하였으며, 부분 응답(PR)이나 

불필요한 출력(EO)이 자주 나타났다. 

프롬프트 언어에 따른 영향은 모델에 따라 다르게 나타난다. 

FL에서는 한국어 프롬프트 사용 시 CQ가 향상되거나 

저하되는 양상이 공통적으로 보인다. 반면 APR에서는 

kanana와 hyperclovax를 제외한 Ko-LLM의 CQ값이 영어보다 

한국어 프롬프트에서 감소하였다. APR에서 한국어 프롬프트 

응답의 정답률은 영어보다 높은 반면, 답변 품질은 떨어지는 

것을 알 수 있다. 이는 Ko-LLM이 APR과 같이 난이도가 높은 

코드 태스크에서 한국어 프롬프트를 처리할 때 답변 품질이 

상대적으로 저하될 가능성을 시사한다. 

Quality Metric을 통해 모델의 정답률 비교를 넘어 답변 

품질을 평가할 수 있다. 예를 들어, ax모델은 기반 모델 

계열로 알려진 qwen에 비해 모든 태스크의 답변이 

유사하거나 더 높은 Quality Metric 값을 기록한다. 이를 통해 

ax가 기반 모델보다 답변 품질에 개선되었음을 알 수 있다. 

이러한 차이는 단순 정확도 지표만으로는 관찰하기 어렵지만, 

Quality Metric을 통해 구체적으로 드러난다. 따라서 Quality 

Metric은 모델의 언어 적합성 및 답변 품질을 분석하는 데 

유효한 평가 지표임을 입증한다. 

 

5.2 연구의 유효성  

본 연구의 유효성에는 몇 가지 제한점이 존재한다. 우선, 

LLM의 FL 및 APR 성능 평가는 사람이 직접 해석하여 

판단하는 방식으로 이루어졌다. 평가 과정에서 주관이 개입될 

가능성이 있으나, 사전에 정의된 정답과의 비교를 기반으로 

평가하여 주관적 편차를 최소화하였다.  

또한, Defects4J는 공개 벤치마크이므로 일부 LLM이 사전 

학습 과정에서 유사한 코드 패턴이나 버그 수정 사례를 

접했을 가능성이 있다. 본 연구에서는 이러한 데이터 유출 

 
1 https://github.com/sukosmos/LLM-Debugging-Data 

가능성을 완전히 제거하지는 못하였으나, 비교적 최신 버전의 

버그를 사용함으로써 그 영향을 최소화하고자 하였다. 

마지막으로, Defects4J의 single-line 버그만을 사용했기 

때문에 다른 유형의 버그나 언어, 혹은 상업적 소프트웨어 

환경에 본 연구의 결과를 그대로 일반화하는 데에는 한계가 

있다. 더불어 확률적 특성을 지닌 LLM을 대상으로 반복 

실험을 수행하지 않아 일부 결과는 실행마다 변동될 가능성도 

존재한다. 

다만 본 연구는 동일한 조건에서 모델 간 상대적인 디버깅 

성능의 비교에 초점을 두고 있으므로, 평가 결과는 Ko-LLM을 

Global Open-source LLM 및 Commercial LLM과 비교 분석에 

대한 의미 있는 시사점을 제공한다. 

본 연구에서 분석한 LLM의 답변 결과는 GitHub에 

공개되어 확인이 가능하다.1 

 

6. 결  론 

본 연구에서는 한국어 중심으로 개발된 Ko-LLM들의 

디버깅 성능을 FL과 APR의 관점에서 분석하고, 이를 Global 

Open-source LLM 및 Commercial LLM과 비교 평가하였다. 

Defects4J 기반의 Java 버그로 실험한 결과, Ko-LLM의 상위 

모델(ax, solar)은 전반적으로 Global Open-source LLM보다 

높은 성능을 보였으나, Commercial LLM보다는 다소 낮은 

성능을 나타냈다. 이는 Ko-LLM의 상위 모델이 Global Open-

source LLM보다 높은 정답률로 의미 있는 경쟁력을 보여 

디버깅 태스크에서의 활용 가능성을 확인하였다. 

또한 Quality Metric 분석을 통해, Commercial LLM들은 언어 

및 태스크에 관계없이 안정적인 응답 품질을 유지하는 반면 

대부분의 Ko-LLM과 Global Open-source LLM들은 응답 

품질이 상대적으로 낮게 나타났다. 특히 Ko-LLM은 한국어 

데이터 학습 비중이 높은 모델이라 하더라도, 한국어 

프롬프트에서 코드 디버깅 태스크의 응답 품질이 낮아지는 

경우를 확인하였다. 

그림 4. Quality Metric Comparison Across Models and Tasks 
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한편 본 연구는 공개 벤치마크인 Defects4J의 Java single-

line 버그를 대상으로 실험을 수행하였으므로, 일부 LLM이 

사전 학습 과정에서 유사한 코드 패턴이나 버그 수정 사례를 

접했을 가능성이 있다. 이는 비교적 최신 버전의 버그를 실험 

데이터로 사용하여 데이터 유출 가능성의 영향을 축소했다.  

향후 연구에서는 보다 다양한 버그 유형과 멀티라인 수정 

시나리오를 포함하고, 생성된 패치를 실제로 적용하여 테스트 

통과 여부를 평가함으로써 LLM 기반 디버깅 성능을 

종합적으로 분석할 계획이다. 
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본 연구에서는  보안 이벤트 대응을 단순한 탐지 문제가 아닌 운영 의사결정의 신뢰성 문제로 

재정의하고, MCP(Model Context Protocol) 기반 다중 에이전트 오케스트레이션을 통해 

보안·규제·비용 요구사항을 통합적으로 고려하는 클라우드 DevSecOps 대응 워크플로우를 설계한다.  

 

 DevSecOps, Multi-Agent Architecture, MCP Orchestration, Runtime Security Decision, 

Cloud Security Automation, Compliance-aware Response 

 

 

 

    

 

  클라우드 컴퓨팅의 확산으로 인해 보안 이벤트의 규모와 

복잡도는 급격히 증가하고 있다. 현대의 보안운영(SecOps) 

환경에서 탐지 이후의 핵심 과업은 무엇을 언제 어떤 수준으로 

조치할 것인가를 고민하여 서비스의 품질과 신뢰성 문제를 

해결하는 것이다. 많은 조직들이 효율성을 위한 자동화 방식으로 

SOAR(Security Orchestration, Automation, and Response)를 

도입했으나, 실무 현장에서는 보안 관제 요원에 의한 수동 

대응이 선호되는 경우가 많다. 

 

이러한 자동화에 대한 기피 현상은 기술적 부재라기보다는 

다음과 같은 구조적 한계에 기반한다.  

1) 룰 기반 대응의 경직성: 사전에 정의된 정적 조건만으로는 

동적인 클라우드 환경의 예외 상황에 대처하기 어렵다.  

2) 오탐 및 과잉대응으로 인한 손실: 단순한 위협 탐지에 기반한 

자동 차단 시스템은 오탐 발생 시, 서비스 가용성 저해 및 복구 

비용 발생이라는 운영적 손실을 초래한다. 

3) 자동화된 대응 결과에 대한 논리적 근거 부재: 보안 규제 

준수를 위한 감사 대응 및 사고 후 책임 소재 파악이 어렵다. 

 

 

 

이처럼 기존 SOAR는 정형화된 절차에 따라 동작하므로, 새로운 

위협 패턴이나 조직 특유의 비즈니스 컨텍스트를 런타임 환경에 

유연하게 반영하는 데 한계가 있다. 보안 이벤트 대응은 단순한 

기술적 조치를 넘어, 위협 심각도뿐 아니라 규제 준수(예: 접근 

통제, 변경 관리, 감사 추적), 대응에 수반되는 자원 및 인력 

비용(예: 차단으로 인한 서비스 영향, 운영 인력 투입), 그리고 

비즈니스 기회 비용을 함께 고려해야 하는 다차원 복합 의사결정 

문제이다. 그러나 현재의 자동화 체계는 이러한 다양한 제약 

조건을 통합적으로 검토하고 검증할 수 있는 구조를 제공하기 

어렵다 [1]. 

 

  본 논문은 이러한 한계를 극복하기 위해, 보안 이벤트 대응을 

‘탐지 정확도’의 문제가 아닌 ‘운영 의사결정의 신뢰성’ 문제로 

재정의하고, NIST CSF의 대응 체계를 따라 클라우드 
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DevSecOps 관점에서 보안·규제·비용 요구사항을 통합적으로 

다루는 대응 워크플로우를 제안한다 [2]. 이 워크플로우 

내에서는 MCP(Model Context Protocol)를 에이전트 간 통신 

규약 및 책임 분리 인터페이스로 채택하여 시스템의 확장성과 

안전성을 확보한다. 

제안하는 아키텍처의 핵심 설계 원칙은 다음과 같다. 

1) 역할 기반 Agent  Boundary: 보안 분석, 규제 검토, 비용

예측 등으로 에이전트 역할을 세분화하여 복합적인 요구사항을

병렬적으로 처리한다.

2) 판단–실행 분리: LLM 기반 에이전트는 의사결정 및 논리적

근거 생성만을 담당한다.

3) 이벤트 기반 서버리스 오케스트레이션: 클라우드 네이티브

환경에 최적화된 트리거 구조를 통해 확장성과 비용 효율성을

달성한다.

본 연구의 기여는 다음과 같다.

1) 보안·규제·비용 요구사항을 통합하는 DevSecOps 대응

워크플로우 아키텍처를 설계한다.

2) MCP Orchestrator를 중심으로 책임 분리 및 Agent

Boundary 설계 방안을 제시한다.

3) GuardDuty 기반의 IAM 액세스 키 유출 행위 대응 시나리오와

AMI 외부 공개·공유 시도 탐지 시나리오로 워크플로우를

검증한다.

  본 논문의 구성은 다음과 같다. 2장에서는 관련 연구를 

고찰하고, 3장에서는 제안 시스템의 전체 아키텍처와 설계 

철학을 상세히 설명한다. 4장에서는 개별 에이전트의 구체적 

설계와 MCP 활용 방안을 기술하며, 5장에서는 두 개의 

시나리오에 기반한 구현 현황 및 자체 평가 결과를 제시한다. 

마지막으로 6장에서 결론과 향후 연구 방향을 논의한다. 

  

      

  최근 LLM의 추론 능력을 활용하여 복잡한 과업을 여러 전문 

에이전트로 분할하고 협업시키는 멀티 에이전트 프레임워크가 

제안되고 있다 [3]. 특히 역할 기반 협업과 구조화된 산출물을 

강조한 접근은 코드 및 문서 생성 영역에서 그 가능성이 제시된 

바 있다 [4].

보안 도메인에서도 취약점 분석이나 로그 해석에 LLM을 

도입하려는 시도가 늘고 있으나, 보안 운영에는 단순한 텍스트 

생성만이 아닌, 높은 수준의 신뢰성이 요구된다. 특히 클라우드 

환경에서는 잘못된 자동화 조치가 서비스 전체 장애로 이어질 수 

있으므로, 에이전트의 권한/책임 경계에 대한 명확한 설계와 

감사 추적 기능이 필수적이다. 

    

상용 SOAR(Security Orchestration, Automation, and 

Response) 플랫폼은 탐지된 보안 이벤트에 대해 사전에 정의된 

플레이북(workflow)을 실행함으로써 대응 절차를 자동화한다. 

플레이북은 경보 유형과 조건에 따라 계정 비활성화, 자원 격리, 

티켓 생성 등 일련의 조치를 순차적으로 수행하도록 구성된다. 

예를 들어, 클라우드 환경에서 IAM 자격 증명(IAM Access 

Key)이 비정상적인 액세스 패턴을 보인다고 탐지되었을 때, 

SOAR 플레이북이 설정되어 있다면 “비정상 탐지 → 즉시 자격 

증명 비활성화”와 같은 대응 절차가 자동으로 실행될 수 있다. 

이는 SOAR가 정적 조건과 사전에 매핑된 조치에 따라 

동작하도록 설계되었기 때문이다. 

그러나 실제 운영 환경에서는 해당 IAM 자격 증명이 예정된 

테스트나 배포 과정에서 일시적으로 높은 권한을 사용하는 정상 

상황일 수 있다. 이 경우 자동화된 자격 증명 비활성화는 테스트 

또는 배포 실패, 서비스 중단, 운영 리스크 증가로 이어질 수 

있다. 이러한 상황은 플레이북이 설계될 당시 가정한 운영 

맥락과 실제 런타임 환경이 달라졌을 때 발생하는 과잉 

대응(overreaction)의 전형적인 사례를 보여준다. 

이처럼 SOAR 기반 자동화는 탐지 이후의 대응을 사전에 정의된 

실행 절차로 처리하기 때문에, 운영 맥락의 변화나 상황별 

판단을 충분히 반영하지 못하고, 결과적으로 대응의 적절성이 

저하될 수 있다. 

    

  MCP는 모델/도구 간 상호운용을 위해 JSON 기반 메시지 

구조와 호출 규약을 제공한다. 이 표준화된 호출 규약을 

활용하면, Orchestrator가 각 에이전트의 접근 권한을 강제하는 

구조를 구축할 수 있다. 본 논문에서는 MCP를 ‘에이전트 간 

통신 중재 및 책임 분리 인터페이스’로 재해석하여 모든 

에이전트 통신을 Orchestrator가 중재하도록 설계한다. 이를 

통해 얻는 이점은 다음과 같다.  

1) 통신 추적성: 모든 에이전트 간 교신 내용이 표준화된

형식으로 기록되어 보안 감사가 용이해진다.

2) 결합도 감소: 인터페이스를 준수하기만 하면 시스템 확장이

가능하다.

3) Agent Boundary: 특정 에이전트에서 오류가 발생하거나

비정상적인 권한 요청이 시도되더라도, 전체 대응 워크플로우의

안정성은 보장된다.

나아가 제안하는 MCP 기반 구조는 보안 정책 및 규정 가이드를 

실시간으로 참조하는 RAG 및 대응에 소모하는 비용 측정을 위해 

실시간 인프라 단가를 분석하는 FinOps 에이전트 등을 

활용하여, 다양한 DevSecOps 요구사항을 수용할 수 있는 높은 

확장성을 지니고 있다 [5].  

최근 LLM 기반 시스템은 에이전트를 오케스트레이션하여 

QoS를 최적화하는 방향으로 확장되고 있다. 본 논문은 이러한 

접근과 달리, MCP Orchestrator를 정책 집행 노드로 활용하여 

Agent Boundary와 판단–실행 분리를 적용함으로써 보안 운영 

환경에서의 과잉 대응과 실행 리스크를 구조적으로 억제한다. 
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  제안 시스템은 AWS 클라우드 환경에서 발생하는 보안 

이벤트를 입력으로 받아, Event → Analysis → Decision → 

Runtime(Controlled Execution)의 4단계 파이프라인으로 

동작한다. 이 파이프라인은 탐지, 분석, 의사결정, 실행 단계를 

명확히 분리하여 보안 자동화 과정에서 발생할 수 있는 오류 

전파와 오탐 대응 위험을 최소화하도록 설계되었다. 

그림1.  다중 에이전트 기반 DevSecOps 대응 클라우드 서비스 

아키텍처(Serverless 구조) (약어: MCP=Model Context 

Protocol, FinOps=Financial Operations) 

 

본 시스템은 GuardDuty Finding과 CloudTrail 기반 보안 

이벤트를 EventBridge로 수집·라우팅하고, MCP Orchestrator가 

에이전트 호출 순서 및 메시지 스키마 검증을 통해 파이프라인을 

제어한다. Runtime Agent는 이벤트 맥락을 분석하며, 

Regulation Agent는 규제 기반 대응 시나리오(Level 1–3)를 

생성하고, Finance Agent는 시나리오별 비용 영향을 산정한다. 

각 구성요소는 AWS Lambda에서 동작하며 사전 정의된 IAM 

Role에 따라 최소 권한으로 AWS API에 접근한다. 

 

그림2.  MCP Orchestrator 기반 멀티 에이전트 보안 대응 흐름 

아키텍처 

 

   

 

  MCP Orchestrator는 제안 시스템의 핵심 제어 계층으로서, 

모든 요청과 응답을 단일 진입점으로 수렴시킨다. 본 시스템에서 

Orchestrator는 단순한 이벤트 전달자가 아니라, 보안 정책 

집행과 에이전트 간 역할 및 실행 경계를 강제하는 중앙 제어 

노드로 설계되었다. 이를 통해 에이전트 간 상호작용은 중앙에서 

통제되며, 시스템 전반의 일관성과 안정성이 유지된다. 

  본 연구의 중요한 차별점은 보안 대응과 비용·서비스 가용성 

간의 우선순위 충돌을 런타임 중재(arbitration) 알고리즘으로 

해결하려 하지 않고, 해당 충돌이 발생하지 않도록 대응 단계를 

구조적으로 분리한 오케스트레이션 설계를 채택했다는 점이다. 

Orchestrator는 기본 대응(Level 1)과 운영 영향이 수반되는 

고강도 대응 (Level 2–3)을 명확히 구분함으로써, 자동화 

단계에서 보안과 비용을 비교·판단하는 상황이 발생하지 않도록 

한다. Level 1 대응은 로깅, 태깅, 알림, 스냅샷 생성과 같이 

서비스 가용성이나 비용 판단을 요구하지 않는 최소 조치로 

한정되어 Orchestrator의 통제 하에 자동 실행된다. 리소스 

차단이나 권한 회수와 같이 운영 영향이 수반되는 대응은 

Regulation Agent가 생성한 Level 2–3 플레이북 형태로만 

정의되며, Orchestrator는 이를 즉시 실행 대상이 아닌 의사결정 

후보로 취급한다. 
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Orchestrator는 Regulation Agent가 제시한 규제 근거 기반 

플레이북과 Finance Agent가 산정한 시나리오별 비용 정보를 

함께 사용자에게 제시하고, 명시적인 승인 절차가 완료된 

경우에만 Runtime Agent의 결정론적 실행 모듈을 호출한다. 

이와 같은 단계적 실행 통제 구조를 통해 본 시스템은 보안상 

즉시 수행이 요구되는 조치는 자동화하되, 비용 및 서비스 

가용성 판단이 개입되는 대응은 항상 인간 의사결정 하에 

수행되도록 보장한다. 

한편, Orchestrator는 각 에이전트의 입력과 출력에 대해 사전에 

정의된 JSON 스키마를 기반으로 형식 검증을 수행함으로써, 

구조적 오류나 비정상 응답이 파이프라인에 유입되는 것을 

차단한다. 또한 대응 단계에서는 자동 실행과 수동 승인 모드를 

구분하여 적용할 수 있도록 설계되어, 정책에 따라 사용자 개입 

여부를 유연하게 결정할 수 있다. 모든 에이전트 호출 과정과 

실행 결과는 중앙 로그로 기록되며, 이를 통해 사후 분석과 

감사(audit)가 가능하도록 한다. 

 

       

  제안 시스템에서 모든 에이전트는 명확한 입력/출력 

계약(interface contract) 을 JSON 형태로 정의한다. 이를 통해 

에이전트 간 데이터 교환은 구조화되고, 의미적으로 해석 가능한 

상태로 유지된다. 

예를 들어 Runtime Agent의 출력은 다음과 같은 구조를 가진다. 

{ 
  event_id, 
  classification, 
  recommended_actions[], 
  rationale, 
  risk_score, 
  compliance_flags 
} 

이와 같이 분석 결과는 대응 추천, 규제 관련 플래그, 비용 영향 

정보 등을 포함하여 구조화된다. Orchestrator는 각 단계에서 

스키마 검증과 정책 검사를 수행하여, 정의되지 않은 필드나 

허용되지 않은 요청이 실행 단계로 전달되지 않도록 차단한다. 

이를 통해 데이터 흐름은 단방향·단계적 구조를 유지하며, 

시스템의 추적 가능성과 안정성을 동시에 확보한다. 

      

  LLM 기반 분석은 보안 이벤트의 맥락을 이해하고 대응 

시나리오를 생성하는 데 강점을 가지지만, 출력 결과의 확정성과 

결정론적 동작을 보장하기 어렵다. 이러한 특성을 고려하여 제안 

시스템은 판단 단계(analysis/decision)와 실행 단계(action)를 

명확히 분리하는 Agent Boundary 설계를 채택한다. 

Runtime Agent는 보안 이벤트를 분석하여 위험 수준과 대응 

시나리오를 ‘추천’하는 역할만 수행하며, 실제 인프라 변경에 

대한 권한은 가지지 않는다. 실제 클라우드 자원 변경은 

Runtime Agent 내부의 결정론적 실행 모듈(deterministic 

execution module) 에서 수행되며, 해당 모듈은 사전에 정의된 

작업 카탈로그(whitelisted action catalog)에 포함된 작업만을 

실행할 수 있다. 예를 들어 실행 모듈은 Security Group 또는 

NACL 규칙의 추가·삭제, EC2 AMI 공유 권한 회수, 특정 

리소스의 임시 격리 조치와 같이 명시적으로 허용된 작업만 

수행한다. 

허용된 작업 범위를 벗어나는 요청은 MCP Orchestrator 

단계에서 사전에 차단되며, 실행 단계로 전달되지 않는다. 또한 

에이전트별로 IAM 권한을 명확히 분리함으로써, 특정 

에이전트가 침해되거나 오동작하더라도 피해 범위는 해당 

역할로 국한된다. 

이와 같은 판단–실행 분리와 Agent Boundary 설계는 LLM기반 

자동화 시스템에서 발생할 수 있는 오판에 따른 즉각적인 자원 

변경 위험을 구조적으로 차단하며, 시스템의 보안성과 운영 

신뢰성을 동시에 확보한다. 

 

    

  본 장에서는 제안 시스템을 구성하는 세 가지 핵심 에이전트인 

Runtime Agent, Regulation Agent, Finance Agent의 상세 

설계를 설명한다. 각 에이전트는 분석, 규제 판단, 비용 평가라는 

명확히 분리된 책임을 가지며, 모든 상호작용은 MCP 기반 

오케스트레이션 계층을 통해 조정된다. 이러한 구조는 자동화된 

보안 대응 과정에서의 과잉 대응을 방지하고, 규제 준수와 비용 

효율성을 함께 고려한 신뢰 가능한 DevSecOps 의사결정을 

지원하기 위한 것이다. 

  본 논문에서 에이전트는 단순한 LLM 호출 단위가 아니라, 규칙 

기반 로직, 외부 도구 호출, 정책 및 데이터 소스를 결합한 

시스템 수준 구성요소로 정의된다. LLM은 에이전트 내부에서 

추론을 보조하는 수단 중 하나일 뿐이며, 의사결정과 실행의 

주체는 MCP 오케스트레이션과 정책 계층에 의해 통제된다. 

 

       

 

  Runtime Agent는 클라우드 환경에서 발생하는 보안 이벤트를 

수신하여 전체 대응 워크플로우를 시작하고, 최종적으로 

사용자가 선택한 대응 시나리오를 실제 클라우드 리소스 제어로 

연결하는 중심 에이전트이다. 본 에이전트는 보안 이벤트 분석과 

실행 제어를 담당하되, 규제 해석 및 비용 산정은 각각 

Regulation Agent와 Finance Agent에 위임한다. 

Runtime Agent의 처리 단계는 다음과 같다. 

   

GuardDuty Finding 및 CloudTrail 이벤트를 수신한 후, 서로 

다른 형식의 이벤트를 사전에 정의된 공통 이벤트 스키마로 

변환한다. 이를 통해 이벤트 소스에 독립적인 분석이 가능하도록 

하며, 이후 단계에서 일관된 처리 흐름을 유지한다. 
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정규화된 이벤트를 기준으로 대상 리소스의 운영 맥락을 

수집한다. 이 과정에서는 EC2 또는 AMI와 같은 리소스의 태그 

정보, 계정 및 환경 구분(Prod/Dev), 네트워크 설정, 최근 설정 

변경 이력, 과거 유사 이벤트 발생 여부 등이 함께 고려된다. 

이러한 맥락 정보는 단순 탐지 이벤트와 실제 보안 사고 

가능성을 구분하는 데 활용된다. 

    

Runtime Agent는 수집된 이벤트 정보와 운영 맥락을 

Regulation Agent에 전달하여, 해당 이벤트가 어떤 규제 및 내부 

정책과 연관되는지에 대한 판단을 요청한다. 이 단계에서 

Runtime Agent는 규제 해석을 직접 수행하지 않으며, 규제 관련 

판단을 전적으로 Regulation Agent에 위임한다. 

    

Regulation Agent로부터 생성된 대응 시나리오(Level 1, Level 

2, Level 3)를 입력으로 받아, Runtime Agent는 Finance 

Agent에 각 시나리오에 대한 비용 평가를 요청한다. 이를 통해 

보안 대응이 클라우드 비용에 미치는 영향을 사전에 파악할 수 

있도록 한다. 

         

Runtime Agent는 Regulation Agent가 제시한 규제 근거와 

Finance Agent가 산정한 비용 정보를 종합하여, 사용자에게 

대응 시나리오를 제시한다. 이때 규제상 즉각 수행이 요구되는 

기본 대응(Level 1) 은 자동으로 실행되며, 서비스 영향이나 추가 

비용이 수반되는 대응(Level 2, Level 3)은 사용자 의사결정을 

기다린다. 

       

사용자가 선택한 대응 시나리오는 Runtime Agent로 다시 

전달되며, Runtime Agent는 boto3 기반 API 호출을 통해 해당 

시나리오에 정의된 클라우드 리소스 제어 작업을 수행한다. 실행 

결과는 로깅 및 감사 추적을 위해 기록되어 이후 분석과 검증에 

활용된다. 

        
 
  Regulation Agent는 보안 이벤트를 규제 문서 및 내부 정책과 

매핑하여, 규제 근거 기반 대응 시나리오를 생성하는 역할을 

수행한다. 본 에이전트는 실행 권한을 가지지 않으며, 규제 

해석과 대응 수준 정의에만 집중한다. 
Regulation Agent는 먼저 Runtime Agent로부터 전달받은 

이벤트를 이벤트 카테고리 단위로 분류한다. 이후 ISMS-P, 

ISO/IEC 27001, 클라우드 보안 가이드라인 등 사전에 정리된 

규제 문서를 참조하여, 해당 이벤트 카테고리와 연관된 규제 

조항을 식별한다 [2]. 
식별된 규제 조항을 근거로 Regulation Agent는 대응 강도에 

따라 세 가지 수준(Level 1, Level 2, Level 3) 의 대응 

시나리오를 생성한다. Level 1은 규제 준수를 위해 최소한으로 

요구되는 기본 대응으로 정의되며, Level 2와 Level 3은 

점진적으로 강도가 높아지는 리소스 관리 대응을 포함한다. 각 

수준의 시나리오에는 적용 근거가 되는 규제 조항과 함께 

권장되는 리소스 조치가 명시된다. 

 
이러한 설계를 통해 Regulation Agent는 추상적인 규제 문서를 

실행 이전 단계에서 활용 가능한 대응 시나리오로 변환하며, 

이후 의사결정 과정에서 설명 가능성을 제공한다. 

 
       

 
  Finance Agent는 Regulation Agent가 생성한 각 대응 

시나리오에 대해 클라우드 비용 관점의 영향을 평가하는 역할을 

수행한다. 본 에이전트의 목적은 보안 대응이 비용 측면에서 

합리적인지에 대한 의사결정 근거를 제공하는 데 있으며, 보안 

정책이나 대응 수준을 변경하지 않는다. 

Finance Agent는 각 대응 시나리오를 입력으로 받아 AWS 

Pricing API를 호출함으로써, 추가 리소스 사용이나 네트워크 

제어로 인해 발생할 수 있는 예상 과금 비용을 산정한다. 이 

과정에서는 EC2, 네트워크 트래픽, 보안 구성 변경 등 

시나리오별 비용 발생 요소가 함께 고려된다. 

비용 평가 결과는 정확한 금액 산출보다는, 시나리오 간 비교가 

가능하도록 정리된 비용 정보와 비용 증가 원인 설명 형태로 

반환된다. 이러한 정보는 Runtime Agent를 통해 사용자에게 

전달되며, 보안 수준과 비용 간의 trade-off를 명확히 인식할 수 

있도록 한다. 

      
  본 절에서는 앞서 설명한 Runtime Agent, Regulation Agent, 

Finance Agent 간의 상호작용 구조와 이를 실제 클라우드 

환경에서 구현 가능한 형태로 배치하는 방식을 설명한다. 이벤트 

분석, 규제 판단, 비용 평가, 실행을 단일 에이전트에 집중시키지 

않고 단계적으로 분리함으로써 자동화 과정에서의 위험을 

최소화하고, 사용자 개입이 필요한 지점을 명확히 정의한다. 

보안 이벤트가 발생하면 Runtime Agent가 이를 수신하여 전체 

워크플로우를 시작하고, 수집된 이벤트와 운영 맥락을 기반으로 

Regulation Agent와 Finance Agent를 순차적으로 호출한다. 

Regulation Agent는 규제 문서에 근거하여 대응 강도가 상이한 

세 단계(Level 1–3)의 대응 시나리오를 생성하며, Finance 

Agent는 각 시나리오에 대한 비용 영향을 비교 가능한 형태로 

산정한다. 

Runtime Agent는 규제 근거와 비용 정보를 종합하여 

사용자에게 대응 시나리오를 제시한다. 이때 규제 준수를 위해 

즉각 수행이 요구되는 기본 대응(Level 1)은 자동으로 실행되며, 

서비스 가용성이나 추가 비용이 수반되는 대응(Level 2, Level 

3)은 사용자 승인 이후에만 실행된다. 이러한 단계적 실행 

구조를 통해 본 시스템은 자동화와 인간 의사결정 간의 균형을 

유지한다. 

설계 컴포넌트 실행 환경 사용 기술 
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Runtime Agent AWS Lambda Python, boto3 

Regulation Agent AWS Lambda Python, RAG 

Finance Agent AWS Lambda AWS Pricing API 

Event Routing EventBridge Rule-based trigger 

표 1. 설계 컴포넌트와 실행 환경 매핑 

표 1에서 보듯이, 각 에이전트는 서버리스 환경에서 독립적인 

실행 단위로 배치 가능하며, 이벤트 라우팅은 EventBridge를 

통해 관리된다. 이러한 구성은 추가적인 인프라 관리 부담 없이 

기존 클라우드 서비스 위에서 제안한 다중 에이전트 구조를 

구현할 수 있음을 보여준다. 

      

  본 장에서는 2.2절에서 논의한 정적 플레이북 기반 SOAR의 

한계, 특히 운영 맥락 변화에 따른 과잉 대응 문제를 실제 

클라우드 운영 시나리오에서 어떻게 완화하는지를 중심으로, 

제안 워크플로우의 동작을 시나리오 기반으로 검증한다. 이를 

위해 IAM Access Key 유출 대응과 AMI 외부 공개·공유 시도 

탐지라는 두 가지 대표적 상황을 선정하였다. 

본 연구의 목적은 모델 정확도 경쟁이 아니라, 신뢰 가능한 

의사결정·안전한 실행·감사 가능성을 갖춘 워크플로우 설계의 

타당성을 보이는 데 있다.  

 

          

 

 

그림 4. IAM Access Key 유출 탐지 시나리오에 대한 의사결정 

워크플로우 

1) 위협 탐지: 외부 IP에서 비정상적인 API 호출이 발생하거나 

권한 밖의 자원에 접근을 시도할 경우, 

GuardDuty는"UnauthorizedAccess:IAMUser/AnomalousBehav

ior" 유형의 위협 이벤트를 탐지한다.  
2) 이벤트 라우팅: Amazon EventBridge는 탐지된 위협 

이벤트를 수집하여 사전에 정의된 규칙에 따라 이를 MCP 

Orchestrator로 전달한다 [8].  
3) 컨텍스트 분석 및 의사결정: Runtime Agent는 유출된 키의 

권한 범위, 최근 사용 이력, 연관 리소스의 중요도를 분석한다. 

Regulation Agent는 ISMS-P 등 보안 규제 준수 여부를 

확인하고, Finance Agent는 해당 키와 연결된 서비스 중단 시 

발생할 비즈니스 손실 비용을 산출한다.  
4) 대응 옵션 생성 및 실행: 분석 결과를 바탕으로 a) 액세스 키 

즉시 비활성화, b) 자격 증명 회전(Rotation), c) 특정 리전 및 

서비스로 권한 일시 제한, d) 단순 모니터링 강화 등 단계별 대응 

옵션을 생성한다. 관리자가 최종 옵션을 승인하면 실행 모듈이 

조치를 수행하고 결과를 기록한다. 

이 시나리오는 단순한 차단을 넘어 "업무 연속성과 보안 강도" 

사이의 균형을 맞춘 의사결정을 지원하며, 특히 유출된 키가 

개발 환경인지 운영 환경인지에 따른 차등적 대응이 가능하다는 

장점이 있다. 

       

 

 

 

그림 5. AMI 권한 변경 이벤트에 대한 시나리오 기반 의사결정 

워크플로우 

 

  AMI 권한 변경은 민감 설정 및 인증정보가 포함된 이미지가 

외부로 확산될 수 있는 대표적 리스크이다. CloudTrail은 

ModifyImageAttribute 호출을 기록하며, EventBridge는 해당 

이벤트 패턴(launchPermission 변경 등)을 탐지해 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

241



Orchestrator로 전달한다 [6,7,8]. 
 

Runtime Agent는 1) 전체 공개(all) 여부, 2) 특정 계정 공유 

대상(Account ID), 3) AMI 태그/설명 기반 민감도(예: prod, 

confidential), 4) 호출 주체(IAM principal) 및 실행 시간/출처 IP 

등 맥락을 종합해 위험도를 산정하고 대응 옵션을 생성한다. 

대응은 a) 즉시 권한 회수(공개 취소/공유 제거), b) 임시 격리 후 

승인 요청, c) 알림만 등으로 분기되며, Runtime Agent는 

승인된 작업만 수행한다. 이로써 단순 탐지에 그치지 않고 ‘업무 

연속성 vs 유출 위험’의 균형을 구조화된 의사결정으로 

지원한다. 

 

      
 

  본 절에서는 제안하는 MCP 기반 멀티 에이전트 아키텍처의 

효용성을 검증하기 위해 기존 방식들과의 비교 실험을 수행한다. 

본 연구의 평가 범위는 실제 클라우드 자원 제어(boto3 기반 

실행) 이전 단계인 런타임 의사결정 및 대응 계획 생성 단계로 

한정하였다. 이는 실행 성공률이라는 인프라 종속적 지표 대신, 

시스템의 지능적 판단 품질과 출력 안정성을 정량적으로 

평가하기 위함이다. 

     
 
  실험은 12개의 대표적인 GuardDuty 위협 시나리오를 

대상으로 수행되었다. 각 시나리오는 전문가에 의해 정답 

라벨(Ground Truth)이 부여되었으며, 여기에는 

위험도(Severity), 권장 대응 유형(Action Type), 금지된 대응 

행위(Forbidden Actions)가 포함된다. 시스템의 출력은 "Action 

Plan JSON" 표준 스키마를 따르도록 강제하여 품질 평가의 

객관성을 확보하였다. 

비교 대상은 다음과 같이 세 그룹으로 정의한다. 
   이벤트 필드에 따른 사전 정의된 규칙 

세트를 사용하는 전통적인 자동화 방식이다. 
   단일 LLM(Gemini 1.5 Pro) 호출을 통해 

분석과 계획 생성을 한 번에 수행하는 방식이다. 
   본 논문에서 제안하는 오케스트레이터와 

전문 에이전트(Runtime, Regulation, Finance) 간의 협업 

방식이다. 

  
 
실험의 평가는 성능, 품질, 안정성의 세 가지 관점에서 

이루어진다. 
    

- E2E Latency: 입력 이벤트 수신부터 최종 JSON 출력까지 

소요되는 전체 시간이다. 
- MTTR : 각 시나리오의 평균 응답 시간 

    
- Severity Accuracy: 판정된 위협 수준이 전문가 라벨과 

일치하는 비율이다. 

- Action Type Accuracy: 제안된 대응 유형이 허용 범위 내에 

존재하는 비율이다. 
정확도는 전체 시나리오 수 N에 대한 전문가 라벨 와 시스템 𝑦

𝑖

출력 의 일치 여부를 기준으로 계산한다. 𝑦
^

𝑖

- Over/Under-response Rate: 실제 위협보다 과하거나 

부족하게 대응한 비율을 측정하여 운영 리스크를 평가한다. 
    

- JSON Valid Rate: 출력값이 유효한 JSON 형식으로 

파싱되는지 확인한다. 
- Schema Compliance: "action_plan" 내 필수 필드(target, 

method 등)의 누락 여부를 검증한다. 

     
 
실험 결과, 제안 시스템인 M2는 런타임 성능과 의사결정 품질 

사이에서 최적의 균형을 보여주었다(표 2 참조). 

지표 R0 L1 M2 

평균 응답 시간(sec) 0.45 4.12 8.65 

위험도 판단 정확도(%)  66.7 83.3 97.2 

조치 유형 정확(%) 58.3 75.0 94.4 

과잉 대응률 (%) 25.0 16.7 2.8 

JSON 규격 준수율 (%) 100.0 91.7 100.0 

표 2. 실험 그룹별 정량적 성능 비교 결과(R0: Rule-based, L1: 

Single-LLM, M2: Multi-Agent) 

표 2의 데이터를 분석한 결과, 제안하는 멀티 에이전트 

구조(M2)는 규칙 기반(R0) 방식보다 정확도 측면에서 약 30% 

이상의 월등한 성능 향상을 보였다. 특히 단일 LLM(L1) 

방식에서 빈번히 발생하던 과잉 대응 문제를 2.8%까지 낮춘 

것은, 규제(Regulation) 및 비용(FinOps) 에이전트가 교차 

검증을 수행함으로써 불필요한 서비스 중단 리스크를 억제했기 

때문으로 분석된다. 응답 시간은 다소 증가하였으나, 수 분 이상 

소요되는 관리자의 수동 대응 시간을 고려할 때 실무 적용이 

충분히 가능한 수준이다. 

      
 

  제안 워크플로우는 1) 불필요한 대응 감소(환경/자산 맥락 

반영), 2) 판단 일관성 향상(정책 질의 기반), 3) 의사결정 

투명성(근거·정책 참조), 4) 감사 추적성(오케스트레이션 로그 + 

CloudTrail을 제공한다 [6]. 이는 ‘자동화가 있는데도 신뢰하지 

못하는’ 문제를 설계 차원에서 완화한다. 
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  본 논문은 클라우드 보안 이벤트 대응을 단순 탐지 중심이 

아니라 운영 의사결정의 신뢰성 문제로 재정의하고, 

보안·규제·비용 요구사항을 통합적으로 고려하는 DevSecOps 

대응 워크플로우를 설계하였다. MCP Orchestrator 중심의 통신 

구조와 역할 기반 에이전트 경계(Agent Boundary), 판단과 

실행의 분리를 통해 자동화의 안전성·설명 가능성·감사 가능성을 

확보하였다(그림 1 참조). 특히 비교 실험을 통해 제안 시스템이 

기존 규칙 기반 방식 대비 약 30% 높은 의사결정 정확도를 

보임을 입증하였다. 

  향후 과제는 다음과 같다. 1) Regulation 에이전트의 규제 문서 

구조화 및 보안 이벤트–조항 매핑 로직의 정량적 평가, 2) 복합 

대응 시나리오를 위한 롤백 및 다단계 플레이북의 안전한 

실행(Transaction/Saga 패턴) 지원, 3) 실제 운영 데이터 기반의 

장기간 실험을 통한 오탐 및 과잉 대응 비용에 대한 정밀 평가, 

4) 사람과 자동화의 협업을 위한 사용자 인터페이스 및 승인 

정책의 고도화이다  
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요   약 

 정적 분석 도구(SAST)는 보안 취약점 탐지에 널리 활용되고 있으나, 탐지 이후의 패치 생성 및 적용 과

정은 여전히 개발자의 수작업에 크게 의존하고 있다. 본 연구는 이러한 문제를 해결하기 위해 취약점 탐

지부터 패치 생성 및 적용, Pull Request 생성에 이르는 전 과정을 자동화한 End-to-End 보안 패치 파

이프라인 AutoFiC을 제안한다. AutoFiC은 XML 기반 구조화 컨텍스트와 Annotation 기반 위치 강조 기법

을 결합하여, AST 기반의 복잡한 구문 분석을 직접 활용하지 않고도 취약점의 위치와 유형 정보를 LLM

에 효과적으로 전달한다. 이를 통해 수정 범위를 취약 구간으로 명확히 한정함으로써, 패치 부작용을 최

소화하는 경량 자동 패치 구조를 구현하였다. 91개의 실제 GitHub 오픈소스 저장소를 대상으로 한 실험 

결과, AutoFiC은 94.5%의 파이프라인 성공률과 90.0%의 취약점 해결률을 기록하였다. 

 

1. 서  론 

 최근 소프트웨어 시스템의 규모와 복잡도가 증가함에 

따라, 소스 코드 수준에서의 보안 취약점 관리가 점점 

더 중요한 과제로 부각되고 있다. 이러한 취약점을 

사전에 식별하기 위해 정적 분석 도구(SAST)가 다양한 

개발 환경에서 활용되고 있으나, 탐지 이후의 수정 

과정은 여전히 개발자의 수작업에 크게 의존하고 있다. 

이로 인해 취약점 탐지와 실제 수정 사이에는 상당한 

시간적·운영적 간극이 존재하며, 이를 완화하기 위한 

자동화된 보안 패치 기법에 대한 요구가 지속적으로 

증가하고 있다[1]. 

이러한 배경에서 자동 프로그램 수리(Automated 

Program Repair, APR) 및 대규모 언어 모델(LLM)을 

활용한 자동 패치 접근이 제안되었다. 기존 연구들은 

LLM을 활용하여 취약 코드를 자동으로 수정할 수 있는 

가능성을 보여주었으나, 수정 범위가 필요 이상으로 

확대되거나 코드의 구조적 맥락을 충분히 반영하지 

못하는 한계 또한 함께 논의되어 왔다. 이를 보완하기 

위한 다양한 접근이 제안되었음에도 불구하고, 실제 

개발 환경에서 활용 가능한 경량 자동 패치 

파이프라인에 대해서는 여전히 명확한 설계가 정립되지 

않은 실정이다[2]. 

 본 연구는 이러한 공백을 해소하기 위해, SAST 

결과로부터 생성한 XML 기반 구조화 컨텍스트와 

Annotation 기반 위치 강조 기법을 결합한 LLM 기반 

자동 패치 파이프라인을 제안한다. 제안 기법은 AST 

기반 분석을 직접 활용하지 않으면서도 취약점의 

위치와 유형을 구조적으로 전달함으로써 LLM의 

이해도를 향상시키고, 수정 범위를 취약 구간 중심으로 

제한하여 패치 부작용을 최소화한다. 또한 취약점 

탐지부터 패치 생성 및 적용, Pull Request 생성까지 

이어지는 End-to-End 자동화를 구현함으로써, 실제 

개발 워크플로우에 적용 가능한 경량 자동 보안 패치 

파이프라인의 설계 방향을 제시한다.  

 

2. 관련 연구  

 자동 프로그램 수리(Automated Program Repair, APR) 

연구는 규칙 기반 패치 생성 기법을 출발점으로 하여, 

검색 기반 및 학습 기반 접근법으로 점차 확장되어 

왔다. 기존 연구들은 코드 결함에 대해 자동으로 수정 

코드를 생성할 수 있음을 실험적으로 입증하며, 다양한 

결함 유형에 대한 적용 가능성을 제시하였다[3]. 

그러나 대다수 연구는 제한된 코드 범위나 단일 결함을 

대상으로 수행되었으며, 실험 환경과 평가 지표가 연구 

목적에 따라 상이하게 설정되어 실제 소프트웨어 개발 

환경으로의 일반화에는 한계가 존재한다. 

 최근에는 이러한 한계를 극복하기 위해 대규모 언어 

모델(LLM)을 APR에 적용하려는 시도가 활발히 
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이루어지고 있다. LLM 기반 접근법은 코드와 자연어의 

문맥을 동시에 학습한 모델을 활용함으로써, 기존 규칙 

기반 기법 대비 보다 유연하고 다양한 수정 코드를 

생성할 수 있음을 보였다[4]. 이를 통해 LLM이 자동 

패치 생성에 활용될 수 있음이 실증적으로 

확인되었으나, 프롬프트에 제공되는 코드의 단위, 수정 

범위의 설정 방식, 그리고 생성된 패치에 대한 검증 

전략은 연구마다 상이하게 설계되어 표준화된 방법론이 

부재한 실정이다. 이러한 설계 차이는 패치의 안정성과 

재현성 측면에서 추가적인 고려가 필요함을 시사한다. 

 한편, 자동 패치 생성의 전제 조건인 결함 식별 

단계에서는 정적 분석 도구(SAST)가 취약점 위치와 

유형을 제공하는 핵심적인 정보원으로 활용되어 왔다. 

정적 분석 결과를 기반으로 경고를 분류하거나 

우선순위를 결정하고, 수정 후보 위치를 식별하기 위한 

다양한 기법이 제안되었으며[5], 일부 APR 연구에서는 

이러한 분석 결과를 패치 생성 단계의 입력으로 직접 

활용하기도 한다. 그러나 정적 분석 도구는 대량의 

경고를 생성하는 특성으로 인해, 실제 수정으로 이어질 

수 있는 정보를 효과적으로 선별·활용하는 데 한계를 

보인다. 

 자동 프로그램 수리(APR) 전반을 대상으로 한 체계적 

문헌 분석 연구에 따르면, 패치 생성 기법 자체에 대한 

연구는 지속적으로 발전해온 반면, 생성된 패치를 실제 

코드베이스에 적용하고 개발 워크플로우와 연계하는 

과정은 연구마다 서로 다른 가정과 설계를 채택하고 

있다[6]. 즉, 결함 탐지, 패치 생성 및 적용, 개발 

프로세스 연계를 하나의 일관된 흐름으로 통합하려는 

접근은 아직 정형화되지 않았다. 

 종합하면, 기존 연구들은 자동 패치 생성 알고리즘의 

고도화, LLM의 적용 가능성, 정적 분석 결과의 활용 등 

개별 요소 기술을 중심으로 발전해왔다. 그러나 취약점 

탐지부터 수정 적용, 검증, 그리고 개발 워크플로우 

연계까지를 포괄하는 체계적인 자동화 구조에 대해서는 

연구마다 상이한 설계와 가정을 채택하고 있다. 본 

연구는 이러한 선행 연구들을 바탕으로, 자동 보안 패치 

파이프라인 설계에 대한 하나의 통합적 관점을 

제시한다.  

 

3. 제안 기법  

3.1 시스템 아키텍처  

그림 1은 제안하는 AutoFiC 시스템의 전체 

아키텍처를 나타낸다. AutoFiC은 GitHub 저장소 Fork 

및 Clone, 다중 SAST 기반 정적 분석, LLM 프롬프트 

구성 및 패치 코드 생성, Pull Request 자동화, 대시보드 

시각화로 이어지는 계층형 구조를 따른다. 전체 

시스템은 Python 기반 CLI(Command Line Interface) 

도구로 구현되어, 로컬 환경에서 일관되게 활용할 수 

있다.  

입력 계층(Input Layer)에서는 사용자로부터 분석 

대상 GitHub 저장소의 URL과 SAST 도구 및 LLM 

모델에 대한 설정을 CLI 인자(Argument)로 전달받는다. 

시스템은 GitHub API를 활용하여 대상 저장소를 

Fork하고 로컬 환경으로 Clone하여 분석을 위한 실행 

환경을 구성한다.  

분석 계층(Analysis Layer)에서는 Semgrep, CodeQL, 

SnykCode와 같은 정적 분석 도구 중 하나를 

선택적으로 실행하여 소스 코드 내 취약점을 탐지한다. 

각 도구의 분석 결과는 전처리 모듈을 거쳐 공통 

스키마인 BaseSnippet 형태로 정규화된다. 

BaseSnippet은 파일 경로, 라인 범위, CWE 정보 등을 

포함하며, 도구별 출력 형식의 차이를 추상화하여 후속 

단계에 일관된 입력 데이터를 제공한다. 

핵심 처리 계층(Core Layer)에서는 정규화된 스니펫을 

기반으로 구조화된 XML 컨텍스트와 코드 

주석(Annotation)을 생성한다. 생성된 컨텍스트는 

프롬프트 엔지니어링 모듈로 전달되어 최적화된 

프롬프트를 구성하며, 이를 LLM에 입력하여 취약점 

 

그림 1. 시스템 아키텍처 
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패치 코드를 생성한다. LLM의 응답은 파싱 과정을 거쳐 

Diff 형식으로 변환된 후, 자동 패치 모듈을 통해 

코드베이스에 반영된다. 패치 적용 실패 시 

재시도(Retry) 및 Fallback 메커니즘이 동작하여 전체 

파이프라인의 가용성과 연속성을 보장한다.  

배포 계층(Deployment Layer)에서는 패치가 적용된 

Branch에 대해 Commit, 원격 저장소 Push, Pull 

Request 생성을 포함한 일련의 과정을 자동화한다. 

최종 결과는 Flask 기반의 웹 대시보드를 통해 

제공되며, Slack 및 Discord 연동을 통해 실시간 알림 

서비스를 제공한다.  

 

3.2 전체 워크플로우   

AutoFiC은 정적 분석 도구(SAST)와 대규모 언어 

모델(LLM)을 결합하여, 취약점 탐지부터 패치 생성 및 

적용, Pull Request 생성에 이르는 전 과정을 자동화한 

End-to-End 파이프라인을 제공한다. 전체 

워크플로우는 (1) 저장소 초기화 및 환경 구성, (2) 

SAST 기반 취약점 탐지 및 정규화, (3) XML 및 

Annotation 기반 컨텍스트 구성, (4) LLM 기반 패치 

코드 생성, (5) Diff 생성 및 패치 적용, (6) Pull Request 

생성 및 CI 연계의 6단계로 구성된다.  

 

3.2.1 GitHub 저장소 Fork 및 Clone  

사용자가 분석 대상 GitHub 저장소의 URL을 

입력하면, AutoFiC은 GitHub API를 통해 해당 저장소를 

Fork한 후 로컬 환경으로 Clone하여 분석 환경을 

구축한다. 이 과정은 Branch 분기 및 Commit 이력 

보존을 포함하는 표준 Git 워크플로우를 준수하도록 

설계되었다. 이를 통해 원본 저장소의 무결성을 해치지 

않으면서, 실제 개발 환경과 동일한 조건에서 패치를 

검증할 수 있는 격리된 환경을 제공한다.  

 

3.2.2 SAST 기반 취약점 분석  

분석 단계에서는 Semgrep, CodeQL, SnykCode와 

같은 SAST 도구 중 하나를 선택적으로 실행하여 

취약점을 탐지한다. 각 도구는 상이한 탐지 규칙과 출력 

형식을 가지므로, 분석 결과를 공통 스키마인 

BaseSnippet 형태로 정규화한다. BaseSnippet은 파일 

경로, 라인 범위, CWE 정보를 포함하며, 도구별 출력 

형식의 차이를 추상화하여 후속 단계에서 일관된 입력 

데이터를 보장한다.   

 

3.2.3 컨텍스트 기반 프롬프트 구성 전략 

SAST 결과만으로는 LLM이 코드 내부의 제어 흐름, 

데이터 흐름, 취약 구간의 경계 등을 온전히 파악하기 

어렵다는 한계가 있다. AutoFiC은 이를 보완하기 위해, 

취약 코드 주변 컨텍스트를 구조화된 메타데이터, 위치 

정보, 최소 단위 코드 스니펫으로 재구성한 뒤 

프롬프트에 반영하는 전략을 사용한다. 이때 컨텍스트는 

파일 경로와 라인 범위, CWE 유형, 경고 메시지, 관련 

함수/블록 코드와 같은 정보로 구성되며, LLM이 어디를, 

왜, 어떻게 수정해야 하는지를 명시적으로 이해하도록 

돕는다. 

컨텍스트 구성 단계에서는 SAST가 보고한 취약점 

스니펫을 공통 스키마(BaseSnippet)로 정규화하고, 

이를 기반으로 요약 메타데이터와 코드 조각을 

생성한다. 메타데이터는 CUSTOM_CONTEXT.xml과 

같은 구조화된 형식에 저장되며, 프롬프트에서는 대상 

취약점과 직접 관련된 조각만 발췌하여 사용함으로써 

입력 크기를 관리한다. 코드 측면에서는 취약 줄만 

제공하는 대신, 동일 함수나 인접 블록을 함께 포함해 

제어 흐름이 끊어지지 않도록 스니펫을 구성함으로써, 

LLM이 수정 시 주변 문맥을 고려할 수 있도록 한다. 

주석 기반 마커(Annotation)는 이러한 컨텍스트를 

보조하는 수단으로 활용되며, 프롬프트 설계의 핵심은 

필요한 정보는 충분히 제공하되, 수정 범위를 

안정적으로 제어하는 것에 맞추어져 있다. 

 

3.2.4 LLM 기반 패치 생성  

구축된 XML 컨텍스트와 주석이 포함된 코드 

스니펫은 프롬프트 엔지니어링을 거쳐 LLM에 입력된다. 

프롬프트는 취약점에 대한 상세 설명과 수정 제약 

조건을 포함하도록 설계되었으며, LLM은 이를 바탕으로 

수정된 코드를 생성한다. 생성된 결과물은 파싱 과정을 

통해 자동 적용이 가능한 Unified Diff 형식으로 

변환된다.   

 

3.2.5 Diff 생성 및 패치 적용  

LLM이 생성한 수정 코드와 원본 소스 코드 간의 

차이는 Diff 파일로 생성되며, Git의 Patch 시스템을 

통해 코드베이스에 반영된다. 이때 패치 적용 실패 등 

예외 상황 발생 시, 사전에 정의된 Fallback 절차를 

수행하여 파이프라인의 중단을 방지한다. 이러한 예외 

처리 메커니즘은 자동화된 패치 프로세스의 안전성과 

연속성을 보장한다.   

 

3.2.6 Pull Request 생성 및 CI 연계  

패치가 적용된 Branch는 자동으로 원격 저장소에 

Push 되며, 이를 기반으로 Pull Request가 생성된다. 

AutoFiC은 Pull Request 생성 및 상태 변경 이벤트를 

감지하는 GitHub Actions 워크플로우를 자동 생성하며, 

Discord 또는 Slack과 연동하여 실시간 알림을 

제공한다. 또한, CI 환경에 필요한 민감 정보(Webhook 

URL 등)는 공개키 기반으로 암호화하여 GitHub 

Secrets에 안전하게 등록된다. 최종적으로 생성된 Pull 

Request에는 분석 결과 요약과 CI 상태 모니터링 

정보가 포함되어 검토자의 효율적인 의사결정을 

지원한다. 
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3.3 프롬프트 엔지니어링 

AutoFiC의 프롬프트 엔지니어링은 취약 코드만을 

LLM에 그대로 전달하는 방식에 그치지 않고, SAST 

결과로부터 추출한 구조화 메타데이터(XML), 코드 

스니펫, Annotation 기반 위치 힌트를 단계적으로 

결합하여 LLM이 취약점의 의미적·구조적 맥락을 명확히 

이해하도록 설계되었다. 모델은 취약점 설명과 정확한 

위치 정보, 관련 코드 컨텍스트를 함께 입력 받아 수정 

대상을 명확히 식별하고, 취약 구간 중심의 최소 수정 

패치를 생성하도록 유도된다. 

 

3.3.1 XML 기반 구조화 컨텍스트 

AutoFiC은 SAST 도구별 분석 결과를 정규화한 

BaseSnippet을 기반으로, 입력 이전 단계에서 

CUSTOM_CONTEXT.xml 형태의 XML 기반 구조화 

컨텍스트를 생성한다. 각 취약점 항목에는 파일 경로 및 

라인 범위, 분석 도구 및 규칙 식별 정보, CWE ID, 

원본 메시지와 요약 설명, 심각도 및 카테고리 정보가 

포함된다.  

 

그림 2. CUSTOM_CONTEXT.xml 구조 예시 

 

프롬프트 구성 시 전체 XML을 그대로 LLM에 주입하지 

않고, 대상 취약점과 직접 관련된 항목만 선별하여 

Markdown 형식의 STUCTURED CONTEXT 블록으로 

변환한다. 이를 통해 입력 토큰을 경량화하면서도, 단순 

문자열 설명보다 풍부한 반정형 맥락 정보를 LLM에 

제공할 수 있다.  

 

3.3.2 Annotation 기반 위치 강조 기법  

구조화 메타데이터가 취약점의 의미적 정보를 

제공한다면, Annotation 기반 위치 강조는 코드 내에서 

수정 범위를 명확히 한정하는 역할을 한다. AutoFiC은 

취약점이 보고된 코드 스니펫과 해당 함수 또는 블록 

전체를 프롬프트에 포함하고, 필요 시 취약 줄 또는 

범위를 명시적 Annotation 마커(예: @BUG_HERE, 

@BUG_HERE_START, @BUG_HERE_END)로 표시한다.  

단일 라인 취약점은 해당 줄 수준에서 Annotation을 

적용하고, 범위 기반 취약점은 시작·종료 라인 기준으로 

표현함으로써, 모델이 전체 파일을 과도하게 수정하는 

것을 방지하고 취약 구간 중심의 패치를 생성하도록 

유도한다. 패치 생성 이후에는 후처리 단계에서 

Annotation 마커를 제거하여, 결과 코드의 가독성과 

품질에 영향을 최소화한다. 

 

3.3.3 프롬프트 설계 원칙 

AutoFiC의 프롬프트는 다음 원칙에 따라 구성된다. 

- 역할 및 제약 명시: 시스템 메시지에 보안 패치 

어시스턴트 역할을 부여하고, 기존 기능 보존 및 신규 

취약점 미도입과 같은 제약을 명시한다. 

- 컨텍스트 최소화: 취약점과 직접 관련된 함수 또는 

블록만 포함하되, 제어 흐름이 단절되지 않도록 스니펫 

경계를 설정한다. XML 요약 블록과 코드 블록은 명확히 

구분하여 제시한다. 

- 수정 범위 제한: Annotaion을 통해 표시된 취약 

범위만 수정하도록 요구하고, 나머지 영역은 최소 

변경을 유지하도록 명시한다.  

- 형식화된 출력 요구: 결과 출력 형식을 고정하여, 

수정된 전체 함수 또는 변경 블록 전체를 포함하도록 

요구함으로써 파싱 및 diff 기반 자동 패치 적용의 

안정성을 확보한다.  

 

The following is a Python source file that contains security 

vulnerabilities. 

… 

Detected vulnerabilities:  

… 

## STRUCTURED CONTEXT (Team-Atlanta Approach)  

The following CUSTOM_CONTEXT.xml provides structured 

vulnerability information including: 

- BIT (Bug Information Template) with TRIGGER, STEPS, 

REPRODUCTION  

<CUSTOM_CONTEXT version="1.1"> 

  <VULNERABILITY id="scripts/main.py:411-411"> 

    <FILE path="scripts/main.py"/> 

    <RANGE start="411" end="411"/> 

    <SEVERITY overall="ERROR" bit="ERROR"/> 

    <MESSAGE> 

      <ITEM>Unsafe subprocess.run() with shell=True</ITEM> 

    </MESSAGE> 

    <SNIPPET> 

      subprocess.run(explorer_command, shell=True) 

    </SNIPPET> 

    <BIT> 

      <TRIGGER>Command injection risk</TRIGGER> 

      <STEPS> 

        <STEP>Review line 411 in scripts/main.py</STEP> 

      </STEPS> 

    </BIT> 

    <CLASSES> 

      <CLASS>Command Injection</CLASS> 

    </CLASSES> 

    <WEAKNESSES> 

      <CWE id="CWE-78"/> 

    </WEAKNESSES> 

  </VULNERABILITY> 

</CUSTOM_CONTEXT> 
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- Detailed CWE classifications and severity levels  

- Environmental context and mitigation strategies ```xml… ``` 

 

**Use the BIT information above to understand:**  

1. TRIGGER: What conditions activate this vulnerability  

2. STEPS: How to locate and review the vulnerable code  

3. REPRODUCTION: How to verify the issue 

4. BIT_SEVERITY: The criticality level of this vulnerability  

Please strictly follow the guidelines below when modifying the 

code:  

- Modify **only the vulnerable parts** of the file with **minimal 

changes**.  

- Preserve the **original line numbers, indentation, and code 

formatting** exactly.  

- **Do not modify any part of the file that is unrelated to the 

vulnerabilities.**  

- Output the **entire file**, not just the changed lines.  

- This code will be used for diff-based automatic patching, so 

structural changes may cause the patch to fail.  

 

Output format example:  

1. Vulnerability Description: ...  

2. Potential Risk: ...  

3. Recommended Fix: ...  

4. Final Modified Code:  

5. Additional Notes: (optional) 

 

그림 3. AutoFiC의 LLM 프롬프트 템플릿 예시 

 

이와 같은 컨텍스트 설계는 LLM 기반 자동 패치에서 

중요한 정확한 위치 지정과 구조적 힌트 제공을 동시에 

달성하도록 하며, 4장에서 정량 실험을 통해 그 효과를 

평가한다. 

 

3.4 자동 패치 적용 및 Pull Request 자동화 

AutoFiC은 LLM이 생성한 패치를 코드베이스에 

안전하게 반영하고, Pull Request 생성과 CI 연계를 

통해 이를 실제 개발 워크플로우에 통합하는 자동화 

기능을 제공한다. 본 절에서는 LLM 응답 파싱, Diff 

생성 및 패치 적용, Pull Request 생성 및 CI 연계의 세 

단계로 구성된 자동화 절차를 설명한다. 

 

3.4.1 LLM 응답 파싱 

생성된 응답에서 전용 파서(Parser)를 통해 수정 코드 

블록을 추출한다. 이때 응답이 지정된 형식을 

위반하거나 구문 오류를 포함하는 경우, 해당 케이스를 

패치 불가로 분류하거나 재생성 로직으로 전환한다. 

또한 API 호출 중 발생하는 토큰 한도 초과 등의 외부 

예외를 별도로 처리하여 시스템 안전성을 유지한다.  

 

3.4.2 Diff 생성 및 패치 적용 

파싱된 수정 코드는 원본 코드와의 비교를 통해 

Unified Diff 형식으로 변환되며, 이후 Git Patch 

메커니즘을 통해 자동 적용된다. AutoFiC은 자동 패치 

과정에서 발생할 수 있는 충돌이나 문맥 불일치 문제에 

대응하기 위해 이중 적용 전략을 사용한다.  

우선 표준 Diff 기반 패치 적용을 1차적으로 시도하며, 

이 과정이 실패할 경우 전체 파일 단위로 수정된 

코드를 덮어쓴 뒤 다시 Diff를 생성하는 Fallback 

절차를 수행한다. 이를 통해 Diff 적용 실패로 인한 

파이프라인 중단을 방지하고 End-to-End 자동화 

흐름을 지속적으로 유지하기 위한 안전장치를 마련한다. 

실험 과정에서, LLM이 생성한 수정 내용이 

논리적으로는 타당함에도 불구하고, 미세한 공백 차이, 

주석 위치 변경, 출력 포맷 차이 등으로 인해 Diff 

적용이 실패하는 사례가 다수 관찰되었다. 이러한 경우 

Fallback 절차를 통해 패치 적용을 재시도함으로써, 

자동화 파이프라인이 중단되지 않고 Pull Request 생성 

단계까지 도달하는 비율이 증가하는 경향을 확인하였다. 

이러한 결과는 Fallback 절차가 AutoFiC 파이프라인의 

안정성과 연속성을 보장하는 핵심 구성 요소로 

기능함을 시사한다. 

 

3.4.3 Pull Request 생성 및 CI 연계 

패치 적용이 완료된 Branch는 원격 저장소로 

Push되며, 이를 기반으로 상세 정보를 포함한 Pull 

Request가 자동 생성된다. 시스템은 GitHub Actions 

워크플로우를 자동 구성하여 Pull Request 이벤트를 

감지하고, CI 테스트 결과를 모니터링한다. 모든 결과는 

암호화된 채널을 통해 Slack 또는 Discord로 실시간 

전달되며, 이를 통해 개발자는 보안 패치를 신속하게 

검토하고 병합할 수 있도록 지원한다.  

 

4. 실험 결과  

  4.1 실험 설계 

 본 연구에서 제안하는 AutoFiC 파이프라인의 실효성을 

검증하기 위해, 실제 오픈소스 환경을 대상으로 

파이프라인 동작 성공률과 취약점 패치 성능을 

평가하였다. 또한 XML 기반 구조화 컨텍스트와 

Annotation 기반 위치 강조 기법이 패치 성능에 미치는 

효과를 분석하기 위해, 해당 기법 적용 전후의 결과를 

비교 분석하였다.  

 

  4.1.1 데이터셋 및 실험 환경  

 실험 데이터셋은 GitHub에 공개된 Python 기반 

저장소 중, 현실적인 개발 프로젝트 규모를 반영하기 

위해 Star 수가 30 이상 100 이하인 중소 규모 

프로젝트를 대상으로 구성하였다. GitHub API를 통해 
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수집된 저장소 중, Semgrep 정적 분석 결과 최소 1개 

이상의 취약점이 탐지된 91개 저장소를 최종 실험 

대상으로 선정하였다.  

Star 수가 높은 대규모 프로젝트는 복잡한 CI 설정, 

방대한 의존성, 장시간 테스트 실행 등을 포함하는 

경우가 많아, 자동 패치 파이프라인의 실행 시간, 환경 

재현성, 비교 가능성을 저하시킬 수 있다. 본 연구는 

개별 프로젝트의 CI 환경 최적화나 복잡한 빌드/테스트 

설정을 해결하는 것을 목표로 하지 않으며, 중소 규모 

프로젝트를 대상으로 End-to-End 자동화 파이프라인의 

일반적인 실효성과 안정성을 검증하는 데 초점을 

두었다. 이에 따라 이러한 대규모 프로젝트는 실험 

범위에서 제외하였다 

실험은 Python 3.10 환경에서 수행되었으며, 패치 

생성을 위한 LLM 모델로는 GPT-4o를 사용하였다. 

취약점 탐지 및 해결 여부 판단의 일관성을 확보하기 

위해 Semgrep을 기준 정적 분석 도구로 사용하였다. 

패치 적용 전후에 동일한 규칙과 조건으로 Semgrep을 

재실행하여 탐지 결과의 변화를 기반으로 취약점 해결 

여부를 판정하였다. 

 

  4.1.2 평가 지표  

 평가 지표는 다음과 같이 설정하였다.  

1. 파이프라인 성공률 (Pipeline Success Rate): 전체 

저장소 중 Fork부터 Pull Request 생성까지의 전 과정이 

중단 없이 수행된 비율.  

2. 취약점 해결률 (Vulnerability Fix Rate): 파이프라인이 

성공한 저장소를 대상으로, 패치 적용 후 Semgrep을 

동일한 규칙과 조건으로 재실행하였을 때 기존에 

탐지된 취약점이 보고되지 않는 비율. 

본 연구에서의 취약점 해결률은 정적 분석 기준으로 

동일 취약점의 재탐지 여부에 기반하며, 생성된 패치가 

기존 소프트웨어의 동작을 완전히 보존하는지를 

자동으로 증명하는 지표는 포함하지 않는다. 기능 

보존성 검증은 저장소별 테스트 환경 구축과 안정적인 

테스트 실행을 필요로 하므로 본 연구의 실험 범위를 

벗어나며, 단위 테스트 생성 및 실행 기반의 자동 

검증은 향후 연구 과제로 남긴다. 본 연구는 PR 기반 

개발 프로세스를 전제로 하며, 생성된 패치의 기능적 

동등성은 유지보수자의 코드 리뷰와 CI 테스트를 통해 

최종적으로 검증되는 것을 가정한다. 

 

  4.2 전체 파이프라인 동작 성공 비율 

 AutoFiC 파이프라인을 91개 저장소에 적용한 결과, 

86개 저장소에서 전 과정이 정상적으로 완료되어 

94.5%의 파이프라인 성공률을 기록하였다. 실패한 5개 

사례를 분석한 결과, 3건(3.30%)은 LLM의 토큰 제한 

초과로 인해 발생하였으며, 나머지 2건(2.20%)은 

GitHub API 통신 오류로 확인되었다. 이러한 결과는 

제안 시스템의 설계가 별도의 개입 없이도 다수의 실제 

오픈소스 프로젝트에 대해 안정적인 End-to-End 

자동화를 가능하게 함을 시사한다.  

 

 

그림 4. 파이프라인 전체 동작 성공 비율 

  

4.3 취약점 해결 여부 

 파이프라인이 정상적으로 완료된 86개 저장소를 

대상으로, 패치 적용 전후에 동일한 조건으로 

Semgrep을 재실행하여 취약점 해결 여부를 분석하였다. 

그 결과, 총 441개의 취약점이 탐지되었으며 AutoFiC 

적용 후 397개가 해결되어 90.0%의 취약점 해결률을 

기록하였다. 

 

표 1. CWE 유형별 취약점 해결률  

취약점 유형 탐지 수 해결 수 해결률 

CWE-116 2 2 100.0% 

CWE-200 5 5 100.0% 

CWE-276 9 8 88.9% 

CWE-295 3 3 100.0% 

CWE-319 75 72 96.0% 

CWE-326 27 27 100.0% 

CWE-327 65 59 90.8% 

CWE-330 4 3 75.0% 

CWE-489 9 6 66.7% 

CWE-502 17 16 94.1% 

CWE-532 17 15 88.2% 

CWE-611 30 28 93.3% 

CWE-668 7 7 100.0% 

CWE-78 153 138 90.2% 

CWE-79 17 7 41.2% 
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CWE-942 1 1 100.0% 

합계 441 397 90.0% 

 

표 1은 XML 기반 구조화 컨텍스트와 Annotation 

기반 위치 강조 기법을 모두 적용한 AutoFiC 

파이프라인에서의 CWE 유형별 취약점 해결 현황을 

나타낸다. CWE-116, CWE-200, CWE-295, CWE-326, 

CWE-668, CWE-942는 100%의 해결률을 

기록하였으며, CWE-319와 CWE-327 역시 각각 96.0%, 

90.8%의 높은 해결률을 보였다. 가장 많은 빈도로 

탐지된 CWE-78(Command Injection)의 경우, 153건 중 

138건이 해결되어 90.2%의 해결률을 기록하였다. 반면 

CWE-79(XSS)는 17건 중 7건만이 해결되어 41.2%로 

상대적으로 낮은 해결률을 보였다. 

 

표 2.  XML 및 Annotation 도입 이전의 CWE 유형별 

취약점 해결률 

취약점 유형 탐지 수 해결 수 해결률 

CWE-116 2 2 100.0% 

CWE-200 5 5 100.0% 

CWE-276 9 8 88.9% 

CWE-295 3 3 100.0% 

CWE-319 75 74 98.7% 

CWE-326 27 24 88.9% 

CWE-327 65 58 89.2% 

CWE-330 3 3 100.0% 

CWE-489 9 6 66.7% 

CWE-502 17 16 94.1% 

CWE-532 17 15 88.2% 

CWE-611 30 28 93.3% 

CWE-668 7 7 100.0% 

CWE-78 153 135 88.2% 

CWE-79 17 7 41.2% 

CWE-942 1 1 100.0% 

합계 440 392 89.1% 

 

표 2는 XML 기반 구조화 컨텍스트와 Annotation 

기반 위치 강조 기법을 적용하지 않은 경우의 CWE 

유형별 취약점 해결 현황을 나타낸다. 전후 비교 결과, 

전체 취약점 해결률은 89.1%에서 90.0%로 

증가하였으며, 해결된 취약점 수는 392건에서 

397건으로 총 5건 증가하였다. 특히 CWE-78과 CWE-

326에서 해결된 취약점 수가 각각 3건 증가하여, 제안 

기법 적용 이후 해당 유형의 패치 성능이 향상되었음을 

확인할 수 있다.  

 이러한 결과는 XML 기반 구조화 컨텍스트와 

Annotation 기반 위치 강조 기법이 취약점 수정 대상의 

범위를 보다 명확히 한정함으로써, LLM이 불필요한 

코드 영역을 탐색하지 않고 핵심 취약 지점에 

집중하도록 유도했음을 보여준다. 특히 CWE-78, 

CWE-326과 같이 취약점 발생 위치와 수정 패턴이 

비교적 명확한 유형에서 해결된 취약점 수가 증가한 

점은, 위치 정보와 유형 정보를 명시적으로 제공하는 

설계가 패치 정확도 향상에 기여했음을 수치적으로 

뒷받침한다. 반면 CWE-79와 같이 출력 컨텍스트에 

대한 의미적 해석이 요구되는 취약점 유형에서는 

해결률 개선이 제한적으로 나타났으며, 이는 경량 

컨텍스트 기반 접근 방식의 적용 범위와 한계를 동시에 

시사한다. 

기존의 LLM 기반 취약점 탐지 및 패치 생성 

연구들은 개별 단계에서 높은 성능을 보이는 

알고리즘을 제안해 왔다. 그러나 이러한 연구들을 실제 

개발 환경에서 조합하여 사용하기 위해서는, 취약점 

탐지 결과의 정규화, 패치 실패 처리, diff 적용 오류 

대응, Pull Request 생성 및 CI 연계와 같은 추가적인 

엔지니어링 작업이 요구된다. AutoFiC은 취약점 탐지–

패치 생성–적용–Pull Request 생성까지의 전 과정을 

하나의 자동화된 파이프라인으로 통합함으로써, 이러한 

실무적 부담을 최소화하는 데 초점을 둔다. 실험 결과는 

AutoFiC이 실제 오픈소스 프로젝트 환경에서도 높은 

파이프라인 성공률을 유지하며 End-to-End 자동화를 

안정적으로 수행할 수 있음을 보여준다. 

 

5. 결론   

 본 연구는 정적 분석 도구(SAST)와 대규모 언어 

모델(LLM)을 결합하여, 취약점 탐지부터 패치 생성 및 

적용, Pull Request 생성까지 이어지는 DevSecOps 

관점의 End-to-End 자동 보안 패치 파이프라인 

AutoFiC을 제안하였다. 제안 시스템은 보안을 기존 

개발 워크플로우에 자연스럽게 통합함으로써, 취약점 

발견과 수정 사이의 시간적 간극을 줄이고 개발자의 

수작업 부담을 완화하는 자동화된 보안 패치 환경을 

제공한다. 

실제 오픈소스 프로젝트를 대상으로 한 실험 결과, 

AutoFiC은 다양한 프로젝트 환경에서도 안정적으로 

동작하며, 정적 분석 기준에서 탐지된 취약점을 

자동으로 패치 생성 및 적용 단계까지 연결할 수 

있음을 확인하였다. 특히 XML 기반 구조화 컨텍스트와 

Annotation 기반 위치 강조 기법을 도입함으로써, 

취약점의 위치와 유형 정보가 LLM에 보다 명확히 
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전달되었고, 그 결과 패치 정확도와 일관성이 

전반적으로 향상되는 경향을 보였다. 이는 복잡한 AST 

기반 분석을 직접 활용하지 않더라도, 경량 구조 정보를 

적절히 설계하여 제공하는 것만으로도 LLM 기반 자동 

패치 파이프라인의 실용성을 높일 수 있음을 시사한다. 

 본 연구의 주요 기여는 다음과 같다. 첫째, 

DevSecOps 관점에서 SAST 기반 취약점 탐지부터 

GitHub 워크플로우 연계까지의 전 과정을 자동화하여, 

보안 패치가 개발 파이프라인에 자연스럽게 통합되는 

실용적 시스템을 구현하였다. 둘째, XML 기반 구조화 

컨텍스트와 Annotation 기반 위치 강조 기법을 

활용하여 AST 기반 분석을 직접 활용하지 않으면서도 

구조적 컨텍스트를 경량하게 제공하는 방법을 

제시함으로써, 언어 의존성과 구현 복잡도를 낮추는 

동시에 LLM의 취약점 이해도를 향상시켰다. 셋째, 실제 

오픈소스 환경을 대상으로 한 대규모 실험을 통해 제안 

기법의 실효성을 정량적으로 검증하고, 컨텍스트 도입 

전후 비교를 통해 그 개선 효과를 명확히 확인하였다. 

 한편, 본 연구는 몇 가지 한계를 가진다. 본 

실험에서는 정적 분석 도구가 보고한 결과를 실제 

취약점으로 가정하여 자동 패치를 수행하였으며, 이로 

인해 오탐으로 인한 불필요한 코드 수정 가능성을 

명시적으로 배제하지 않았다. 이는 제안 파이프라인의 

동작 특성과 자동화 흐름 자체를 평가하기 위한 실험적 

선택이었으며, 오탐 여부에 따른 패치 적절성에 대한 

정량적 평가는 본 연구 범위에 포함하지 않았다. 또한, 

CWE-79(XSS)와 같이 출력 컨텍스트에 따라 다양한 

이스케이프 방식이 요구되는 취약점의 경우, 상대적으로 

낮은 해결률을 보였다. 이는 경량 컨텍스트 설계가 

템플릿 엔진 구조나 출력 지점의 의미적 맥락을 

제한적으로만 전달하기 때문으로 해석된다. 또한 생성된 

패치가 기존 기능을 완전히 보존하는지에 대한 

자동화된 검증을 제한적으로 수행하였다. 취약점 제거 

여부를 정적 분석 기준으로 확인하였으며, 패치 이후의 

기능적 정합성이나 실행 의미 보존에 대한 체계적 

검증은 향후 과제로 남아 있다. 더불어 복잡한 제어 

흐름이나 프레임워크 특화 로직을 포함하는 취약점에 

대해서도 추가적인 개선 여지가 존재한다. 

 향후 연구에서는 다중 정적 분석 도구를 교차 

활용하여 공통으로 탐지된 취약점만을 선별하는 

방식이나, 규칙 신뢰도 기반 필터링을 통해 오탐을 

완화하는 전략을 탐색할 예정이다. 또한 경량 

XML·Annotation 기반 접근법과 AST 기반 구조 정보를 

선택적으로 결합하는 하이브리드 전략을 통해, 보다 

복잡한 취약점 유형에 대한 대응 능력을 향상시키고자 

한다. 나아가 자동 메커니즘과 단위 테스트 생성 기법을 

결합하여 패치의 기능 보존성을 체계적으로 검증하고, 

Java, C/C++ 등 다양한 프로그래밍 언어로 

확장함으로써 AutoFiC의 범용성과 실용성을 더욱 

확대할 계획이다. 프레임워크별 특화 프롬프트와 도메인 

지식을 반영한 패치 템플릿을 통해 난이도 높은 

취약점의 해결률을 개선하고, 자동 검증 메커니즘과 

단위 테스트 생성 기법을 결합하여 패치의 기능 

보존성을 보다 체계적으로 검증하고자 한다. 마지막으로, 

Java, C/C++ 등 다양한 프로그래밍 언어로 확장하여 

AutoFiC의 범용성과 실용성을 확대할 계획이다. 
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요   약 

 대규모 언어 모델(LLM)은 코드 수정 요청에 대해 구조적으로 타당한 변경을 제안하는 데 한계를 보이

며, 특히 클래스 간 책임 경계와 변경 전파 범위를 일관되게 유지하지 못하는 문제가 있다. 본 연구는 

이러한 한계를 완화하기 위한 중간 표현으로 프로젝트 구조 요약 (Project Structural Summary, PSS)를 

제안하고, 프로젝트에 포함된 클래스의 책임 요약과 클래스 간 관계 정보를 중심으로 하되 코드의 상세 

구현은 배제하여 구조적 판단에 필요한 최소 정보만을 제공하도록 설계된 PSS가 LLM의 구조적 판단을 

보조하는 데 효과적인지를 실험적으로 검증하였다. 이를 위해 동일한 변경 요구에 대해 총 9회의 LLM 

응답을 수집하고, 각 응답을 책임 적합성과 구조적 전파 인식 정확도의 두 축에서 분석하였다. 분석 결

과, 구조적 전파 인식은 모든 응답에서 성공적으로 수행되었으나 책임 적합성 측면에서는 일부 응답에서 

계산 로직을 담당하는 컴포넌트가 외부 상태 관리나 컨텍스트 산출 책임을 포함하는 사례가 관찰되었다. 

이는 PSS가 변경 영향 범위 추론에는 효과적이지만 단일 컴포넌트의 책임 경계를 일관되게 유지하기 위

해서는 추가적인 제약이나 보완이 필요함을 시사한다. 본 연구는 PSS가 LLM 기반 코드 수정 과정에서 

구조적 판단을 보조할 수 있는 가능성을 제시했다는 점에서 의의를 갖으며, 향후 다양한 도메인과 평가 

기준 확장을 통해 적용 범위를 검증할 필요가 있다. 

 

1. 서  론 

최근 대규모 언어 모델(Large Language Model, 

LLM)은 코드 생성, 수정, 리팩토링 등 다양한 

소프트웨어 개발 작업에서 활용되고 있다. 자연어로 

작성된 변경 요청을 바탕으로 코드 수정안을 제안하는 

방식은 개발 생산성을 향상시키는 수단이 될 수 있다. 

이러한 흐름에 따라 LLM을 실제 개발 과정에 

통합하려는 시도가 증가하고 있으며, 단순한 코드 

단위의 생성뿐 아니라 프로젝트 맥락을 고려한 변경 

수행에 대한 요구 또한 확대되고 있다. 

그러나 실제 프로젝트 환경에서의 코드 변경은 단일 

파일이나 함수 수준의 수정에 그치지 않고, 클래스 간 

책임 분리, 컴포넌트 간 의존 관계, 변경 전파 범위와 

같은 구조적 판단을 수반한다. 이러한 판단은 프로젝트 

전체 구조에 대한 이해를 전제로 하며, 국소적인 코드 

정보만으로는 정확히 수행되기 어렵다[1,2]. 그럼에도 

불구하고 현재의 LLM은 입력 길이 제약 및 프롬프트 

구성의 한계로 인해 프로젝트 전체 구조를 명시적으로 

입력받기 어려운 상황에서 동작하고 있다. 

기존 연구들은 LLM이 코드 이해, 생성, 요약, 취약점 

탐지와 같은 과업에서 우수한 성능을 보인다는 점을 

보고하였다. 일부 연구에서는 AST나 데이터 흐름과 

같은 구조 정보를 학습 과정에 반영하여 코드 표현의 

품질을 향상시키는 방법을 제안하였다[3,4,5]. 그러나 

이러한 접근들은 주로 코드 수준의 의미 이해 성능 

향상에 초점을 두고 있으며, 구조적 정보를 제공받은 

LLM이 실제로 설계적 판단을 얼마나 적합하게 

수행하는지에 대해서는 명시적으로 평가하지 않았다. 

본 연구는 이러한 한계를 극복하기 위한 방법으로, 

프로젝트 전체 구조를 요약한 프로젝트 구조 요약 

(Project Structural Summary, PSS)를 LLM 입력으로 

제공하는 접근을 제안한다. PSS는 프로젝트를 구성하는 

주요 컴포넌트와 각 컴포넌트의 책임, 그리고 컴포넌트 

간 구조적 관계를 요약적으로 표현한 구조 정보로, 전체 

소스 코드를 직접 제공하지 않더라도 프로젝트 수준의 

맥락을 전달하는 것을 목표로 한다. 

본 연구에서는 LLM이 단일 클래스에 대한 변경 

요청을 수행할 때, PSS를 통해 자신이 수정해야 할 

책임 범위와, 외부 컴포넌트로의 구조적 변경 전파 

필요성을 인식할 수 있을 것이라는 가설을 설정한다. 즉, 
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PSS는 코드 생성 자체를 보조하기보다는, LLM의 

설계적 판단을 지원하기 위한 입력 정보로서의 역할을 

수행할 수 있을 것으로 기대한다. 

제안 방법의 효과를 검증하기 위해, 본 연구에서는 

소규모 프로젝트를 대상으로 LLM에 자연어 변경 요청, 

대상 클래스의 기존 코드, 그리고 PSS를 함께 입력으로 

제공하는 실험을 수행하였다. 결과는 책임 적합성, 

구조적 전파 인식 정확도의 두 기준을 중심으로 

분석하였다. 실험을 통해 PSS가 제공되지 않은 경우와 

비교하여, PSS를 입력으로 제공한 경우 LLM이 구조적 

판단과 관련된 응답을 보다 명확하게 수행하는 경향을 

보였음을 확인하였다. 특히 PSS를 제공한 조건에서 

수행한 총 4개의 테스트(각 9회, 총 36회 응답)에서 

구조적 전파 인식 정확도는 97%의 성공률을 

기록하였으며, 책임 적합성 평가에서도 83%의 응답이 

성공으로 분류되었다. 이러한 결과는 PSS 기반 입력이 

LLM의 구조적 변경 판단을 일관되게 유도하는 데 

효과적임을 시사한다. 

본 연구의 공헌은 다음과 같다. 먼저, 대규모 언어 

모델(LLM)의 코드 수정 능력을 단순한 코드 이해나 

생성 성능이 아닌, 프로젝트 구조 차원의 설계적 판단 

문제로 재정의하였다. 이를 위해 전체 코드를 제공하지 

않고도 프로젝트의 책임 분리와 의존 관계를 전달할 수 

있는 Project Structural Summary(PSS)라는 구조 요약 

표현을 제안하였다. 다음, 이를 실험적으로 검증하였다. 

PSS가 제공된 상황에서 LLM이 단일 클래스 수정 제약 

하에서 변경 요청을 처리할 때, 책임 경계를 

유지하는지와 필요한 구조적 변경 전파를 인식하는지를 

실험으로 평가하였다. 실험 결과를 통해 PSS가 변경 

영향 범위 인식에는 일관된 효과를 보이지만, 책임 경계 

유지에는 여전히 한계가 존재함을 보였으며, 이를 통해 

LLM 기반 코드 수정에서 구조 정보가 기여할 수 있는 

지점과 추가 보완이 필요한 지점을 동시에 드러냈다. 

본 논문은 다음과 같이 구성된다. 2장에서는 대규모 

언어 모델의 설계적 판단 한계와 구조적 정보를 

활용하려는 기존 연구들을 검토하고, 본 연구의 

차별점을 정리한다. 3장에서는 Project Structural 

Summary(PSS)의 개념과 설계 원칙, 그리고 이를 

활용한 LLM 기반 코드 수정 절차를 설명한다. 

4장에서는 PSS의 효과를 검증하기 위한 실험 목적, 

실험 절차 및 평가 기준을 제시한다. 5장에서는 실험 

결과를 제시하고, 책임 적합성과 구조적 전파 인식 

관점에서 결과를 분석 및 논의한다. 6장에서는 연구의 

한계와 위협 요인을 다루며, 마지막으로 7장에서 

연구의 결론과 향후 연구 방향을 제시한다. 

 

2. 관련 연구 

 

2.1 대형 언어 모델의 설계적 판단 한계 

대형 언어 모델(LLM)은 자연어 및 코드 이해·생성 과

업에서 우수한 성능을 보였으나, 소프트웨어 설계와 관

련된 구조적 판단에는 한계를 보인다는 점이 지적되어 

왔다. 기존 연구들은 LLM이 국소적인 코드 문맥이나 함

수 단위의 수정에는 효과적이지만, 클래스 간 책임 분리, 

변경 전파 범위, 아키텍처 수준의 의존 관계와 같은 전

역적 구조 정보를 명시적으로 다루지 못한다는 문제를 

보고하였다. 특히 코드 토큰을 순차적으로 처리하는 방

식에서는 설계 의도가 암묵적으로만 반영되어, 구조적으

로 부적절한 수정이나 보안 취약점이 발생할 가능성이 

존재함이 논의되었다 [1,2]. 이러한 한계를 보완하기 위

해, 일부 연구는 GitHub 이슈, PR, 커밋 메시지와 같은 

개발 아티팩트를 활용하여 코드 변경의 의도와 맥락을 

보조적으로 제공하는 접근을 제안하였다[6]. 

 

2.2 구조적 정보 기반 표현 

코드의 구조적 의존 관계를 모델 입력이나 학습 과정

에 반영하려는 연구들이 제안되었다. 대표적으로 AST 

(Abstract Syntax Tree), 제어 흐름, 데이터 흐름과 같은 

구조 정보를 코드 토큰과 결합하여 Transformer 기반 

모델의 표현 학습을 개선하는 접근이 연구되었다. 

GraphCodeBERT는 데이터 흐름 그래프를 코드 토큰과 

함께 사전학습에 포함함으로써 구조 정보를 반영한 코

드 표현을 학습하였다 [3]. UniXcoder는 AST 기반 관

계를 보존하는 방식으로 코드와 자연어를 통합적으로 

표현하는 모델을 제안하였다 [4]. 또한 구조 유도 어텐

션 메커니즘을 활용하여 코드의 계층적·구조적 특성을 

모델 내부에 반영하려는 연구도 보고되었다 [5]. 

Code2MCP는 코드 분석을 통해 함수 및 호출 관계를 

추출하고, 이를 명시적인 구조적 명세로 변환한다[7], 

 

2.3 구조적 정보를 LLM에 활용 

구조 정보를 그래프 형태로 모델링하고, 이를 LLM과 

결합하는 연구들이 등장하고 있다. 코드의 구문·제어 흐

름·데이터 의존성을 통합한 그래프나, 파일·클래스·메서

드 간 관계를 리포지토리 수준에서 그래프로 구성한 뒤 

이를 LLM 입력 맥락으로 활용하는 접근이 제안되었다. 

특히 REPOGRAPH는 리포지토리 내 구조 정보를 서브

그래프 형태로 검색하여 LLM에 제공함으로써, 대규모 

코드베이스에서 구조적 맥락을 선택적으로 활용하는 방

법을 제시하였다 [8]. 이러한 접근은 단일 파일이나 함

수 수준을 넘어 시스템 전반의 구조를 고려할 수 있다

는 점에서 의의가 있다. 

 

2.4 기존 연구와의 차이 

그러나 기존 연구들은 주로 코드 이해, 생성, 요약, 

취약점 탐지와 같은 과업의 성능 향상에 초점을 두고 

있으며, 구조적 정보를 제공받은 LLM이 설계적 판단을 

얼마나 적합하게 수행하는지를 명시적으로 평가하는 연

구는 상대적으로 제한적이다. 본 연구는 구조적 책임 명

세(PSS)를 LLM 입력으로 명시적으로 제공하고, 그 결
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과가 책임 적합성과 구조적 변경 전파 인식이라는 설계 

중심 기준을 얼마나 충족하는지를 평가한다는 점에서 

기존 연구와 구별된다. 

 

3. 제안 방법: PSS 기반 LLM 보조 구조 

 

3.1 PSS 개념 정의 

Project Structural Summary(PSS)는 대규모 언어 

모델(LLM)이 프로젝트의 전체 구조를 명시적으로 

인식할 수 있도록 제공되는 프로젝트 구조 요약본이다. 

PSS는 프로젝트를 구성하는 모든 클래스와 그 책임, 

주요 메서드의 역할, 그리고 클래스 간의 의존 관계를 

구현 세부사항 없이 구조적 관점에서만 기술한다.  

본 논문에서 제시하는 PSS는 프로젝트의 구조 

정보를 요약하여 표현하는 중간 표현의 하나의 구체적 

설계 예시이다. 본 연구의 목적은 특정 포맷 자체의 

우수성을 주장하는 것이 아니라, 클래스 책임과 의존 

관계와 같은 구조적 정보가 LLM의 코드 수정 과정에서 

설계적 판단을 보조하는 데 실질적인 효과가 있는지를 

검증하는 데 있다. 따라서 PSS의 표현 방식이나 세부 

스키마는 프로젝트 특성이나 활용 목적에 따라 

다양하게 변형될 수 있다. 

 

3.2 PSS의 설계 원칙 

PSS는 LLM의 구조적 판단을 효과적으로 보조하는 

것을 목표로 설계되었으며, 이를 위해 몇 가지 핵심 

원칙을 따른다.  

첫째, PSS에는 코드의 상세 구현을 포함하지 않는다. 

이는 실제 코드 실행이나 세부 로직 추론을 지원하기 

위함이 아니라 클래스 간 책임 분리와 의존 구조를 

판단하기 위한 요약 정보를 제공하는 데 목적이 있기 

때문이다.  

둘째, 구조적 판단에 필요한 정보만을 포함한다. 모든 

메서드의 내부 동작이나 조건 분기와 같은 세부 사항은 

생략하고 각 클래스와 메서드가 담당하는 역할 수준의 

정보만을 제공한다.  

셋째, LLM 입력 크기의 제약을 고려하여 전체 

프로젝트 코드를 프롬프트에 포함하기 어려운 현실적인 

상황을 전제로, 구조 인식에 가장 중요한 정보만을 

선별적으로 제공하는 것을 설계 목표로 한다. 

본 연구에서 논의하는 입력 크기 제약은, LLM이 코드 

수정을 수행할 때 전체 프로젝트 소스 코드를 

프롬프트에 직접 포함하기 어려운 현실적 한계를 

의미한다. PSS 자체를 생성하거나 대규모 프로젝트에 

대해 출력하는 과정에서는 출력 토큰 수가 병목이 될 

가능성이 존재할 수 있으나, 본 연구의 실험 범위는 

이미 생성된 PSS를 구조적 맥락 입력으로 제공했을 때 

LLM의 설계적 판단이 어떻게 달라지는지를 분석하는 

데에 한정된다. 따라서 본 논문에서의 입력 제약 논의는 

PSS 생성 비용이나 출력 병목을 다루기보다는, 전체 

코드 제공 대비 최소 구조 정보를 입력으로 제공하는 

설계 선택의 타당성을 설명하기 위한 전제로 

해석되어야 한다. 

 

3.3 단계 1. 프로젝트에서 전체 구도 도출 

본 단계에서는 대상 프로젝트의 전체 구조를 요약한 

구조 정보를 생성한다. 이를 위해 LLM에는 프로젝트 

전반을 설명하는 요약 스키마와 전체 소스 코드가 

입력으로 제공된다. 요약 스키마는 클래스 단위의 책임, 

주요 의존 관계, 상위·하위 컴포넌트의 역할을 간략히 

 

그림 1. 제안 방법 오버뷰. 단계 1은 프로젝트 코드 파일들과 프로젝트 구조 스키마 파일을 받아서 프로젝트 구조 

요약 PSS를 만든다. 단계 2는 만들어진 PSS와 수정하려는 코드 파일, 사용자의 수정 요청을 받아서 프롬프트를 

생성한다. 그 결과로 수정한 코드 파일과 해당 코드의 외부 수정 요청들을 포함한다 

. 
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기술한 구조적 명세이며, 전체 소스 코드는 실제 구현 

수준에서의 클래스 간 관계와 호출 구조를 파악하기 

위한 근거로 활용된다. 

LLM은 이 두 입력을 바탕으로 프로젝트를 구성하는 

주요 클래스들의 책임 분포와 클래스 간 의존 관계를 

종합적으로 분석하고, 이를 Project Structural 

Summary(PSS) 형태의 전체 구조 정보로 출력한다. 

본 연구에서 사용한 프로젝트 구조 요약 PSS는 

사전에 정의된 JSON 스키마 1 를 따르는 구조화된 

표현으로 생성되며, 해당 구조 정보는 그대로 LLM 

프롬프트의 입력으로 사용된다. 이를 통해 LLM이 개별 

코드 조각이 아닌 프로젝트 전체의 책임 분리와 변경 

전파 구조를 전제 지식으로 활용할 수 있도록 한다. 

PSS는 두가지 핵심 요소로 구성된다. 먼저 클래스에 

대한 요약으로서 프로젝트에 포함된 모든 클래스의 

이름, 담당하는 책임, 주요 속성, 메서드와 그 역할을 

포함하며 관계에 대한 요약으로서, 클래스 간의 의존, 

포함, 상속 등의 관계를 명시적으로 표현한다. 

PSS는 자동 생성되었으나, 생성 과정에서의 명백한 

구조적 오류로 인해 실험이 왜곡되는 것을 방지하기 

위해, 연구자가 실험 전 최소한의 검토를 수행하였다. 

3.4 단계 2. 전체 구조를 활용해서 수정 결과 도출 

  본 실험에서 LLM에 제공되는 입력은 사용자 변경 

요청, 대상 클래스의 기존 코드, 그리고 프로젝트 전체 

구조를 요약한 Project Structural Summary(PSS)로 

구성된다. 사용자 변경 요청은 특정 클래스에 대해 

요청하게 된다. 예를 들어 FeePolicy 클래스에 대해 

“출금 수수료 정책을 고정 비율이 아닌 일일 누적 출금 

금액 기준으로 변경하라”는 자연어 명령으로 주어질 수 

있다.  

  LLM의 출력은 단일 클래스에 대한 수정 결과와, 해당 

수정만으로는 사용자 요청을 완전히 만족할 수 없는 

경우 필요한 외부 수정 요청의 목록으로 구성된다. 수정 

결과는 지정된 클래스의 전체 소스 코드 형태로 

제시되며, 외부 변경 요청은 수정이 필요한 클래스와 

메서드, 그리고 그 변경이 요구되는 구조적 이유를 

자연어로 명시한다. 

4. 실험 설계

4.1 실험 목적

Project Structural Summary(이하 PSS)를 입력으로 

제공했을 때, LLM이 단일 변경 요청에 대해 책임을 

침범하지 않는 코드 수정과, 필요한 구조적 전파를 

정확히 인식할 수 있는지를 평가한다. 

4.2 대상 프로젝트 

1https://github.com/tjrdls/PSS/blob/master/IRSchema.

json 

본 연구에서는 PSS가 대규모 언어 모델의 구조적 

판단을 어떻게 보조하는지를 관찰하기 위해, 단일 

도메인에 기반한 소규모 은행 시스템 프로젝트2와 해당 

프로젝트에 대한 단일PSS3를 실험 대상으로 사용하였다. 

해당 프로젝트는 실제 금융 시스템을 모사하되, 실험 

목적에 불필요한 복잡성을 배제하고 클래스 간 책임 

분리와 변경 전파 구조가 명확히 드러나도록 설계된 

사례이다.  

프로젝트는 다음과 같은 4개의 클래스로 구성된다. 

표1 소규모 은행 프로젝트의 클래스들 

클래스명 역할 

Account 계좌의 상태를 관리하고 입출금 요청을 

처리하는 역할을 담당하며, 수수료 

계산과 거래 기록이라는 하위 책임을 

각각 FeePolicy와 Transaction-

History에 위임하는 구조를 가진다 

FeePolicy 출금 시 적용되는 수수료 계산 

로직만을 담당하는 계산을 담당한다. 

Transaction-

History 

계좌별 거래 내역을 기록·보관하는 

책임을 갖는다. 

BankService 외부 사용자에게 계좌 생성 및 입출금 

기능을 제공하며, 내부 도메인 

로직에는 관여하지 않는다 

표 1에서 보듯이 계좌 관리(Account), 거래 이력 

관리(TransactionHistory), 수수료 정책 계산(FeePolicy), 

그리고 외부 인터페이스 역할을 수행하는 상위 서비스 

컴포넌트(BankService)로 구성된다.  

이와 같은 클래스 구성은 단일 클래스에 대한 코드 

수정이라는 제약 하에서, LLM이 컴포넌트 간 책임 

경계를 유지하면서 변경 요청을 처리할 수 있는지를 

관찰하기 위해 설계되었다. 이를 위해 일부 클래스는 

직접 수정 대상, 일부 클래스는 간접적 영향 대상으로 

구분되며, 상위 컴포넌트는 수정 대상에서 제외하였다. 

이러한 구분을 통해, PSS에 명시된 책임 및 의존 관계 

정보가 LLM의 추론 과정에서 변경 범위 인식과 책임 

판단에 어떻게 활용되는지를 분석할 수 있도록 하였다. 

4.3 LLM 작업 요청 시나리오 

각 작업 요청 시나리오는 하나의 클래스만을 직접 

수정 대상으로 지정하며, 변경 요청의 성격에 따라 책임 

적합성과 구조적 전파 인식 능력이 서로 다르게 

요구되도록 구성하였다.  

표 2: 실험 시나리오 

2https://github.com/tjrdls/PSS/tree/master/bank_syst

em/code 

3https://github.com/tjrdls/PSS/blob/master/bank_syst

em/IR.json 
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Task ID 설명 

TEST1-1 FeePolicy 클래스를 수정 대상으로 

지정하고, “출금 수수료 정책을 고정 

비율이 아니라 일일 누적 출금 금액 

기준으로 변경하라”는 요청을 제시하였다. 

이 요청은 수수료 계산 로직 자체의 변경과 

더불어, 누적 출금 금액이라는 외부 상태 

정보에 대한 구조적 의존 인식이 필요한 

시나리오에 해당한다. 

TEST1-2 FeePolicy 클래스를 수정 대상으로 하여, 

“출금 수수료 정책을 금액 구간별 누진제로 

변경하라. 100 이하: 0%, 101~1000: 1%, 

1001 이상: 2%”는 요청을 입력으로 

사용하였다. 이 요청은 외부 상태나 다른 

컴포넌트와의 상호작용이 필요 없는 순수 

계산 로직 변경에 해당하며, 단일 

컴포넌트의 책임 범위 내에서 변경이 

완결되는 경우를 관찰하기 위한 기준 

사례로 활용되었다. 

TEST2-1 TransactionHistory 클래스를 대상으로, 

“출금 실패 시에도 실패 기록을 남기도록 

하라”는 변경 요청을 제공하였다. 이 

시나리오는 출금 성공·실패 판단 책임이 

어느 클래스에 위치해야 하는지를 올바르게 

분리할 수 있는지, 즉 기록 책임과 판단 

책임의 경계를 유지하는 능력을 평가하기 

위해 포함되었다. 

TEST2-2 TransactionHistory 클래스를 대상으로, 

“출금 내역에서 일일 누적 출금 금액을 

조회할 수 있도록 하라”는 요청을 

제시하였다. 이 요청은 구조적으로 외부 

클래스 수정이 필요한지에 대한 판단과 

불필요한 변경 전파를 억제하는 능력을 

평가하기 위해 포함되었다. 

 

 

 

4.4 실헝 및 평가 방법 

본 실험에서는 대규모 언어 모델(LLM)에 구조 요약 

정보(PSS), 단일 클래스의 기존 코드, 그리고 자연어로 

기술된 변경 요청을 함께 입력 4 으로 제공하고, 이에 

대한 LLM의 응답을 분석 대상으로 삼는다. 

실험은 표2의 4가지의 수정 요청 작업을 각 9회 

반복해서 수행하였으며, 그 응답을 평가하였다. 

책임 적합성을 평가하기 위한 방법으로서는 다음 

3가지 질문을 모두 만족했을 때 성공으로 분류하였고, 

하나라도 위배되는 경우에는 실패도 분류하였다.  

 
4전체 프롬프트 : 

https://github.com/tjrdls/PSS/blob/master/prompt.txt 

(1) 수정된 코드가 지정된 하나의 클래스만을 

수정하였는가? 

(2) PSS에 명시된 책임 내에서만 수정이 

이루어졌는가? 

(3) 다른 클래스의 책임을 침범하지 않았는가? 

구조적 전파 인식 정확도를 평가하기 위한 

방법으로서 다음 3가지 질문을 모두 만족했을 때 

성공으로 분류하였고, 하나라도 위배되는 경우에는 

실패도 분류하였다.  

(1) 필요한 경우에 한해 수정 요청이 생성되었는가? 

(2) 구조적으로 필요한 외부 변경을 모두 수정 요청에 

명시했는가? 

(3) PSS에 정의된 책임/의존 관계를 근거로 변경 

필요성을 명시했는가? 

 

5. 실험 결과 및 분석 

5.1절에서 PSS 미제공 환경에서의 실험 결과를 보인다. 

이 경우, 수정 결과는 대부분 실패하였기 때문에, 

직접적인 비교보다는 어떤 실패인지에 대한 유형을 

분석하였다. 다음 5.2절에서 PSS 제공 환경에서의 

성률을 보였다. 

 

5.1 PSS 미제공 환경에서의 구조적 추론 편차 

본 절에서는 PSS가 제공되지 않은 환경에서, 대규모 

언어 모델(LLM)이 단일 클래스 수정 요청을 처리할 때 

나타나는 구조적 추론 편차를 분석한다. 이를 통해 본 

연구가 다루는 문제의 성격을 명확히 하고자 한다. 

PSS가 제공되지 않은 경우, TEST1-2를 제외한 모든 

응답은 최소 하나 이상의 문제를 발생시켰다. LLM은 

수정 대상 클래스의 책임을 확장하거나 요청에 

포함되지 않은 클래스 간 관계 및 외부 구조를 

추론하는 양상을 반복적으로 보였다. 특히 책임의 소유 

주체, 호출 관계, 다른 클래스의 구조적 제약과 같은 

정보가 명시되지 않을 때, 모델은 이를 추론을 통해 

하는 경향을 보였다. 

표 3은 PSS가 제공되지 않은 조건에서 수행된 

TEST1-1, TEST2-1, TEST2-2의 모든 응답(각 9개)을 

대상으로, 각 응답이 실패한 구조적 판단 차원을 책임, 

관계, 다른 클래스의 구조라는 세 범주로 정리한 것이다. 

표 3: PSS 미제공 실패 유형 

Task ID 문제 범주 사례 수 실패 유형 

TEST1-1 책임 6/9 책임 경계 오인 

TEST1-1 관계 7/9 관계 근거 없는 외부 의존 

추론 

TEST1-1 외부 구조 5/9 외부 구조 가정 

TEST2-1 책임 5/9 기록–판단 책임 혼합 

TEST2-1 관계 7/9 호출자 역할 추론 

TEST2-1 외부 구조 6/9 상태 전파 구조 생략 

TEST2-2 책임 5/9 집계 기준 책임 혼재 
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TEST2-2 관계 4/9 도메인 관계 확장 추론 

문제 범주별로 보면, 책임 판단 차원에서는 계산·기록 

컴포넌트가 상태 소유나 도메인 판단 책임을 흡수하는 

사례가 반복되었고, 관계 판단 차원에서는 클래스 간 

호출 관계가 구조적 근거 없이 응답마다 다르게 

설정되었다. 또한 외부 구조적 맥락이 주어지지 않은 

경우, 모델은 해당 구조를 설계 대상으로 명시하지 않고 

암묵적 전제로 처리하였다. 

반면 TEST1-2는 수정 요청이 순수 계산 로직에 

한정되어 다른 클래스와의 구조적 상호작용이 발생하지 

않았기 때문에, PSS 없이도 안정적인 응답이 

가능하였다. 이는 구조적 실패가 모델의 구현 능력 

부족에서 비롯된 것이 아니라, 구조 판단에 필요한 

전제가 제공되지 않았을 때 발생하는 추론 문제임을 

시사한다. 

 

5.2 PSS 제공 환경에서의 평가 결과 

본 연구에서는 총 4개의 변경 요청(TEST1~TEST4)에 

대해 각 9개의 응답을 생성하여, 책임 적합성과 구조적 

전파 인식 정확도라는 두 가지 평가 축으로 분석을 

수행하였다. 

표4 테스트별 평가 결과 요약 

 

Test 

평가 축 성공 실패 성공률 

TEST1-1 책임 적합성 6/9 3/9 67%  
구조적 전파 

인식 정확도 

9/9 0/9 100% 

TEST1-2 책임 적합성 9/9 0/9 100% 

 구조적 전파 

인식 정확도 

9/9 0/9 100% 

TEST2-1 책임 적합성 7/9 2/9 78%  
구조적 전파 

인식 정확도 

9/9 0/9 100% 

TEST2-2 책임 적합성 8/9 1/9 89%  
구조적 전파 

인식 정확도 

8/9 1/9 89% 

Total 책임 적합성 30/36 6/36 83% 

 구조적 전파 

인식 정확도 

35/36 1/36 97% 

 

TEST1-1에서 책임 적합성 평가에서 실패한 응답은 

총 3건(응답3, 5, 8) 이었으며 이들 모두 자신의 책임 

범위를 초과한 설계를 제시하였다. 응답 3에서는 계산 

전용 컴포넌트가 외부 상태 식별자 및 조회 책임을 

직접 포함하였다. 응답 5에서는 계산 전용 컴포넌트 

내부에서 시간적, 상태적 컨텍스트를 직접 산출하였다. 

응답 8에서는 상태 관리 및 누적 정보에 대한 책임이 

계산 로직을 담당하는 컴포넌트에 작성되었다. 

TEST2-1에서는 2개의 응답이 책임 적합성 평가에서 

실패하였다. 이 응답은 출금 실패 기록 저장이라는 요구 

자체는 충족하였으나, 출금 성공·실패 여부를 판단하는 

로직을 TransactionHistory 내부에 직접 포함하여, 판단 

책임을 침범한 사례로 분류되었다. 

TEST2-2에서는 1개의 응답이 책임 적합성과 구조적 

전파 인식 정확도 모두에서 실패하였다. 해당 응답은 

TransactionHistory의 수정만으로 충분한 상황에서, 

Account 클래스에 대한 추가 변경을 수정 요청으로 

명시함으로써 불필요한 구조적 전파를 발생시켰다. 

 

5.3 분석 

실험 결과에 따르면, 전체 테스트를 통틀어 구조적 

전파 인식 정확도 항목에서는 대부분의 응답이 

성공으로 평가되었다. 특히 외부 컴포넌트에 대한 변경 

필요성이 존재하는 경우에는, PSS가 변경 요청의 

구조적 영향 범위를 인식하고 이를 수정 요청으로 

명시하도록 유도하는 데 일관된 효과를 보였다. 반면, 

구조적으로 외부 변경이 필요 없는 요청(TEST1-

2)에서는 모든 응답이 추가적인 변경을 요구하지 않고 

단일 컴포넌트 내부 수정으로 종료되어, 구조적 전파 

인식 정확도 평가에서도 전면 성공으로 분류되었다. 

이는 PSS가 변경 전파가 필요한 경우와 필요하지 않은 

경우를 모두 구분하는 데 효과적으로 작동했음을 

의미한다. 

책임 적합성 평가에서는 테스트 유형에 따라 상이한 

결과가 관찰되었다. 수수료 계산 로직 변경을 다룬 

TEST1-2의 경우, 요청이 단일 컴포넌트의 순수 계산 

책임에 한정된 변경이었기 때문에 모든 응답이 책임 

적합성 평가에서 성공하였다. 반면, 상태 조회나 기록 

관리와 같이 책임 경계 해석이 요구되는 

테스트들에서는 일부 응답에서 실패가 발생하였다. 

실패한 응답들은 공통적으로 PSS에서 부여된 책임 

범위를 초과하여, 계산 로직 컴포넌트가 외부 상태 판단, 

시간적 컨텍스트 산출, 또는 누적 정보 관리와 같은 

책임을 내부에 포함하는 설계를 제시하였다. 

책임 적합성 평가에서 성공한 응답들에서는 계산 

로직을 담당하는 컴포넌트가 외부 상태나 누적 정보를 

직접 참조하지 않고, 필요한 정보만을 매개변수로 

전달받아 계산만을 수행하는 구조를 일관되게 

유지하였다. 또한 외부 컴포넌트의 수정이 구조적으로 

필요한 경우에만 이를 수정 요청으로 명시함으로써, 

자신의 책임 범위와 외부 책임 범위를 명확히 구분하는 

모습을 보였다. 

이러한 결과는 PSS가 변경에 따른 구조적 영향 

범위와 전파 필요성을 인식하는 데에는 충분한 정보를 

제공하였으나, 모든 상황에서 컴포넌트의 책임 경계를 

보수적으로 유지하도록 유도하는 데에는 한계를 

가졌음을 보여준다. 특히 순수 계산 변경과 달리, 

상태·기록·판단 책임이 얽힌 변경 요청에서는 PSS가 

제공된 조건에서도, 일부 응답에서 판단 책임이 명시된 
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책임 구조와 일치하지 않는 위치에 배치되는 설계 

선택이 관찰되었다. 

5.4 전체 코드 제공 조건에서의 보조적 관찰 

본 절에서는 PSS 제공 조건에서 관찰된 구조적 판단 

양상이, 전체 코드가 제공된 조건에서도 유사하게 

나타나는지를 보조적으로 확인한다. 본 관찰은 정량적 

비교 실험을 목적으로 하지 않으며, 구조 정보를 요약 

제공하는 접근(PSS)의 타당성을 보완적으로 검증하기 

위한 참고적 분석에 해당한다. 

 

표5. 전체 코드 제공 조건에서의 테스트별 평가 요약 

 

Test 

평가 축 성공 실패 성공률 

TEST1-1 책임 적합성 7/9 2/9 78%  
구조적 전파 

인식 정확도 

7/9 2/9 78% 

TEST1-2 책임 적합성 9/9 0/9 100% 

 구조적 전파 

인식 정확도 

9/9 0/9 100% 

TEST2-1 책임 적합성 9/9 0/9 100%  
구조적 전파 

인식 정확도 

9/9 0/9 100% 

TEST2-2 책임 적합성 6/9 3/9 67%  
구조적 전파 

인식 정확도 

6/9 3/9 67% 

Total 책임 적합성 31/36 5/36 86% 

 구조적 전파 

인식 정확도 

31/36 5/36 86% 

 

전체 코드 제공 조건에서도 구조적 판단 양상이 PSS 

제공 조건과 유사하게 나타났다는 점은, 구조 판단에 

필요한 핵심 구조 정보가 전체 코드의 양적 정보가 

아니라 구조 관계와 책임 중심의 정보임을 시사하며, 

이러한 정보가 PSS를 통해 충분히 요약되어 제공되고 

있음을 보조적으로 뒷받침한다. 이는 구조적 판단의 

기반이 코드 상세 구현이 아니라, 컴포넌트 간 책임 

분담과 의존 관계에 있음을 보여주며, 구조 정보를 요약 

제공하는 접근(PSS)이 구조 판단에 필요한 최소 핵심 

정보를 효과적으로 전달하고 있음을 의미한다. 

특히 구조적 전파 판단과 관련하여, PSS 조건에서는 

책임 관계 및 의존 구조가 명시적으로 제공되었기 

때문에 변경 전파 인식이 보다 안정적으로 유도되었을 

가능성이 크다. 반면 전체 코드 제공 조건에서는 동일한 

구조 관계가 암묵적으로 존재함에도 불구하고, 이를 

추론하는 과정에서 일부 응답의 구조 판단 일관성이 

저하되는 양상이 관찰되었다. 

5.5 논의 

본 실험의 결과는 PSS기반 입력이 LLM의 구조적 

영향 범위 추론 능력을 안정적으로 보조할 수 있음을 

보여준다. 대부분의 응답에서 구조적 전파 인식 

정확도가 성공으로 평가되었다는 점은, LLM이 변경 

요청을 단일 컴포넌트의 국소적 수정으로만 처리하지 

않고, 프로젝트 구조 차원에서 필요한 외부 변경을 

인식하고 명시할 수 있었음을 의미한다. 

반면, 책임 적합성 평가에서 일부 실패가 발생한 점은, 

구조 정보를 제공하더라도 LLM이 항상 컴포넌트의 

책임 경계를 보수적으로 유지하지는 않는다는 점을 

보여준다. 특히 실패한 응답들 에서는 계산 로직을 

담당하는 컴포넌트가 외부 상태, 시간적 컨텍스트, 누적 

정보 관리 등 구조적으로 분리되어야 할 책임을 내부로 

흡수하는 경향이 관찰되었다. 이는 LLM이 기능적 

요구를 충족하는 방향으로 설계를 수렴시키는 과정에서, 

책임 분리보다는 응집된 구현을 선택할 가능성이 

있음을 의미한다. 

향후 연구에서는 본 연구의 범위와 한계를 확장하는 

방향으로 추가적인 검증이 필요하다. 첫째, 본 연구는 

단일 도메인과 비교적 단순한 구조를 가진 프로젝트를 

대상으로 실험을 수행하였다. 실제 개발 환경에서는 

도메인 특성과 아키텍처 구조가 상이한 프로젝트들이 

존재하므로, 다양한 도메인과 구조적 특성을 가진 

사례를 대상으로 PSS의 적용 가능성을 검증할 필요가 

있다. 

또한, 본 연구에서 사용한 평가는 책임 적합성과 

구조적 전파 인식이라는 제한된 평가 축에 한정되었다. 

PSS는 변경 최소화, 설계 일관성 유지, 추론 안정성 등 

추가적인 측면에서도 기여할 가능성이 있으나, 이러한 

요소들은 본 연구에서 정량적으로 검증되지 않았다. 

향후 연구에서는 응집도(cohesion) 및 

결합도(coupling)와 같은 설계 품질 메트릭을 활용한 

평가를 추가하거나, PSS로 표현된 구조 정보를 MCP와 

같은 방식으로 활용하여 구조 정보가 LLM의 설계 판단 

과정에서 어떻게 사용되는지를 보다 정밀하게 분석할 

수 있을 것이다. 

 

6. 위협 요인 및 한계 

6.1 사례 일반화 문제 

본 연구에서는 단일 소규모 프로젝트를 대상으로 

PSS의 효과를 검증하였다. 실험에 사용된 프로젝트는 

비교적 단순한 클래스 구조와 명확한 책임 분리를 

전제로 설계되었다. 따라서 보다 복잡한 대규모 

시스템이나, 이벤트 기반 구조, 마이크로서비스 환경 

등의 구조적 단위와 책임 분할 방식이 상이한 아키텍처 

스타일에 일반화되기에는 한계가 있다. 

특히, 프로젝트 규모가 커진다면, PSS가 지나치게 

커져 활용성이 저하될 수 있으며, 이에 따라 LLM의 

구조 인식 성능 또한 상이하게 나타날 가능성이 있다. 

따라서 본 연구의 결과는 PSS가 구조적 판단 보조 

수단으로서 가능성을 보였다는 수준에서 해석되어야 

하며, 다양한 규모와 도메인의 프로젝트에 대한 
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추가적인 검증이 필요하다. 

 

6.2 평가 기준의 단순화 

본 연구에서 제안한 PSS는 LLM의 구조적 판단을 

다각도로 보조하는 것을 목표로 하지만, 본 연구에서는 

PSS의 여러 잠재적 장점 중 책임 적합성과 구조적 

전파 인식이라는 두 가지 측면에 대해서만 실험적으로 

평가하였다. 

PSS는 이외에도 변경 범위의 최소화, 설계 일관성 

유지, 추론 안정성 등과 같은 추가적인 기여 가능성을 

가질 수 있으나, 이러한 효과를 검증하기 위해서는 여러 

도메인과 복합적인 변경 시나리오를 포함하는 추가 

실험이 필요하다. 

 

7. 결론 

본 연구는 대규모 언어 모델(LLM)이 프로젝트 단위의 

코드 변경을 수행하는 과정에서 나타나는 구조적 한계, 

특히 컴포넌트 간 책임 분리와 변경에 따른 영향 범위 

판단의 어려움에 주목하였다. 이러한 한계의 원인으로 

LLM이 전체 프로젝트 구조를 직접적으로 인식하기 

어렵다는 점을 지적하고, 이를 보완하기 위한 방법으로 

Project Structural Summary(PSS)를 활용한 구조적 입력 

방식을 제안하였다. 

소규모 프로젝트를 대상으로 수행한 실험 결과, 

PSS가 제공된 경우 LLM은 변경 요청에 수반되는 외부 

수정 필요성을 모두 인식하고 이를 명시적으로 

표현하였다. 즉, 변경에 따른 구조적 전파 인식 

측면에서는 모든 실험 응답에서 일관된 성공을 보였다. 

반면, 단일 컴포넌트의 책임 경계를 유지하는 

측면에서는 일부 실패 사례가 관찰되어, 구조 정보가 

제공되더라도 설계 책임 판단이 항상 안정적으로 

이루어지지는 않음을 확인하였다. 

이러한 결과는 PSS가 LLM의 변경 영향 범위 추론과 

프로젝트 구조 인식을 보조하는 입력 표현으로서 

유의미한 가능성을 지님을 보여준다. 동시에, 책임 경계 

유지와 같은 설계 판단을 완전히 자동화하기에는 

여전히 한계가 존재함을 드러낸다. 
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요   약 

 대규모 언어 모델(Large Language Models; LLMs)은 이해하기 쉬운 단위 테스트를 생성하는 데 있어 

가능성을 보여주었으나, 동적 분석이나 실행 피드백을 활용하지 못하기 때문에 높은 테스트 커버리지를 

달성하는 데에는 여전히 한계가 있다. 본 연구에서는 테스트 커버리지 증진을 위해 동적 커버리지 피드

백을 통합한 새로운 LLM 기반 JavaScript 테스트 생성 기법인 COVERPILOT을 제안한다. 5개의 오픈소스 

JavaScript 프로젝트를 대상으로 COVERPILOT을 평가하고, 기존 자동 테스트 생성 도구인 Nessie와 선

행 LLM 기반 기법인 TESTPILOT과 비교하였다. 실험 결과, COVERPILOT은 문장 커버리지와 분기 커버

리지 모두에서 기존 기법을 유의미하게 상회하였으며, 이는 LLM 기반 테스트 생성에 커버리지 피드백을 

통합하는 접근법의 효과를 입증한다. 

1. 서  론 

 

 
그림 1 LLM 기반 단위 테스트 생성 예시 

 

단위 테스트(Unit Test)는 개별 코드 단위(e.g., 

소프트웨어 프로젝트의 API)의 기능적 정확성을 

검증하는 데 사용된다. 이러한 테스트는 소프트웨어 

품질 유지에 있어서 중요한 역할을 수행한다. 그런데, 

단위 테스트를 수작업으로 작성하는 과정은 개발자의 

시간과 노력을 요구한다. 

이러한 문제를 해결하기 위해 퍼징(fuzzing) [4], [5], 

무작위 테스트(random testing) [6], [1], 탐색 

기반(search-based) 기법 [7], [8] 등 다양한 자동 

테스트 생성 기법들이 제안되어 왔다. 이러한 기법들은 

일정 수준의 효과를 보이지만, 생성된 테스트가 

이해하기 어려운 변수명이나 불필요한 

검증문(assertion)을 포함하는 경우가 많아 가독성이 

떨어진다는 문제가 있다. 그 결과, 자동 생성된 

테스트는 개발자가 작성한 테스트에 비해 이해하기 

어렵다. 

최근에는 대규모 언어 모델(Large Language Models; 

LLM)이 새로운 대안으로 나타나고 있다. LLM은 대규모 

코드 및 자연어 데이터로 학습되어 가독성 뛰어난 

코드를 생성할 수 있는데, 소프트웨어 테스팅 

과제에서도 의미 있는 변수명과 검증문을 포함한 

테스트를 생성할 수 있음을 보였다. 예를 들어, 

TESTPILOT[3]과 같은 기법은 추가적인 학습 없이도 

기존 LLM을 활용하여 고품질 단위 테스트를 생성할 수 

있다. 

그러나, LLM 기반 테스트 생성 기법은 테스트 

커버리지 측면에서 여전히 한계를 가진다. 테스트 

커버리지는 테스트 실행 시 소스 코드가 얼마나 

실행되었는지를 측정하는 지표이다. 통상적으로, 높은 

테스트 커버리지는 결함 발견 가능성이 많음을 

의미한다. 그런데, 기존 LLM 기반 테스트 생성 기법은 

다음과 같은 이유로 충분한 커버리지를 확보하지 

못한다: 

(1) LLM은 커버리지 최적화를 명시적으로 수행하지 

않는다. TESTPILOT과 같은 기법은 기능적으로 올바른 

테스트 생성에 집중하지만, 생성된 테스트가 모든 실행 

경로를 탐색하는지는 확인하지 않는다. 예를 들어, 그림 

1의 테스트 생성 예시에서 complex.js.ZERO.valueOf 
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API는 허수(im)가 0일 경우 실수(re)를 반환하고, 

그렇지 않으면 null을 반환한다. 해당 코드를 완전히 

커버하기 위해서는 im이 0인 경우와 0이 아닌 경우를 

모두 테스트해야 한다. 그러나 LLM은 허수가 0이 아닌 

경우(e.g., 42 + 2i)만 테스트하고, im이 0인 경우를 

고려하지 않아 완전한 커버리지를 달성하지 못한다. 

(2) LLM은 테스트 실행 피드백이나 동적 분석을 

활용할 수 없다. 개발자 및 기존 자동 테스트 생성 

도구는 동적 분석을 응용해 테스트 커버리지를 

점진적으로 보완할 수 있다. 예를 들어, 그림 1 

사례에서 동적 분석을 실행하면 im이 0인 분기가 

테스트에 의해 실행되지 않았다는 점을 쉽게 확인할 수 

있다. 반면, LLM은 실행 피드백을 직접 활용할 수 없기 

때문에 테스트 커버리지를 향상시키지 못한다. 

본 연구에서는 이러한 문제를 해결하기 위해 

커버리지 피드백을 통합한 LLM 기반 테스트 자동 생성 

기법: COVERPILOT을 제안한다. COVERPILOT은 

커버리지 피드백 루프를 도입하여 테스트 커버리지를 

점진적으로 개선할 수 있다. 우선, LLM으로 초기 단위 

테스트를 생성하고 커버리지를 측정하여 아직 실행되지 

않은 코드 블록을 식별한다. 다음으로, 커버리지 증진을 

위해 실행되지 않은 코드 블록을 목표로 하는 테스트를 

추가적으로 생성한다. 완전한 커버리지를 달성할 때까지 

커버리지 피드백 루프를 반복하여 LLM이 테스트 

커버리지를 점진적으로 개선할 수 있도록 한다 

본 연구에서는 5개의 오픈소스 JavaScript 

프로젝트에 대하여 COVERPILOT의 테스트 생성 성능을 

평가하고, 기존 자동 테스트 생성 도구인 Nessie 및 

기존 LLM 기반 기법인 TESTPILOT과 비교한다. 실험 

결과, COVERPILOT은 문장(statement) 커버리지와 

분기(branch) 커버리지 모두에서 두 기존 기법보다 

유의미하게 높은 성능을 보였으며, 이는 LLM 기반 

테스트 생성에 커버리지 피드백을 통합하는 접근의 

효과를 입증한다. 

본 연구가 기여하는 내용은 다음과 같다. 

1. 동적 커버리지 피드백 루프를 통합하여 

JavaScript 테스트 커버리지를 반복적으로 

개선하는 새로운 LLM 기반 테스트 생성 기법 

COVERPILOT을 제안한다. 

2. 오픈소스 프로젝트에 대한 정량적 평가를 통해, 

커버리지 피드백을 LLM에 통합하는 접근이 LLM 

기반 단일 테스트 생성 및 기존 자동 테스트 생성 

기법에 비해 커버리지가 우수함을 보인다. 

 

2. 관련 연구 

 

2.1. 자동 테스트 생성 

 

자동 테스트 생성 분야에는 퍼징(fuzzing) [4], [5], 

무작위 테스트(random testing) [6], [1], 탐색 

기반(search-based) 기법 [7], [8] 등 다양한 기법이 

연구되었다. 일반적으로 프로그램 분석이나 실행 

피드백을 활용해 프로그램의 제어 흐름 및 데이터 흐름 

경로를 탐색하고, 그 결과를 바탕으로 커버리지를 

최대화하도록 테스트를 생성한다. 

예를 들어, JavaScript API를 대상으로 하는 단위 

테스트 생성 도구인 Nessie[1]는 테스트를 실행 

피드백을 기반으로 테스트를 점진적으로 생성하는 

피드백 지향 테스트 생성 알고리즘을 사용한다. 이 

피드백은 생성되는 테스트가 보다 복잡한 API 호출을 

하도록 유도한다.  

기존 자동 테스트 생성 기법은 테스트 커버리지를 

최적화할 수 있는 반면, 가독성 있는 테스트를 

만들어내는 데에 있어서는 한계를 지닌다. 첫째, 생성된 

테스트는 직관적이지 않은 변수명을 사용하는 경우가 

많아 개발자가 작성한 테스트에 비해 이해하기 어렵다. 

둘째, 불필요한 검증문(assertion)이 과도하게 포함되는 

문제가 발생한다. 그 결과, 자동 생성된 테스트 코드는 

가독성에 떨어지며, 별다른 처리 없이 프로젝트에 

통합하기 어렵다. 

 

2.2. LLM 기반 테스트 생성 

 

최근에는 자연어 및 소스 코드 데이터를 학습한 

대규모 언어 모델(LLM)을 단위 테스트 생성에 활용하는 

추세다. LLM은 자연스러운 자연어 및 코드를 생성할 수 

있으므로, 가독성이 높고 유의미한 단위 테스트를 

생성할 수 있을 것으로 기대된다. 

구체적으로, TESTPILOT[3]은 JavaScript API에 대해 

LLM을 활용하여 테스트를 자동 생성하는 기법으로, 

추가적인 학습 없이도 단위 테스트를 효과적으로 

생성할 수 있음을 보였다. TESTPILOT은 API 시그니처, 

기술 문서, 호출 예시, 소스 코드 등을 조합해 

프롬프트를 구성하고, 이를 바탕으로 기능적으로 정확한 

단위 테스트를 생성한다. 

그런데, TESTPILOT은 테스트 커버리지 최적화에서는 

한계를 지닌다. 개발자 혹은 기존 자동 테스트 생성 

기법은 테스트 커버리지와 같은 코드 실행 피드백을 

활용해 테스트를 점진적으로 보완할 수 있지만, 

TESTPILOT은 오직 기능적으로 정확한 테스트를 

생성하는 데에만 집중하고 커버리지는 명시적으로 

증진하지 않는다. 또한, TESTPILOT은 LLM에게 

프로그램 분석 및 커버리지 피드백 같은 심층적인 

정보를 제공하지 않는다. 그 결과, 중요한 코드 실행 

경로를 놓칠 수 있으며 이는 버그 탐지 능력 저하로 

이어질 가능성이 높다. 

CoverUp [11] 및 TELPA [10] 등 LLM 기반 테스트 

생성에도 커버리지 피드백이나 프로그램 분석을 

도입하는 기법들도 제안되었으나, JavaScript 테스트를 

대상으로 하는 기법은 부재하는 상황이다. 본 논문은 
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JavaScript 테스트 커버리지를 증진하는 테스트 생성 

기법을 제안하고자 한다. 

 

3. 제안 기법 

 

 

그림 2 COVERPILOT 워크플로우 

 

본 연구에서 제안하는 커버리지 피드백을 통합한 

LLM 기반 테스트 자동 생성 기법, COVERPILOT의 전체 

워크플로우는 그림 2와 같다. COVERPILOT 기법은 (1) 

초기 테스트 생성 단계와 (2) 커버리지 피드백 루프 

단계로 구성된다. (1) 단계에서는 입력받은 JavaScript 

프로젝트 내 각 테스트 대상 API에 대해 기능적으로 

정확한 단위 테스트를 생성하고, (2) 단계에서는 테스트 

실행 결과로부터 얻은 커버리지 피드백을 활용하여 

테스트 커버리지를 점진적으로 개선한다. 

 

3.1. 초기 테스트 생성 단계 

 

초기 테스트 생성 단계의 목적은 각 테스트 대상 

API에 대해 기능적으로 올바른 단위 테스트를 생성하는 

것이다. LLM은 각 API의 소스 코드를 분석하여 해당 

API에 적합한 단위 테스트를 생성한다. 

입력으로 JavaScript 프로젝트가 주어지면, 

COVERPILOT은 Nessie에서 사용한 방식과 유사한 API 

탐색 기법을 이용해 테스트 대상 API, 즉 public 함수 

및 메서드 집합을 추출한다. 구체적으로, 프로젝트의 

객체 그래프(object graph)를 분석하여 모든 public 

API를 식별한다. 각 API에 대해 시그니처, 소스 코드, 

그리고 파일 위치 정보를 기록한다. 

 

 

그림 3 초기 테스트 생성 프롬프트 예시 

 

각 테스트 대상 API에 대해 LLM을 활용하여 

기능적으로 정확한 단위 테스트를 생성한다. 이를 위해 

그림 3과 같은 프롬프트를 구성하는데, 이 프롬프트는 

API 시그니처, 소스 코드, 테스트 헤더로 이루어진다. 

LLM이 생성한 단위 테스트를 실행하여 기능적으로 

정확한지 확인한다. 테스트 실행에서 오류가 발생할 

경우 해당 테스트는 폐기되며, COVERPILOT은 최대 

3회까지 LLM을 재호출하여 기능적으로 정확한 

테스트를 마련한다. 

 

3.2. 커버리지 피드백 루프 단계 
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그림 4 커버리지 피드백 프롬프트 예시 

 

커버리지 피드백 루프 단계는 이전 단계에서 생성된 

초기 테스트를 기반으로, 동적 커버리지 피드백을 

활용하여 테스트 커버리지를 개선하는 것을 목표로 

한다. 

먼저, 이전 단계에서 마련한 초기 테스트를 실행하여 

커버리지를 측정한다. 이때, JavaScript 커버리지 분석 

도구인 nyc/istanbul이 생성한 커버리지 리포트를 

분석하여 초기 테스트에 의해 실행되지 않은 코드 

블록을 식별한다. 이 분석을 통해 커버리지가 불완전한 

테스트 대상 API들을 파악할 수 있다. 

커버리지가 부족한 API 목록이 확보되면, 각 API에 

대해 커버리지 피드백 루프를 수행하여 추가 테스트 

케이스를 생성한다. 이때, 그림 4와 같은 프롬프트를 

구성한다. 프롬프트는 API 시그니처, 소스 코드, 테스트 

헤더를 포함하며, 테스트에 의해 실행되지 않은 코드 

블록을 API 소스 코드 내에서 주석화한다. 이러한 

주석은 LLM에게 어떤 코드 영역이 아직 실행되지 

않았는지를 직접적으로 드러낸다. 

LLM이 생성한 테스트를 실행하여 커버리지 향상 

여부를 확인한다. 커버리지가 여전히 충분하지 않다면, 

해당 API에 대해 동일한 과정을 반복한다. 

COVERPILOT은 각 API에 대해 최대 5회까지 LLM을 

호출하여 커버리지 최적화를 시도한다. 이와 같이 

동적인 실행 피드백을 반복적으로 활용함을 통해 

테스트 커버리지를 점진적으로 개선한다. 

 

4. 실험 설계 

 

COVERPILOT의 테스트 생성 성능을 평가하기 위한 

실험을 설계한다. 실험의 주요 목적은 동적 커버리지 

피드백을 통합한 LLM 기반 테스트 자동 생성이 LLM 

기반 단일 테스트 생성 기법 및 기존 자동 테스트 생성 

기법에 비해 테스트 커버리지 측면에서 얼마나 

효과적인지를 검증하는 것이다. 

 

4.1. 벤치마크 

 

 

표 1 실험 벤치마크 

 

COVERPILOT의 성능을 평가하기 위해 5개의 

오픈소스 JavaScript 프로젝트를 벤치마크로 사용하였다. 

사용된 프로젝트는 bluebird, q, pull-stream, complex.js, 

memfs로, 이들 프로젝트에는 총 665개의 테스트 대상 

API가 포함되어 있다. 

각 프로젝트에 대한 코드 라인 수와 API 개수는 표 

1에 기재되어 있다. 각 프로젝트에 대한 테스트 생성 

시간은 동일하게 1시간으로 제한했다. 

 

4.2. 실험 설계 

 

COVERPILOT의 성능을 평가하기 위해 두 가지 비교 

대상을 설정하였다. 

첫째, Nessie[1]는 JavaScript API를 대상으로 하는 

자동 테스트 생성 도구로, 피드백 기반 테스트 생성 

기법이다. Nessie는 프로그램 실행 결과로부터 얻은 

피드백을 활용하여 테스트를 반복적으로 생성한다. 본 

논문에서는 기존 TESTPILOT 논문에서 보고된 성능 

수치를 비교 기준으로 사용하였다. 

둘째, TESTPILOT[3]은 LLM 기반 단일 테스트 생성 

기법으로, API 시그니처, 기술 문서, 사용 예시, 소스 

코드 등을 결합한 프롬프트를 사용해 단위 테스트를 

생성한다. TESTPILOT은 프로그램 분석이나 커버리지 

피드백 등 심화 정보는 응용하지 않는다. 본 연구에서는 

TESTPILOT을 COVERPILOT과 동일한 조건에서 직접 

실행하여 성능을 측정하였다. 

두 비교 대상은 각각 전통적인 자동 테스트 생성 

기법과 기존 LLM 기반 단일 테스트 생성 기법을 

대표한다. 이들과 비교 실험을 통해 COVERPILOT의 

상대적 성능을 종합적으로 평가할 수 있다. 

COVERPILOT과 TESTPILOT 모두 기반 LLM으로서 

StarCoder-15B 모델[2]을 사용하였으며, 단일 Nvidia 

RTX A6000 (48GB) GPU 환경에서 실행하였다.  

 

5. 실험 결과 

 

 
표 2 실험 결과 

 

표 2는 Nessie, TESTPILOT, 그리고 COVERPILOT이 

5개의 오픈소스 JavaScript 프로젝트에 대해서 달성한 

문장(statement) 커버리지와 분기(branch) 커버리지를 

제시한다. 이 결과는 동적 커버리지 피드백을 LLM 기반 

테스트 생성에 통합하는 접근이 효과적임을 입증한다.  

COVERPILOT은 평균 커버리지 측면에서 두 비교 

기법을 모두 능가하는 성능을 보였다. 평균 문장 
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커버리지는 66.76%, 평균 분기 커버리지는 49.92%로, 

TESTPILOT 대비 각각 +14.67%와 +10.07% 

향상되었다. Nessie에 대해서는 문장 커버리지 +22.7%, 

분기 커버리지 +21.04% 향상을 기록하였다. 이는 실행 

피드백 기반 커버리지 정보를 적극적으로 활용하는 

접근이 테스트 품질을 크게 개선할 수 있음을 보여준다. 

COVERPILOT은 다섯 개의 벤치마크 프로젝트 중 네 

개에서 두 비교 기법보다 우수한 성능을 보였다. 특히, 

bluebird에 대해서는 TESTPILOT 대비 문장 커버리지 

+21.37%, 분기 커버리지 +20.33%의 큰 향상을 

달성하였다. 산술 연산을 포함하는 complex.js에서도 

문장 커버리지 +25.13%, 분기 커버리지 +8.52%의 

유의미한 개선이 관찰되는데, 이는 조건 분기와 엣지 

케이스가 중요한 산술 연산 코드에 대해서는 

COVERPILOT이 강점을 지님을 보여준다. memfs 

프로젝트의 경우에는 Nessie가 COVERPILOT보다 다소 

높은 커버리지를 달성하였다. 이는 Nessie가 1시간 

시간 제한에 제약 받지 않았기 때문일 가능성이 크다. 

COVERPILOT이 기존 기법 대비 우수한 성능을 보인 

핵심 요인은 동적 커버리지 피드백의 활용이다. 

TESTPILOT이 정적인 프롬프트와 LLM 단일 생성에만 

의존하는 반면, COVERPILOT은 테스트 실행 결과를 

바탕으로 커버리지가 부족한 코드 영역을 식별하고 

이를 기반으로 테스트를 점진적으로 보완한다. 이러한 

커버리지 피드백 루프는 LLM의 코드 생성 과정을 

동적으로 보정하여 보다 포괄적인 테스트 커버리지를 

달성을 가능하게 한다. 

 

6. 결론 

 

본 논문에서는 동적 커버리지 피드백을 통합하여 

테스트 커버리지를 점진적으로 개선하는 새로운 LLM 

기반 단위 테스트 자동 생성 기법인 COVERPILOT을 

제안한다. 기존 LLM 기반 접근법인 TESTPILOT과 같은 

기법들은 기능적으로 정확한 테스트를 생성하는 데에는 

성공적이지만, 잠재적인 버그를 발견하는 데 필수적인 

요소인 테스트 커버리지를 최적화하는 데에는 한계를 

지닌다. COVERPILOT은 커버리지 피드백 루프를 

도입함으로써, 실행되지 않은 코드 블록을 체계적으로 

식별하고 보완하기 위한 추가적인 테스트를 생성할 수 

있다. 이를 통해 테스트 커버리지를 점진적으로 

향상시킬 수 있다. COVERPILOT은 5개의 JavaScript 

오픈소스 프로젝트에 대해서 기존의 자동 테스트 생성 

도구인 Nessie와 LLM 기반 단일 테스트 생성 기법인 

TESTPILOT에 비해 문장 커버리지와 분기 커버리지 

측면에서 유의미한 성능 향상을 달성하였다. 이러한 

결과는 LLM의 생성 능력과 기존 소프트웨어 테스팅 

기법을 융합한 접근법이 효과적임을 시사한다.  
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요   약 

 항공기 생산과 유지정비 수요는 지속적으로 확대되는 반면, 생산가능인구 감소로 인해 업무 자동화가 

필수 과제로 전환되고 있다. 치공구 설계는 이러한 자동화 요구가 집중되는 대표적 영역으로, 단일 형상

을 한 번 생성하는 문제가 아니라 부속 단위의 반복 생성과 배치, CAD(Computer-Aided Design) 환경에

서의 실행–검증–복구, 설계 자산의 재사용과 갱신 등 운영을 포괄하는 자동화 문제이다. 본 연구는 치공

구를 부속 단위로 분해하고, RAG(Retrieval-Augmented Generation) 기반 코드 자산 재사용과 

MCP(Model Context Protocol) 기반 도구 계층화를 결합한 멀티 에이전트 FreeCAD 오토코딩 시스템을 

제안한다. 5개의 L자 형상 가공대상에 대한 평가 결과, 서로 다른 크기의 가공대상에 대해 평균 1분 48

초에서 2분 1초 범위 내에서 전체 치공구를 자동 생성하였으며, 잠재 사용자 평가를 통해 현장 적용 가

능성을 확인하였다. 본 연구는 소프트웨어공학의 운영화 철학이 AI 기반 제조 설계 자동화 영역으로 확

산될 수 있음을 보여준다. 

1. 서  론

항공기 생산과 유지정비 수요는 지속적으로 확대되는

반면[1-3], 생산가능인구는 감소하고 있어[4] 설계 자동화 

역량 확보가 필수 과제로 부상하고 있다. 특히, 치공구 설계는 

이러한 자동화 요구가 집중되는 대표적 영역이다. 치공구는 

각 항공기 부품을 가공할 때 가공대상(Workpiece)의 위치 

결정과 고정에 사용되는 공구로서, 그림 1과 같이 베이스 

플레이트 (Baseplate), 인덱스플레이트 (Indexplate), 클램프 

(Clamp), 가이드 브라켓 (Guide Bracket) 등 여러 부속의 

조합으로 구성된다. 치공구의 설계 및 제작은 항공기 제조 

비용의 10–20%를 차지하고[5] 평균 2–4개월이 소요되어[6] 

주요 병목이 된다. 그러나 3차원 공간 추론이 요구되는 

고난도 작업이자[7] 설계자 경험 의존성이 높아[8], 자동화가 

어려운 영역으로 남아 있다. 

이에 대해, 최근 자연어 요구를 코드로 변환하는 LLM(Large 

Language Model) 기반 오토코딩(auto-coding)이 유망한 

접근법으로 주목받고 있다. 하지만 이를 치공구 설계에 직접 

적용하기에는 난관이 존재한다. 단순한 L자 형상의 가공 

대상에 대한 치공구조차 CAD 플랫폼인 FreeCAD의 Python 

API 기준 약 4,000라인의 코드가 필요하다. LLM이 이를 매번  

그림1. 가공대상과 치공구의 각 구성요소 

단일 형상으로 간주해 전부 생성할 경우, 환각 (hallucination), 

비용, 지연, 컨텍스트(Context) 망각이 복합적으로 작용하여  

품질이 저하된다. 이에 더해, 치공구 설계는 단일 형상 생성에 

그치지 않는다. CAD 환경에서 부속 단위의 반복 생성과 배치, 

사용자의 피드백에 따른 수정, 설계 자산의 재사용과 갱신이 

지속적으로 요구된다. 본 연구는 이러한 특성에 주목하여, 

치공구 자동설계를 완성된 단일 형상 생성이 아닌 지속적 

설계, 구현, 검증, 복구의 순환을 포괄하는 운영형(Operations, 

Ops) 자동화 문제로 정의한다.  
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본 논문은 이 문제를 해결하기 위해 RAG–MCP 기반 멀티 

에이전트 FreeCAD 오토코딩 시스템을 제안한다. 제안 

시스템은 반복되는 수정 요구에 대응하기 위해, 첫째, 

치공구를 4개의 하위 부속으로 분해 후 개별적으로 관리한다. 

둘째, LLM의 컨텍스트 망각에 대응하기 위해, 각 부속의 

설계를 전담하는 에이전트와 전체 워크플로우를 조율하는 

관리 에이전트를 분리한다. 셋째, LLM의 환각, 비용, 지연 

문제에 대응하기 위해, RAG (Retrieval-Augmented 

Generation)[9] 기법과 MCP(Model Context Protocol)[10] 

기반 도구를 적용한다. RAG는 사전 검증된 코드 자산을 검색 

및 재사용하여 LLM이 직접 생성해야 하는 코드량을 

최소화하고, MCP 기반 도구는 미리 의도된 규칙 하에서 부속 

설계를 진행할 수 있게 한다. 이러한 설계는 DevOps, MLOps 

등 소프트웨어공학에서 발전한 운영화 철학과 맥을 같이한다. 

제안 시스템의 평가는 실용적 타당성에 초점을 둔다. 5개의 

서로 다른 크기의 가공대상에 대해 로컬 개발 환경에서 설계 

소요 시간, 실패 유형 및 복구 양상을 측정한다. 또한 항공기 

치공구 설계 실무 경력자의 평가를 통해 생성된 치공구의 

설계 품질과 현장 적용 가능성을 검토한다.  

본 연구의 기여는 다음과 같다. 첫째, 치공구 자동설계에 

멀티 에이전트 기반 오토코딩을 적용한 첫 사례로서, 부속 

단위 분해와 RAG 기반 코드 자산 재사용, MCP 기반 도구 

호출 계층 분리를 결합한 설계 자동화 시스템을 제안하였다. 

둘째, FreeCAD 환경에서 실제 실행 가능한 시스템을 

구현하고, 반복 실험과 실무자 평가를 통해 실용적 타당성을 

확인하였다. 셋째, 소프트웨어공학의 모듈화, 재사용성, 

운영화 원칙이 AI 기반 제조 설계 자동화 영역으로 확산될 수 

있음을 실증적으로 보였다. 

논문의 구성은 다음과 같다. 2장에서는 관련 연구를 

정리한다. 3장에서는 제안 시스템을 설명한다. 4장에서는 평가 

방법을 기술한다. 5장에서는 평가 결과를 제시한다. 6장에서는 

논의를, 7장에서 결론을 제시한다. 

 

2. 관련연구 

치공구 자동설계처럼 3차원 형상을 반복적으로 생성해야 

하는 작업에서, 최근 연구는 다음 네 흐름으로 정리할 수 

있다. 첫째, CAD를 명령 시퀀스로 표현하고 이를 학습하여 

생성 및 재구성하는 생성모델 계열이다(2.1절). 둘째, LLM을 

통해 사용자의 자연어 요구를 CAD 전용 코드 또는 절차로 

변환하는 오토코딩 계열이다(2.2절). 셋째, CAD 환경에서 

생성 이후의 실행 가능성과 신뢰성을 높이는 계열이다(2.3절). 

넷째, 설계-제조 파이프라인 전반에서 멀티 에이전트 협업과 

지식 재사용을 통해 운영 가능한 설계 자동화를 지향하는 

계열이다(2.4절). 본 절에서는 각 흐름의 핵심 아이디어를 

정리 및 비교한다. 

 

2.1 CAD 시퀀스 기반 생성 및 재구성 

CAD 자동설계에 대한 대표적인 연구는 CAD를 파라미터로 

구성된 명령 시퀀스 또는 프로그램으로 정의한 연구들이다. 

Seff et al.[11]은 파라메트릭 스케치 생성을 통해 CAD 표현 

학습의 기반을 제시하였고, Wu et al.[12]은 명령 시퀀스를 

자동회귀 방식으로 생성하는 심층 생성모델을 제안하였다. 

Alam et al.[13]은 이미지 조건부 생성으로 입력을 확장했고, 

Kolodiazhnyi et al.[14] 및 Nakayama[15]는 강화학습 기반의 

CAD 프로그램 생성 가능성을 탐색했다. 

이 흐름은 CAD 형상을 학습 가능한 시퀀스로 표현하는 

방법론을 확립했다는 점에서 의의가 있다. 그러나 도메인 

규칙의 반영, 신규 사례의 저비용 갱신, 실패의 국소 복구 등 

산업 적용에 필요한 운영형 요구를 체계적으로 다루지는 

않는다. 

 

2.2 LLM 기반 CAD 오토코딩 

LLM의 확산과 더불어 자연어 요청을 CAD 산출물로 

변환하려는 연구들이 증가했다. 텍스트-코드 변환 측면에서, 

Wu et al.[16]은 CAD 생성 문제를 언어 모델과 결합해 

다루었고, Khan et al.[17]은 텍스트 프롬프트 기반 순차 CAD 

생성 모델을, Li et al.[18]은 CAD 전용 언어 모델을, Xie and 

Ju[19]는 특정 CAD 언어 대상 직접 변환 방법을 각각 

제안하였다. 입력 다양화 측면에서, Xu et al.[20], Yuan et 

al.[21], Wu et al.[22]은 이미지, 포인트 클라우드, 스케치 등 

다양한 입력 조건에서 편집 가능한 절차를 산출하는 접근을 

제안했고, Li et al.[23]은 멀티모달 LLM의 3차원 CAD 생성 

능력을 평가하였다. 

다만 이 흐름의 다수 연구는 치공구처럼 부속 조합과 

배치가 핵심인 문제에서 필요한, 부속 단위의 단계 분해와 

책임 분리, 생성 결과의 실행 가능성 검증, 실패 시 국소 복구, 

운영 중 지식의 재사용 및 갱신을 하나의 시스템 구조로 

통합하는 측면에서는 제한적이다. 

 

2.3 생성 후 검증 및 반복 개선 

산업 환경에서 생성 결과를 활용하려면 생성 이후의 검증과 

수정이 필수적이다. 시각적 피드백 기반 반복 개선 측면에서, 

Badagabettu et al.[24]은 FreeCAD 환경에서 자연어 기반 

모델 생성과 시각적 피드백을 결합한 반복 개선을, Alrashedy 

et al.[25]과 Wang et al.[26]은 시각적 검증 루프를 통한 

정확도 향상을 제안하였다. 도구 호출 및 편집 측면에서, 

Mallis et al.[27]은 CAD 환경과 도구 호출 기반의 다양한 

CAD 작업 수행을, Yuan et al.[28]은 텍스트 기반 CAD 편집 

기능을, Chen et al.[29]은 CAD 프로그램의 오류 탐지와 자동 

수정을 각각 제시하였다. 

그러나 이 계열에서도 운영 관점의 핵심 요구가 충분히 

구조화되는 것은 아니다. 특히 부속 단위의 단계 분해가 

시스템 구조로 강제되는 사례는 제한적이기에, 적용 범위가 

확대될수록 과정의 확장과 유지보수 비용이 증가할 수 있다. 

 

2.4 멀티 에이전트 기반 설계 운영화와 지식 재사용 

설계-제조 파이프라인 전반에서 멀티 에이전트 기반의 LLM 

활용을 논의하는 연구 또한 증가하고 있다. Makatura et al.[30, 

31]은 설계 표현부터 제조 준비까지 파이프라인 관점에서 

가능성과 한계를 분석했고, Lim et al.[32]은 제조 시스템에서 
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역할 분해된 멀티 에이전트 협업 구조를 논의하였다. Ocker et 

al.[33], Liao et al.[34]은 아이디어에서 CAD까지 협업하는 

멀티 에이전트 설계를 제시하며 역할 분해의 필요성을 

강조했고, Deng et al.[35]은 산업용 CAD 자동화 적용 

가능성을 조사하며 실제 적용 요구를 드러냈다. 

이 흐름은 협업과 운영 구조의 중요성을 보여주지만, 

치공구처럼 도메인 규칙이 강하고 반복 설계가 많은 문제에서 

코드 자산 재사용 및 갱신과 도구 호출 계층 분리를 결합해 

운영 가능한 형태로 구현한 사례는 여전히 제한적이다. 

 

2.5 본 연구의 차별점 

표 1은 앞선 네 범주를 운영 가능한 오토코딩 설계 시스템 

관점에서 요약 비교한 것이다. 기존 연구는 형상 생성 성능, 

입력 다양성, 생성 후 검증과 편집, 멀티 에이전트 협업을 

각각 발전시켜 왔으나, 이들을 산업 적용 관점에서 하나의 

통합된 구조로 구현한 사례는 제한적이다. 특히, 치공구 

도메인에서는 멀티 에이전트 구조 위에 이들을 통합한 

오토코딩 선행연구는 확인되지 않았다. 본 연구는 이러한 

연구 격차를 해소하기 위해 치공구 문제를 운영형 자동화 

문제로 정의 후, 부속 단위 독립, 멀티 에이전트 및 RAG-

MCP 도구를 활용한 오토코딩 설계 시스템을 구현한다.  

 

표1. 운영 가능한 오토코딩 설계 시스템 관점에서의 비교 

연구 범주 

코드 

자산 

활용· 

갱신 

부속 

단위 

분해 

역할 

기반 

제어 

도구 

호출 

계층 

표준 

CAD 

환경 

직접 

실행 

생성 

후 

검증·

편집 

2.1 

CAD 시퀀스 
X X X X △ X 

2.2 

LLM 
△ △ X △ △ △ 

2.3 

생성 후 검증 
△ △ △ △ O O 

2.4 

멀티 에이전트  
△ O O △ △ △ 

제안 시스템 O O O O O △ 

※ X: 해당 없음, △: 일부 해당, O: 해당 

 

3. 제안 시스템 

본 장에서는 치공구 자동설계를 생성–실행–검증–복구의 

순환으로 운영 가능하게 만드는 시스템 구조를 제안한다. 

제안 시스템은 RAG 기반 코드 자산 재사용 및 갱신, MCP 

기반 도구 호출 계층화, 역할 기반 멀티 에이전트 분해를 

결합하여, LLM이 FreeCAD 파이썬 코드를 대규모로 단발 

생성할 때 발생하는 환각, 비용, 지연, 컨텍스트 한계를 

구조적으로 완화하도록 설계하였다. 전체 구조는 그림 2와 

같으며, 이후 절에서 각 계층과 설계 결정을 요약한다. 

3.1 설계 목표 

치공구 설계는 단일 형상을 한 번 생성하는 문제가 아니라, 

부속 단위의 반복 생성과 배치, CAD 환경에서의 실행 가능성 

검증, 오류 발생 시 국소 복구, 그리고 사례 축적을 통한 지식 

자산의 재사용 및 갱신을 요구한다. 본 연구는 LLM의 생성 

능력 자체보다, LLM이 다뤄야 하는 코드/컨텍스트 범위를 

구조적으로 축소하면서도 실행 가능한 산출물을 안정적으로 

확보하는 것을 목표로 한다. 표 2는 이를 위한 설계 목표와 

구현 전략을 정리한다. 

 

표2. 제안 시스템의 설계 목표 

구분 설계 목표 구현 전략 

G1 
LLM 이 직접 생성/편집해야 

하는 코드량 최소화 

RAG 로 사전 검증된 코드 

자산 검색 및 재사용 

G2 
부속 단위 분해로 재사용 및 

실패 격리 

부속별 전용 에이전트로 

설계 단계 및 책임 분리 

G3 
역할 기반 제어로 의도치 

않은 변경 방지 

에이전트별 도구 권한 제한 

및 시스템 프롬프트 강제 

G4 
도구 호출 계층을 분리하여 

재현성, 확장성, 오류 국소화 

MCP 기반 표준화된 도구 

호출 인터페이스 

G5 
CAD 환경 직접 실행으로 

실행 가능성 검증 

FreeCAD 프로세스 분리 및 

XML-RPC 통신 

G6 
코드 자산의 지속적 갱신 

가능성 확보 

샘플 코드 및 메타데이터 

DB 축적, 샘플을 통한 확장 

 

3.2 시스템 구성 

제안 시스템의 구조는 그림 2와 같다. 시스템은 사용자 

인터페이스 계층, 에이전트 계층, MCP 계층, RAG 계층, 

FreeCAD 계층의 5개 계층으로 구성된다.  

 

 
그림2. 제안 시스템의 아키텍처 
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사용자 인터페이스 계층은 설계 입력 수집과 결과 시각화를 

담당한다. 에이전트 계층은 치공구를 부속 단위로 분해하고 

각 부속의 생성을 전담 에이전트에 할당하여 역할 기반 

제어를 실현한다. MCP 계층은 에이전트와 외부 도구 간 

호출을 표준화하여 재현성과 오류 국소화를 지원한다. RAG 

계층은 사전 검증된 코드 자산을 검색 및 재사용함으로써 

LLM이 직접 생성해야 하는 코드량을 최소화한다. FreeCAD 

계층은 생성된 코드를 실제 CAD 환경에서 실행하여 실행 

가능성을 검증한다.  

시스템의 전체 흐름은 (1) 설계 입력 수신, (2) 부속 분해 

및 작업 할당, (3) RAG 기반 코드 검색, (4) MCP 도구 호출을 

통한 실행 및 수정, (5) 결과 검증 및 보고의 단계로 구성된다. 

 

3.3 사용자 인터페이스 계층 

사용자 인터페이스 계층은 웹 기반 GUI(Graphical User 

Interface)를 통해 설계 입력 수집과 결과 시각화를 담당한다. 

그림 3은 사용자 인터페이스의 전체 구성을 보인다. 

 

 

그림 3. 사용자 인터페이스 

 

인터페이스는 채팅, 설정, 상태 표시, 3D 뷰의 영역으로 

구성된다. 좌측 채팅 영역에서 사용자는 자연어로 설계 

요청을 입력하고 LLM과 상호작용한다. 우측 상단 영역에서는 

업로드한 가공대상에 대한 STEP(Standard for the Exchange 

of Product model data) 3D 파일에 대해 기준면(Datum)과 

드릴 가공 구멍(Hole)을 지정하며, 전체 설계 또는 단계별 

설계 패턴을 선택한다. 상단 표시줄은 현재 로드된 파일명과 

함께 LLM, MCP 서버, RPC 서버의 연결 상태를 실시간으로 

제공하고, 우측의 FreeCAD 3D 뷰어는 가공대상과 생성된 

치공구 부속을 시각적으로 확인하도록 지원한다. 

하단의 부속 관리 영역은 베이스플레이트, 인덱스플레이트, 

클램프, 가이드 브라켓의 생성 진행 상태를 표시하고, 부속별 

재생성 기능을 통해 특정 부속만 선택적으로 재수행할 수 

있게 한다. 또한 임시저장 및 이전 상태 호출 기능으로 여러 

설계 대안을 비교 및 선택할 수 있으며, 임시저장 시에는 3D 

형상을 캡처해 썸네일과 함께 상태를 기록한다. 제안 

시스템은 전체 설계 워크플로우와 단계별 설계 워크플로우를 

제공하며, 전자는 4개 부속을 순차적으로 자동 생성해 완전 

자동화를 수행하고, 후자는 사용자가 선택한 부속만 생성하여 

빠른 상호작용과 반복 개선을 지원한다. 

3.4 에이전트 계층 

에이전트 계층은 역할 기반 멀티 에이전트 아키텍처를 

채택한다. 본 연구에서 에이전트는 목표, 설계 원칙, 사용 

가능 도구, 컨텍스트를 바탕으로, 작업 순서에 따라 

자율적으로 판단하고 도구를 호출하는 LLM 기반 실행 단위를 

의미한다. 제안 시스템은 치공구를 4개 부속으로 분해하고, 

각 부속의 생성을 전담하는 부속 에이전트와 전체 프로세스를 

조율하는 관리 에이전트를 분리하여 역할 기반 제어를 

실현한다. 

이 구조는 부속별 책임을 명확히 하여 응집도를 높이고, 

오류를 부속 단위로 격리해 재시도 및 복구 비용을 줄인다. 

또한 관리 에이전트는 세션 전역 히스토리를 유지해 문서 

상태를 종합 판단하고, 부속 에이전트는 담당 부속에 필요한 

최소 컨텍스트만 유지한 뒤 초기화함으로써 컨텍스트 팽창을 

억제한다. 표 3은 각 에이전트의 역할 및 컨텍스트 범위와 

시스템 프롬프트의 목표와 핵심 원칙을 통합해 요약한다. 

 

표3. 에이전트 역할 및 컨텍스트 관리 

에이전트 목표 및 핵심 원칙 역할 및 컨텍스트  

Manager 

Agent 

목표: 설계 프로세스 관리 

및 에이전트 조율 

원칙: 문서 분석 후 작업 

결정, 부속 순서 강제 

역할: 문서 상태 분석, 

부속 정보 추출, 생성 

순서 결정, 에이전트 호출 

컨텍스트: 전역 유지 

Baseplate 

Agent 

목표: 모든 부속을 

지지하는 기반 생성 

원칙: 가공대상과 XY 중심 

정렬, 상단면–가공 

역할: 베이스플레이트 

설계·생성 후 결과 요약 

컨텍스트: 수행 후 초기화 

Index  

Agent 

목표: 가공대상 XY 평면 

수평 이동 방지 

원칙: L 자 형상 2 개 배치, 

가공대상 옆면 인접 

역할: 인덱스플레이트 

설계·생성 후 결과 요약 

컨텍스트: 수행 후 초기화 

Clamp  

Agent 

목표: 가공대상 수직 고정 

원칙: 3 개 배치, 

가공대상을 아래로 압착 

역할: 클램프 설계·생성 후 

결과 요약 

컨텍스트: 수행 후 초기화 

Guide  

Bracket  

Agent 

목표: 드릴 가이드 역할  

원칙: 가이드 홀–가공대상 

홀 일직선 정렬 

역할: 가이드 브라켓 

설계·생성 후 결과 요약 

컨텍스트: 수행 후 초기화 

 

3.5 MCP 계층 

MCP 계층은 에이전트와 외부 도구 간 호출을 표준화하여 

재현성과 오류 국소화를 지원한다. 제안 시스템은 FreeCAD 

실행을 LLM이 생성한 장문 코드에 직접 의존하지 않고, MCP 

기반 도구 호출로 캡슐화한다. 에이전트는 수행할 작업을 

결정해 도구를 호출하며, 실제 CAD 실행은 MCP 서버를 통해 

FreeCAD 통합 계층에서 수행된다. 

MCP 계층은 클라이언트–서버 구조로 구현된다. MCP 

클라이언트는 웹 GUI와 함께 실행되며 MCP 서버를 

백그라운드로 구동하고 FreeCAD 프로세스를 자동 실행한다. 

MCP 서버는 FastMCP 기반이며 FreeCAD와는 XML-
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RPC(Extensible Markup Language Remote Procedure Call)로 

통신한다. 이와 같은 프로세스 분리는 FreeCAD 충돌을 

시스템 전체로부터 격리하고 구성요소의 독립적 재시작을 

가능하게 한다. 

MCP 도구는 정보 조회, 배치 조정, RAG 기반 부속 생성, 

파일 처리로 구성되며, 표 4는 각 도구 범주와 역할 기반 

사용 정책을 요약한다. 관리 에이전트는 문서 분석과 STEP 

반입에 필요한 도구만, 부속 에이전트는 담당 부속의 

생성·배치에 필요한 최소 도구만 사용하도록 제한하여 의도치 

않은 변경을 방지하고 오류 발생 시 책임 범위를 명확히 한다. 

또한 각 도구는 FreeCAD에서의 오류에 대한 로그 반환이 

내장되어 있어, 도구 사용에 문제가 있을 경우 LLM이 직접 

API 코드를 반환하여 이에 대응한다. 

 

표 4. MCP 도구 범주와 역할 기반 사용 정책 

도구 

범주 
대표 도구 활용 대상 목적 

정보 

조회 

get_active_document, 

get_objects_info_only 
전 에이전트 

상태 관측, 

치수 추출 

배치 

조정 
set_body_placement 

부속 

에이전트 

위치 및 회전 

설정 

RAG 

사용 

create_baseplate_from_rag 

등 4 종 

부속 

에이전트 

샘플 코드  

기반 생성 

파일 

처리 
import_step_file 

관리 

에이전트 

가공대상 

STEP 반입 

 

3.6 RAG 계층 

RAG 계층은 사전 검증된 코드 자산을 검색 및 

재사용함으로써 LLM이 직접 생성해야 하는 코드량을 

최소화한다. 본 연구는 반복 가능한 설계 지식을 실행 가능한 

코드 자산으로 데이터베이스에 저장하고, 검색과 재사용을 

통해 산출물을 생성하는 방식을 채택하였다. RAG 

데이터베이스는 ChromaDB 기반 벡터 저장소를 기반으로, 

부속 유형별 샘플 코드와 메타데이터로 구성된다. 샘플 

코드는 FreeCAD 문서 컨텍스트에서 실행 가능한 파이썬 

코드이며, 메타데이터는 샘플의 적용 조건과 설계 의도를 

표현한다. 표 5는 메타데이터의 구성을 요약한다. 

 

표 5. RAG 코드 자산 메타데이터 구성 

구분 항목 설명 활용 목적 

공통 
X, Y, Z 

길이 

가공대상 바운딩 박스 

치수(mm) 

유사 샘플 

탐색 

공통 부피 
가공대상 규모 스칼라 

값(mm^3) 

유사 샘플 

탐색 

부속 

특화 

기준면 

라벨 

설계 기준이 되는 면 

식별자 
후보 필터링 

부속 

특화 

대상 부속 

유형 

베이스플레이트, 

인덱스플레이트, 클램프, 

가이드 브라켓 

후보 집합 

분리 

RAG 검색 과정은 후보 필터링과 최적 샘플 선택의 두 

단계로 구성된다. 먼저 부속 유형과 기준면 라벨 등 필수 

조건으로 후보를 필터링하고, 가공대상의 X, Y, Z 길이와 

부피에 대해 정규화를 수행한다. 길이는 각 차원의 최댓값 

기준으로 수행하며, 부피는 스케일 차이가 크므로 로그 변환 

후 정규화한다. 이후 정규화 값과 부피의 로그 스케일 값에 

대해 유클리드 거리를 계산하여 최단 거리 샘플을 선택한다.  

검색된 샘플 코드는 변수 치환을 통해 현재 설계 조건에 

적응된다. 대상 객체명, 기준면 식별자, 오프셋 값 등의 

변수가 현재 가공대상 정보로 적용되어 실행된다. 코드 

자산의 갱신은 샘플 코드와 메타데이터 추가를 통해 수행된다. 

새로운 설계 사례가 검증되면 데이터베이스에 추가하고, 이후 

동일 부속 유형과 유사 치수 조건에서 재사용이 가능해진다. 

이 방식은 재학습 없이 지식 자산을 확장할 수 있어 산업 

적용에서 요구되는 지속 가능성을 제공한다. 

 

3.7 FreeCAD 계층 

FreeCAD 통합 계층은 생성된 코드를 실제 CAD 환경에서 

실행하여 실행 가능성을 검증한다. 제안 시스템은 FreeCAD를 

별도 프로세스로 구동하고 XML-RPC로 통신함으로써, CAD 

실행 환경과 에이전트 실행 환경을 분리한다. 이러한 

프로세스 분리는 FreeCAD의 충돌이나 오류가 전체 

시스템으로 전파되는 것을 방지하고, 필요 시 CAD 

프로세스만 독립적으로 재시작할 수 있게 하여 운영 안정성을 

높인다. 

FreeCAD 측 RPC 서버는 FreeCAD 애드온(Addon) 형태로 

제공되며, GUI 내에서 활성화되어 외부 요청을 처리한다. 

요청은 Qt 타이머 기반 작업 큐에 적재된 뒤 FreeCAD 메인 

GUI 스레드에서 순차 처리되어 이벤트 루프와의 충돌을 

회피한다. RAG 계층에서 선택·치환된 샘플 코드는 문서 

컨텍스트에서 실행되며, 실행 과정에서 표준 출력/에러와 

콘솔의 경고·오류 메시지를 수집한다. 실행 후 문서 재계산과 

3D 뷰 스크린샷 캡처를 수행해 결과와 진단 정보를 에이전트 

계층에 전달하며, 이는 재시도 또는 다음 단계 진행 판단에 

활용된다. 

 

4. 평가 설정 

본 장에서는 제안 시스템의 실용적 타당성을 평가한다. 

평가는 전체 설계 모드에서의 시나리오 기반 반복 실행과 

항공 제조 현장 관점의 잠재 사용자 평가로 구성한다.  

 

4.1 연구 질문 

본 연구는 다음의 연구 질문을 설정한다. 

⚫ RQ1. 제안 시스템은 전체 치공구를 자동 생성하기 까지 

어느 정도의 시간이 소요되는가? 

⚫ RQ2. 제안 시스템은 부속 단위 실행과 오류 국소화를 

통해 실패를 제한하고 복구 가능성을 제공하는가? 

⚫ RQ3. 항공기 치공구 설계 실무 관점에서 제안 시스템은 

현장 적용 가능성을 갖는가? 
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RQ1은 전체 설계 소요 시간을 지표로 사용한다. 시간은 

전체 설계 실행 시점부터 모든 부속 생성이 완료되는 

시점까지로 정의한다. RQ2는 실행 성공률과 실패 유형 분포를 

지표로 사용한다. RQ3은 잠재 사용자 설문 점수와 자유 

의견을 지표로 사용하며, 각 항목은 5점 척도로 평가 후 

100점 만점으로 환산한다. 

 

4.2 실험 설정 

4.2.1 가공대상과 입력 조건 

평가는 5개의 L자 형상 가공대상을 사용한다. 각 

가공대상은 서로 다른 크기와 부피를 지니므로, 각각 

생성해야하는 부속의 적정 치수, 배치 위치, 개수가 달라진다. 

이를 통해 시스템의 적응 능력을 평가할 수 있다. 그림 4는 

가공대상의 형상과 치수 정보를 보인다. 

 

 
그림 4. 평가에 사용한 5개의 L자형 가공대상 

 

4.2.2 실험 환경 

실험은 로컬에서, LLM API 호출을 위해 온라인이 연동된 

환경에서 수행하였다. 표 6은 본 실험의 소프트웨어, 기술 

스택과 하드웨어 및 운영체제 환경을 통합하여 요약한다. 

 

표 6. 실험 환경 

구분 항목 사양/역할 

CAD FreeCAD 1.0.2 ver. 형상 생성 실행 환경 

구현 언어 Python 3.10.16 ver. 시스템 코어 

통신 XML-RPC FreeCAD 프로세스와 시스템 코어 통신 

RAG DB Chroma DB 설계 샘플 코드 및 메타데이터 저장 

LLM Claude claude-sonnet-4-5-20250929 ver. 

운영체제 Windows Windows 11 

CPU Intel Intel Core Ultra 5 125H 

GPU NVIDIA GeForce RTX 3050 Laptop GPU 

 

4.2.3 평가 절차 

평가는 다음 순서로 수행한다. 평가자는 STEP 파일을 

시스템에 업로드하고, 3개의 기준면과 가공 구멍을 지정한 뒤, 

자연어 요청 “치공구를 설계해”를 입력 후 전체 설계를 

실행한다. 이후 각 부속의 생성 상태를 확인하고 결과를 

검토한다. 각 가공대상에 대해 10회 반복 수행 후 평균을 

산출하였으며, 반복 실행마다 FreeCAD 문서를 초기화하였다.  

잠재 사용자 평가는 국내 대형 항공사의 항공기 치공구 

설계 실무 경력을 보유한 2명의 평가자가 참여하였다. 

평가자는 시스템 시연을 관찰한 후, 자동 생성 모델의 

정확성(10개 항목)과 시스템 사용 적합성(5개 항목)에 대해 

5점 척도로 평가하고 자유 의견을 기술하였다. 

 

5. 평가 결과 

5.1 전체 설계 소요 시간 (RQ1) 

RQ1은 " 제안 시스템은 전체 치공구를 자동 생성하기 까지 

어느 정도의 시간이 소요되는가?"를 묻는다. 표 7은 

가공대상별 전체 설계 평균 소요 시간과 표준편차를 제시한다. 

이 시간은 잘못된 생성 결과에 대한 복구 시간을 포함하며, 

최종 설계 미완료의 사례 또한 포함한다. 

 

표 7. 가공대상별 전체 설계 소요 시간 (10회 반복) 

가공대상 평균 시간 표준편차 

1 2 분 1 초 2.3 초 

2 1 분 55 초 2.9 초 

3 1 분 48 초 1.5 초 

4 1 분 49 초 2.3 초 

5 1 분 51 초 1.4 초 

 

평균 소요 시간은 1분 48초에서 2분 1초 범위에 분포하며, 

가공대상 크기와 부피가 증가하더라도 전체 설계 시간이 일정 

범위 내에서 유지되는 경향을 확인하였다. 이는 RAG 기반 

코드 자산 재사용과 도구 계층화를 통해 실행 흐름이 

가공대상 규모에 독립적으로 유지되도록 설계되었기 때문이다. 

RQ1 결론: 제안 시스템은 서로 다른 크기의 가공대상에 

대해 평균 1분 48초에서 2분 1초의 일관된 시간 내에 전체 

치공구를 자동 생성할 수 있었다. 

 

5.2 실패 유형과 복구 양상 (RQ2) 

RQ2는 "제안 시스템은 부속 단위 실행과 오류 국소화를 

통해 실패를 제한하고 복구 가능성을 제공하는가?"를 묻는다. 

각 부속별 10회씩, 총 50회 실행 중 관측된 부속 단위 실패 

이벤트는 총 13건이었으며, 최종 설계 미완료는 3회였다. 

제안 시스템은  실패한 3회의 원인을 분석한 결과, 실행 

과정에서 관측된 대표 실패 유형은 세 가지로 정리된다. 표 

8은 각 실패 유형의 발생 빈도와 복구 결과를 정리한다. 

 

표 8. 실패 유형과 복구 양상 

실패 유형 발생횟수 발생률 자동복구 복구율 

객체명/기준면 오류 7 14% 6 85.7% 

배치 오프셋 오류 4 8% 3 75.0% 

형상 재계산 오류 2 4% 1 50.0% 

합계 13 26% 10 76.9% 

 

첫째, 기준면 라벨과 가공대상 객체명 치환 오류로 인한 

부속 생성 실패이다(7회 발생, 14%). RAG 샘플 코드가 

KCSE 2026 제28권 제1 호 (2026 한국소프트웨어공학학술대회 논문집)

270



전제하는 객체명이나 기준면 식별자가 입력과 불일치할 때 

발생하며, 재시도를 통해 6회(85.7%) 복구에 성공하였다. 

둘째, 배치 오프셋 설정 오류로 인한 간섭 발생이다(4회 발생, 

8%). 특정 크기 구간에서 기본 오프셋이 부합하지 않는 경우 

부속 간 간섭이 관측되었으며, 오프셋 조정을 통해 3회(75%) 

복구하였다. 셋째, FreeCAD 재계산 시점에서의 형상 일관성 

오류이다(2회 발생, 4%). 파라메트릭 스케치 제약이 충돌할 

때 재계산이 실패하며, 이 유형은 샘플 코드 자체의 상세한 

수정이 필요하여 자동 복구율이 낮았다.  

제안 시스템은 부속 단위 실행을 통해 실패를 부속 단위로 

제한하고, 동일 부속 유형의 다른 샘플 재선택 또는 치환 

변수 조정으로 재시도를 수행한다. 이를 통해, 전체 13회의 

부속 단위 실패 중 10회(76.9%)가 자동 재시도로 복구되었다. 

RQ2 결론: 제안 시스템은 부속 단위 실행을 통해 실패를 

격리하고, 50회의 시행 중 76.9%의 자동 복구율로 오류 

국소화와 복구 가능성을 제공한다. 

 

5.3 잠재 사용자 평가 결과 (RQ3) 

RQ3은 "항공기 치공구 설계 실무 관점에서 제안 시스템은 

현장 적용 가능성을 갖는가?"를 묻는다. 항공기 치공구 설계 

실무 경력을 보유한 2명의 평가자가 시스템 시연을 관찰한 후, 

10개 항목의 자동 생성 모델의 정확성과 5개 항목의 시스템 

사용 적합성을 평가하였다. 각 항목은 5점 척도로 

평가하였으며, 총점은 (각 항목 점수의 합 / 항목 수 × 5) × 

100으로 100점 만점 환산하였다. 표 9은 잠재 사용자의 평가 

점수를 요약한다. 

 

표 9. 잠재 사용자 평가 점수 요약 (5점 척도, 100점 환산) 

평가 영역 평가자 A 평가자 B 평균 

자동 생성 정확성 88 86 87 

시스템 사용 적합성 96 88 92 

 

또한, 표 10은 평가자들이 제시한 긍정적 피드백과 개선 

요구 사항을 정리한다. 

 

표 10. 잠재 사용자 정성 피드백 요약(긍정/개선 요구) 

긍정적 피드백 

⚫ 전반적인 개발 완성도가 높고 기본 기능이 잘 동작함 

⚫ 3D 형상 생성 결과와 배치가 직관적으로 확인 가능함 

⚫ 설계안 반복 개선과 썸네일 비교 기능이 실무에 유용함 

⚫ 향후 다른 부속(엔진 마운트 등)으로 확장 가능성 있음 

개선 요구 사항 

⚫ 샘플 데이터베이스 확충 필요. 현재 DB 로는 다양한 형상에 

대응하기 어려우며, 더 많은 사례 축적이 요구됨 

⚫ 크기 조정(스케일링) 관련 일부 불안정: 특정 크기 구간에서 

배치가 부정확한 경우가 관측됨 

⚫ 사용자 접근성 개선 필요: 초기 설정과 인터페이스가 설계 

실무자에게 익숙하지 않은 부분이 있음 

평가자들은 시스템의 기본 기능과 자동 생성 품질에 대해 

긍정적으로 평가하였으나, 실제 현장 적용을 위해서는 샘플 

데이터베이스의 확충이 선행되어야 함을 지적하였다. 이는 

RAG 기반 접근의 특성상 샘플 코드의 다양성과 품질이 

시스템 성능에 직접적으로 영향을 미치기 때문이다. 

RQ3 결론: 제안 시스템은 기본적인 현장 적용 가능성을 

갖추었으나, 샘플 데이터베이스 확충과 사용자 접근성 

개선이 실제 적용의 전제 조건으로 확인되었다. 

 

6. 논의 

본 연구는 치공구 자동설계를 운영형 자동화 문제로 

정의하고, RAG 기반 코드 자산 재사용, MCP 기반 도구 호출 

계층화, 역할 기반 멀티 에이전트 분해를 결합한 FreeCAD 

오토코딩 시스템을 구현하였다. 평가 결과, 서로 다른 크기의 

5개 가공대상에 대해 전체 설계 시간이 1분 48초에서 2분 

1초 범위로 유지되었고(RQ1), 부속 단위 실패의 76.9%가 

자동 재시도로 복구되었으며(RQ2), 잠재 사용자 평가에서 

자동 생성 정확성 87점, 사용 적합성 92점을 

기록하였다(RQ3). 이는 표 2에서 제시한 설계 목표가 

실험적으로 달성되었음을 시사한다.  

선행연구와 비교할 때, 본 연구는 생성, 검증, 협업 요소를 

치공구 도메인에 맞는 단일 구조로 통합하고, 부속 단위 

분해와 도구 호출 표준화를 통해 책임 범위와 실행 단위를 

명확히 했다는 점에서 차별화된다. 한편, 부속 분해 체계의 

확장성, 자연어 기반 수정 요청의 안정성, 간섭 검증 자동화의 

제한, 기존 방식 대비 비교 평가 부족이 한계로 확인되었다.  

잠재 사용자 평가에서는 샘플 코드 자산의 확충이 현장 

적용의 전제 조건으로 제시되는 동시에, 엔진 마운트 등 다른 

부속으로의 확장 가능성이 언급되었다. 이는 MCP 기반 도구 

계층화와 RAG 기반 재사용 구조가 샘플 코드 데이터베이스 

확충을 통해 유사한 반복 설계 문제에 적용될 수 있음을 

시사한다. 본 연구는 이러한 구조적 접근을 통해 

소프트웨어공학의 모듈화, 재사용성, 운영화 원칙이 AI 기반 

제조 설계 자동화 영역에서도 유효할 수 있음을 보여준다. 

 

7. 결론 

본 연구는 치공구 자동설계를 위한 멀티 에이전트 기반 

FreeCAD 오토코딩 시스템을 제안하였다. 치공구를 부속 

단위로 분해하고, RAG 기반 코드 자산 재사용과 MCP 기반 

도구 계층화를 결합과 더불어 멀티 에이전트 구조를 채택하여 

LLM의 부담을 구조적으로 축소하면서 실행 가능한 산출물을 

안정적으로 확보하였다.  

5개의 L자 형상 가공대상에 대한 평가에서 평균 1분 

48초에서 2분 1초의 일관된 설계 시간과 76.9%의 자동 

복구율을 확인하였으며, 잠재 사용자 평가에서 정확성 87점, 

사용 적합성 92점을 기록하였다. 향후 연구에서는 부속 분해 

체계의 확장, 3차원 추론 특화 모델 파인튜닝, 간섭 검출 기능 

통합, 다양한 형상과 확대된 사용자 집단을 대상으로 한 비교 

평가를 수행할 계획이다.
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요약

대규모언어모델을활용한법률질의응답시스템에서는검색증강생성(Retrieval-Augmented Generation, RAG)
을 통해법률적정확성과신뢰성을향상시키는연구가활발히진행되고있다. 그러나 RAG 시스템의성능은검색
결과문서의품질에크게좌우되며,특히한국어법률도메인에서는범용적인검색모델이최적의문서검색을충분히
수행하지못하는한계가있다.본연구에서는한국어법률 RAG 시스템을최적화하고자도메인특화임베딩모델을
학습하기위해다양한출처에서의질의-근거형태의데이터를수집하여 LLM 기반의데이터필터링을통해품질을
개선하고, 법령정보센터 API를활용해데이터셋을구축하였다. 실험결과, 제안하는모델은기존베이스라인모델
대비약 5.6% 향상된검색성능을기록하며한국어법률도메인에서의유의미한검색품질개선효과를입증하였다.

1 서론

최근대규모언어모델(LLM)의 발전으로법령및판례를
검색,요약,질의응답하는법률AI시스템이활발히연구되고
있다.그러나법률도메인의경우응답의유창성보다정확한

조문 및 판례의 인용과 근거 제시가 답변의 신뢰성을 크게

좌우한다는점에서 RAG 시스템개선의중요성이강조되고
있다.

특히사전학습기반 LLM은법령의개정및최근판례를즉
시반영하기가어려워그결과인용판례및법령이부정확하

거나근거가빈약한환각(hallucination) 현상이발생하기쉽
다.이러한한계를개선하기위한대표적인방법인RAG시스
템은검색단계에서의검색결과문서품질에크게좌우되며,

무관한문서의검색및누락은법률분야의질의응답에서의

응답신뢰성과정확성을약화시킨다.

문서검색을위해일반적으로활용되는범용임베딩모델

의경우질문및문서에서의법률용어간의연관성및의미를

충분히반영하지못하고,도메인특화임베딩학습에필요한

질의-근거형태의고품질데이터셋도제한적이라는문제가
있다.

본연구는위한계를해결하기위해한국어법률 RAG 시
스템의검색기반을강화하는데초점을맞춘다.구체적으로,

다양한출처에서한국어법률질의-근거데이터를수집하고
LLM 기반필터링으로품질을개선한뒤,국가법령정보센터
API를활용해데이터셋을구축하였다.이후해당데이터셋을
기반으로도메인특화임베딩모델을학습하여한국어법률

문서검색성능을향상시키고,궁극적으로RAG 기반질의응
답의신뢰성과정확성개선을목표로한다.

2 관련연구

법률도메인QA에서 LLM은상담형질의응답,판례요약,
조문검색등으로활용범위가확장되었으나,범용사전학습

모델은최신개정반영한계와환각문제로인해직접적인법

률의사결정지원에적용하기어렵다는비판이지속적으로

제기되어왔다[1].
이러한한계를완화하기위해검색증강생성(RAG)이 도
입되었으며,한국법률QA에서도국가법령정보를기반으로
한법령·판례검색후GPT 계열 LLM으로답변을생성하는
시스템[2]이제안되어사실성과근거성을동시에강화하려는
시도가보고되었다.

그러나 RAG 구조에서는검색기가부정확한문서를반환
하거나핵심근거를누락할경우,생성단계에서오히려잘못

된근거를강화하는오류가발생할수있어,검색단계최적화
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및 법률도메인특화평가지표를포함한 ‘retrieval 품질관
리’ 가핵심연구축으로부상하였다[1, 2].
정보검색을위한신경망기반의임베딩모델학습의경우

질의-근거문서쌍의의미적유사성을높이는방식으로학습
이진행된다.특히DPR[3]는대량의질의-근거문서쌍에대한
대조학습을통해 dense dual-encoder를학습함으로써 BM25
대비 Top-k 정확도를크게향상시키는것으로보고되었고,
이후 E5[4], ColBERT[5] 등데이터셋구축및아키텍처개선
등으로다양한QA 벤치마크에서성능개선을달성하였다.
전문도메인에서는범용임베딩보다도메인특화임베딩

이검색품질과 RAG 응답신뢰도를유의미하게개선한다는
결과가반복적으로보고되며, 특히법률·금융등고신뢰영

역에서그효과가두드러진다[6].
하지만한국어법률환경에서는임베딩학습에적합한질

의-근거데이터의확보가쉽지않고, 데이터정합성(근거의
실제 존재 여부, 개정/버전, 인용 가능성)과 노이즈 통제가
성능을좌우한다는실무적문제가존재한다.따라서본연구

는한국어법률RAG의검색병목을 ‘임베딩모델’ 차원에서
직접 개선하되, 이를 뒷받침하기 위한 데이터 구축을 LLM
기반필터링과국가법령정보센터 API 기반정합성통제로
체계화하여,도메인특화임베딩학습의현실적장벽을낮추

는접근을제안한다.

3 데이터구축과정

3.1 활용데이터

본연구에서활용한원시데이터는총 22,695건이다. 데이
터의집계단위는유형별로상이하여민원은 1건, 불공정약
관은 1개조항,판례는 1개사건을각각 1건으로정의하였다.
특히불공정약관데이터의경우,공정거래위원회(이하공정

위)가공개한불공정행위민원및약관심사사례를활용하

였다.공정위자료는불공정성판단의근거가되는법령과해

석을포함하고있으므로,본연구에서는이를기반으로약관

조항(Anchor)과근거법령(Positive)을매핑하여데이터셋을
구축하였다.데이터셋의상세구성은표 1과같다.

표 1. 데이터셋상세구성

데이터셋 건수 출처

공공민원상담 LLM 사전학습및 Instruc-
tion Tuning

4484 AIHUB

법률/규정텍스트분석데이터(고도화) -상
황에따른판례데이터中민사판례

15327 AIHUB

불공정약관데이터 2884 공정위

3.2 원시데이터처리

성능고도화를위해서는양질의데이터구축이필수적이

다. 이에본연구에서는실제민원및불공정약관데이터를

정제하여활용하였으며, 이를위해그림 1와같이다양한형
태의원시데이터를모델학습에적합한형태로구조화하는

전처리과정을수행하였다.

그림 1. 원시데이터처리및구조화과정

우선, 수집된민원및판례원시데이터에대해스키마정

규화를거쳐데이터필드를통일하였다. 이후거대언어모델

(LLM)을활용하여데이터의품질을고도화하였다.구체적으
로사용된프롬프트및 LLM설정은표 2과같다.관련법령이
명시되지않은민원데이터의경우,본문내용을바탕으로연

관된법령을추출하였다.

그림 2. 국가법령센터API 기반법령데이터구축
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표 2. LLM 생성환경변수

변수 값

model Qwen3
size 8B
temperature 0
max_tokens 2048
prompt 당신은대한민국법령및행정문서텍스트에서

특정정보를추출하여지정된 JSON 형식으로
정리하는 고도로 숙련된 법률 정보 분석 AI
입니다. 주어진 입력 텍스트(batch_data)
에 서 ^report_id^, ^related_laws^,
^related_cases^, ^is_revised^ 를 추출
하여 JSON 배열로반환

처리절차 (Thought Process)
•전체텍스트순차적분석:처음부터끝까지순
서대로독해.
• ’현재 법령’ 기억: ’법’ 또는 ’시행령’으로끝
나는명칭저장 (Context 유지)
•참조어처리(핵심): ’동법’, ’같은 영’, ’법 제
N조’등의참조어를기억해둔법령명으로치환
(예: ’같은법제64조’→ ’산업안전보건법제64
조’)
•정제및필터링:목록접두사(가., 나.) 제거및
JSON 스키마매핑.

Few-shot Example
(...지면관계상생략...)

3.3 외부지식베이스기반법령데이터확장

민원답변생성시환각을방지하고정확한법적근거를제

시하기위해,그림 2와같이외부지식베이스를구축하였다

(1) 법령명정규화: 1차스키마데이터의 related_laws필드
에는 ’동법’, ’같은 영’과 같은지시적표현이혼재되어

있어, 이를검색쿼리로직접활용하는데한계가있다.

이를극복하기위해문맥인식기반의상호참조해결알

고리즘을적용하였다. 구체적으로, 문맥내에서명시된

법령명중가장긴형태를기준으로식별하고,후행하는

지시어(예: 동법 제N조)를 해당 법령명으로 동적으로
치환하여온전한법적엔티티로복원하였다.

(2) 상세법령API 검색및검증: 특정조항을정확히식별하
기위해자연어형태의조문번호(예:제12조의2)를API
규격인 6자리코드(예: 001202)로변환하는전처리를선
행하였다. 이후정규화된법령명과변환된조문코드를

기반으로국가법령정보센터API를호출하여해당조문
의전문을수집한다.이과정에서시행일자메타데이터를

활용해현행법령여부를검증함으로써, 모델이유효한

법적효력을지닌데이터만을학습하도록보장한다.

3.4 최종학습데이터셋구축

수집된상세법령정보를원래의민원데이터와매핑하여

최종학습데이터셋을완성한다.전체적인데이터구축파이

프라인은그림 3에도식화하였다. 기존의단순문자열리스
트였던 related_laws필드를상세법령객체리스트로대체
함으로써,모델이민원내용과함께법적근거의실제텍스트

(Ground Truth Context)를동시에학습할수있도록구성하
였다.

Step 1. Raw Data (비정형 텍스트)

&
]content]: ]채권자 대위권 행사에 의한 소송에...]-
]_eference_info]: &

]reference_rules]: ]민법 제9y9조- 민사소송법 제
kyk조- 제kj9조]
'-

'

↓ LLM 구조화 (Refinement)

Step 2. Structured (리스트 정규화)

&
]content]: ]채권자 대위권 행사에 의한 소송에...]-
]related_laws]: (

]민법 제9y9조]-
]민사소송법 제kyk조]-
]민사소송법 제kj9조]

)
'

↓ API를통한법령조문수집

Step 3. Final Input (조문 내용 주입)

&
]content]: ]채권자 대위권 행사에 의한 소송에...]-
]related_laws]: (

&
]참고법령]: ]민법 제9y9조]-
]참고법령세부]: ]제9y9조U채권자대위권V ①채권

자는 자기의 채권을 보전하기 위하여 채무자의 권리를
행사할 수 있다...]

'-
)

'

그림 3. 데이터처리파이프라인. 실제 조문 내용이 포함된
학습데이터로확장되는과정
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법령 데이터 확장 과정을 거친 결과, 원시 데이터 22,695
건은 Anchor-Positive 쌍(Pair) 기준으로재구성되어데이터
수가확장되었다.하나의민원이나판례가여러법령조항과

연결될수있으므로,각조항마다별도의학습쌍을생성하였

다.전체데이터는학습(Train), 검증(Validation), 평가(Test)
셋으로 8:1:1 비율로무작위분할하였으며,최종구축된학습
데이터셋의통계는표 3와같다.

표 3. 최종학습데이터셋통계

Split Ratio Count (Pairs)

Train 80% 71,992
Validation 10% 8,907
Test 10% 9,095
Total 100% 89,994

4 실험

4.1 실험환경및설정

본실험은NVIDIA A100 GPU환경에서수행되었다.본연
구에서는제안하는도메인특화임베딩모델의효용성을검증

하기위해, 최신한국어임베딩모델인 nlpai-labfEoE51와

dragonkuefsnowflake-arctic-embed-l-v2.0-ko2를베이

스라인으로선정하였다.

구체적으로 EoE5는 multilingual-e5-large를기반으로
다양한한국어데이터셋을통해추가학습된모델로약 5억 6
천만(560M) 개의파라미터를보유하고있으며, Snowflake-
�rctic-Eo는 snowflake-arctic-embed-l-v2.0을 한국어
로파인튜닝한모델로약 5억 6천 8백만(568M) 개의파라미
터를가진다.

두 모델을 비교군으로 선정한 핵심 이유는 다음과 같다.

첫째, 두모델모두약 5.6억개의파라미터를보유한동급의
Large모델로서,모델체급차이에따른성능편향을효과적으
로통제할수있다.둘째, 두모델모두범용한국어데이터로

사전학습이완료된상태이므로,본연구가제안하는’법률도

메인특화학습’이실제검색성능향상에기여하는지명확히

검증할수있다.

4.2 대조학습방법

본연구에서는별도의 Hard Negative Mining 없이, 배치
내의다른샘플들을음성샘플로활용하는 In-batch Negative

1https://huggingface.co/nlpai@lab/Eo18
2https://huggingface.co/dragonFue/

snowflaFe@arctic@embed@l@vk.y@Fo

Sampling[3] 방식을채택하였다.이방식은배치크기가 N일
때,각질의 q에대해대응하는정답문서 d+를제외한나머지

N−1개의문서를자동으로음성샘플(Negative samples)로
간주한다. 이는의미적으로유사하지만법적으로는서로다

른문서가 Negative로포함될가능성을높여, 모델이미세한
법률적의미차이를구분하도록유도한다.

학습에사용된 MultipleLegatives_ankingLoss (ML_L)
는다음과같은 InfoNCE 형태의수식으로정의된다.

L =− log
exp(s(q,d+)/τ)

∑N
i=1 exp(s(q,di)/τ)

여기서N은배치사이즈를의미하며, s(·)는질의(q)와문서
(d) 간의코사인유사도함수, �는소프트맥스분포의선명도
를조절하는온도매개변수를나타낸다.

손실함수측면에서는기본 ML_L과메모리효율을극대화
한 *achedMultipleLegatives_ankingLoss (*ML_L)를 비
교분석하였다. 실험 결과, 동일하거나유사한배치조건에

서 *ML_L을적용한설정이전반적으로우수한성능을보였
다.이는 *ML_L이캐싱매커니즘을통해실질적으로더많은
수의 Effective Negative를학습에활용할수있게함으로써
대조학습의효율을높였기때문으로해석할수있다.

4.3 실험결과및분석

두베이스라인모델의법률데이터셋에대한제로샷검색

성능과파인튜닝모델의최고성능은표 4와같다.

표 4. 베이스라인모델과파인튜닝모델의성능비교요약

Model Batch LR Loss Recall@3 MRR@3 Recall@10 MRR@10

Baselines (Zero-shot)
KoE5 - - - 0.7664 0.7085 0.8203 0.7187
Snowflake - - - 0.7647 0.7115 0.8166 0.7214

Fine-tuned (Best Performance)
KoE5 (Ours) 256 1e-4 CMNRL(32) 0.8082 0.7502 0.8543 0.7590
Snowflake (Ours) 256 1e-4 CMNRL(64) 0.8073 0.7513 0.8512 0.7599

표 4에나타난바와같이, 베이스라인모델들은제로샷환
경에서MRR@10 기준약 0.72 수준의성능을기록하였다.이
는범용한국어임베딩모델이법률도메인에서도기초적인

검색능력을갖추고있으나,복잡한법률용어와특수한조문

구조를정밀하게파악하여최상위랭크에배치하는데에는

한계가있음을보여준다.

베이스라인평가후,본연구에서구축한법률특화데이터

셋을활용하여EoE5모델의파인튜닝을진행하였다.파인튜닝
과정에서는배치크기(Batch Size), 학습률(Learning Rate),
손실함수(Loss Function) 등주요하이퍼파라미터에대한탐
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색 실험을 수행하여, 법률 문서검색에적합한학습설정을

도출하고자하였다.

표 5. 하이퍼파라미터설정에따른상세실험결과

Model Batch LR Loss Function R@3 MRR@3 R@10 MRR@10

KoE5 (Fine-tuned)
128 2e-5 MNRL 0.7965 0.7423 0.8490 0.7523
128 2e-5 CMNRL (64) 0.7938 0.7406 0.8483 0.7511
128 2e-5 CMNRL (32) 0.8015 0.7478 0.8459 0.7563
256 2e-5 MNRL 0.7994 0.7431 0.8480 0.7526
256 1e-4 MNRL 0.8045 0.7474 0.8539 0.7570
256 1e-4 CMNRL (64) 0.8032 0.7489 0.8515 0.7580
256 1e-4 CMNRL (32) 0.8082 0.7502 0.8543 0.7590
512 1e-4 MNRL 0.8005 0.7486 0.8504 0.7583
1024 1e-4 CMNRL (32) 0.7991 0.7421 0.8479 0.7514
1024 2e-4 CMNRL (32) 0.7971 0.7420 0.8446 0.7514
2048 2e-4 CMNRL (32) 0.7874 0.7339 0.8401 0.7438

Snowflake-Arctic-Ko (Fine-tuned)
128 2e-5 MNRL 0.7986 0.7485 0.8503 0.7584
128 2e-5 CMNRL (64) 0.7988 0.7467 0.8514 0.7568
128 2e-5 CMNRL (32) 0.8033 0.7474 0.8512 0.7567
256 2e-5 MNRL 0.7991 0.7466 0.8528 0.7566
256 1e-4 MNRL 0.7994 0.7494 0.8510 0.7596
256 1e-4 CMNRL (64) 0.8073 0.7513 0.8512 0.7599
256 1e-4 CMNRL (32) 0.8039 0.7509 0.8510 0.7599
512 1e-4 MNRL 0.8044 0.7494 0.8512 0.7585
1024 1e-4 CMNRL (32) 0.7996 0.7439 0.8440 0.7525
1024 2e-4 CMNRL (32) 0.7924 0.7412 0.8454 0.7515
2048 2e-4 CMNRL (32) 0.7846 0.7322 0.8365 0.7423

본연구에서제안하는파인튜닝모델들은모든지표에서

베이스라인을 유의미하게 상회하였다. 특히 EoE5 모델은
MRR@10이 0.7590으로제로샷대비약 5.6% 향상되었으며,
Snowflake-�rctic-Eo모델은 0.7599를기록하며제로샷대
비약 5.3%의성능향상을달성하였다.
표 5의상세실험결과를통해도출한주요분석결과는다

음과같다.

• 손실함수및Effective Negatives의영향:동일한배치크
기(256) 내에서 ML_L보다 *ML_L을적용했을때성능이
전반적으로우수하였다.이는 *ML_L이캐싱메커니즘을
통해더많은수의 effective negative 샘플을학습에활용
함으로써,법률문장간의미세한의미차이를구별하는

변별력을높였기때문으로분석된다.

• 배치크기(Batch Size)의임계점:배치크기가 256일때
최적의성능을보였으나, 1024이상의대규모배치에서는
오히려성능이하락하는경향이관찰되었다. 이는배치

크기가과도하게커질경우,배치내에 ’거짓부정(False

Negative)’ 샘플(즉,의미적으로는유사하지만레이블만
다르게지정된다른조문들)이포함될확률이높아져학

습의수렴을방해하는노이즈로작용했기때문일가능

성이크다.

• 상위 랭킹(MRR) 개선의 의의: 모든 실험군에서 Re-
call@10의개선폭보다MRR@10의개선폭이상대적으
로더두드러졌다.이는단순히관련조문을 10위권내에
포함시키는수준을넘어, 질문에직결되는결정적근거

를 1 3위내최상단으로정교하게타격하여배치하는능
력이크게강화되었음을의미한다.

결과적으로, 배치크기 256, 학습률 1e−4 조건에서 *ML_L
을 적용한 설정이 가장 우수한 성능을 기록하였다. 특히

Snowflake-�rctic-Eo 기반 모델이 MRR@10 기준 0.7599
를기록하며가장높은정밀도를보였다. 이러한 검색성능

의향상은 RAG 시스템의생성단계에서 LLM이참조하는
컨텍스트의순도를높여,환각현상을억제하고법률답변의

신뢰성을확보하는데기여할것으로판단된다.

5 결론

본 연구에서는 한국어 법률 도메인에 특화된 RAG 시스
템의검색성능을향상시키기위해, 고품질의질의-법령데
이터셋구축파이프라인과이에기반한임베딩모델최적화

방법을제안하였다. 다양한출처에서수집한원시데이터에

대해 LLM 기반문맥정규화및필터링을수행하고, 국가법

령정보센터API를통해조문전문과시행일자메타데이터를
확보함으로써근거의정합성과현행성을검증한 89,994쌍의
학습데이터를구축하였다.이를바탕으로대조학습기반파

인튜닝을수행한결과, 제안 모델은범용한국어임베딩모

델대비MRR@10 기준최대약 5.6%의성능향상을달성하
였다. 또한 *achedMultipleLegatives_ankingLoss의도입
과적절한배치크기설정이법률문서와같이미세한의미

차이가중요한도메인에서효과적임을재확인하였다. 다만

본연구는 RAG 시스템의핵심병목인검색(Retrieval) 성능
최적화에주안점을두었기에, 검색된문서를바탕으로최종

답변을생성(Generation)하는단계에대한정량적평가는포
함하지않았다는한계가있다.따라서향후연구에서는검색

결과를기반으로생성된응답의정확성과근거적합성을종합

적으로평가하는과정이필요할것이다.특히올바른문서를

검색했음에도생성단계에서오류가발생하는사례를심층

분석한다면, 법률질의응답시스템의신뢰성을더욱보완할

수있을것으로기대된다.
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	4.4 에이전트 오케스트레이션 및 실현 가능성​  본 절에서는 앞서 설명한 Runtime Agent, Regulation Agent, Finance Agent 간의 상호작용 구조와 이를 실제 클라우드 환경에서 구현 가능한 형태로 배치하는 방식을 설명한다. 이벤트 분석, 규제 판단, 비용 평가, 실행을 단일 에이전트에 집중시키지 않고 단계적으로 분리함으로써 자동화 과정에서의 위험을 최소화하고, 사용자 개입이 필요한 지점을 명확히 정의한다. 
	5.3.1 실험 설계 및 환경​​  실험은 12개의 대표적인 GuardDuty 위협 시나리오를 대상으로 수행되었다. 각 시나리오는 전문가에 의해 정답 라벨(Ground Truth)이 부여되었으며, 여기에는 위험도(Severity), 권장 대응 유형(Action Type), 금지된 대응 행위(Forbidden Actions)가 포함된다. 시스템의 출력은 "Action Plan JSON" 표준 스키마를 따르도록 강제하여 품질 평가의 객관성을 확보하였다. 
	5.3.2 평가지표​​실험의 평가는 성능, 품질, 안정성의 세 가지 관점에서 이루어진다.​1) 런타임 성능 (Performance)​- E2E Latency: 입력 이벤트 수신부터 최종 JSON 출력까지 소요되는 전체 시간이다.​- MTTR : 각 시나리오의 평균 응답 시간​2) 의사결정 품질 (Quality)​- Severity Accuracy: 판정된 위협 수준이 전문가 라벨과 일치하는 비율이다.​- Action Type Accuracy: 제안된 대응 유형이 허용 범위 내에 존재하는 비율이다.​정확도는 전체 시나리오 수 N에 대한 전문가 라벨 𝑦𝑖와 시스템 출력 𝑦^𝑖의 일치 여부를 기준으로 계산한다.​- Over/Under-response Rate: 실제 위협보다 과하거나 부족하게 대응한 비율을 측정하여 운영 리스크를 평가한다.​3) 출력 안정성 (Robustness)​- JSON Valid Rate: 출력값이 유효한 JSON 형식으로 파싱되는지 확인한다.​- Schema Compliance: "action_plan" 내 필수 필드(target, method 등)의 누락 여부를 검증한다. 
	5.3.3 실험 결과 및 분석​​실험 결과, 제안 시스템인 M2는 런타임 성능과 의사결정 품질 사이에서 최적의 균형을 보여주었다(표 2 참조). 
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